1 /* 2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc 3 * 4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c) 5 * Copyright (C) 2006 David Brownell (convert to new framework) 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 /* 14 * The original "cmos clock" chip was an MC146818 chip, now obsolete. 15 * That defined the register interface now provided by all PCs, some 16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets 17 * integrate an MC146818 clone in their southbridge, and boards use 18 * that instead of discrete clones like the DS12887 or M48T86. There 19 * are also clones that connect using the LPC bus. 20 * 21 * That register API is also used directly by various other drivers 22 * (notably for integrated NVRAM), infrastructure (x86 has code to 23 * bypass the RTC framework, directly reading the RTC during boot 24 * and updating minutes/seconds for systems using NTP synch) and 25 * utilities (like userspace 'hwclock', if no /dev node exists). 26 * 27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with 28 * interrupts disabled, holding the global rtc_lock, to exclude those 29 * other drivers and utilities on correctly configured systems. 30 */ 31 #include <linux/kernel.h> 32 #include <linux/module.h> 33 #include <linux/init.h> 34 #include <linux/interrupt.h> 35 #include <linux/spinlock.h> 36 #include <linux/platform_device.h> 37 #include <linux/log2.h> 38 #include <linux/pm.h> 39 #include <linux/of.h> 40 #include <linux/of_platform.h> 41 #include <linux/dmi.h> 42 43 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */ 44 #include <asm-generic/rtc.h> 45 46 struct cmos_rtc { 47 struct rtc_device *rtc; 48 struct device *dev; 49 int irq; 50 struct resource *iomem; 51 52 void (*wake_on)(struct device *); 53 void (*wake_off)(struct device *); 54 55 u8 enabled_wake; 56 u8 suspend_ctrl; 57 58 /* newer hardware extends the original register set */ 59 u8 day_alrm; 60 u8 mon_alrm; 61 u8 century; 62 }; 63 64 /* both platform and pnp busses use negative numbers for invalid irqs */ 65 #define is_valid_irq(n) ((n) > 0) 66 67 static const char driver_name[] = "rtc_cmos"; 68 69 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear; 70 * always mask it against the irq enable bits in RTC_CONTROL. Bit values 71 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both. 72 */ 73 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF) 74 75 static inline int is_intr(u8 rtc_intr) 76 { 77 if (!(rtc_intr & RTC_IRQF)) 78 return 0; 79 return rtc_intr & RTC_IRQMASK; 80 } 81 82 /*----------------------------------------------------------------*/ 83 84 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because 85 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly 86 * used in a broken "legacy replacement" mode. The breakage includes 87 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for 88 * other (better) use. 89 * 90 * When that broken mode is in use, platform glue provides a partial 91 * emulation of hardware RTC IRQ facilities using HPET #1. We don't 92 * want to use HPET for anything except those IRQs though... 93 */ 94 #ifdef CONFIG_HPET_EMULATE_RTC 95 #include <asm/hpet.h> 96 #else 97 98 static inline int is_hpet_enabled(void) 99 { 100 return 0; 101 } 102 103 static inline int hpet_mask_rtc_irq_bit(unsigned long mask) 104 { 105 return 0; 106 } 107 108 static inline int hpet_set_rtc_irq_bit(unsigned long mask) 109 { 110 return 0; 111 } 112 113 static inline int 114 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec) 115 { 116 return 0; 117 } 118 119 static inline int hpet_set_periodic_freq(unsigned long freq) 120 { 121 return 0; 122 } 123 124 static inline int hpet_rtc_dropped_irq(void) 125 { 126 return 0; 127 } 128 129 static inline int hpet_rtc_timer_init(void) 130 { 131 return 0; 132 } 133 134 extern irq_handler_t hpet_rtc_interrupt; 135 136 static inline int hpet_register_irq_handler(irq_handler_t handler) 137 { 138 return 0; 139 } 140 141 static inline int hpet_unregister_irq_handler(irq_handler_t handler) 142 { 143 return 0; 144 } 145 146 #endif 147 148 /*----------------------------------------------------------------*/ 149 150 #ifdef RTC_PORT 151 152 /* Most newer x86 systems have two register banks, the first used 153 * for RTC and NVRAM and the second only for NVRAM. Caller must 154 * own rtc_lock ... and we won't worry about access during NMI. 155 */ 156 #define can_bank2 true 157 158 static inline unsigned char cmos_read_bank2(unsigned char addr) 159 { 160 outb(addr, RTC_PORT(2)); 161 return inb(RTC_PORT(3)); 162 } 163 164 static inline void cmos_write_bank2(unsigned char val, unsigned char addr) 165 { 166 outb(addr, RTC_PORT(2)); 167 outb(val, RTC_PORT(3)); 168 } 169 170 #else 171 172 #define can_bank2 false 173 174 static inline unsigned char cmos_read_bank2(unsigned char addr) 175 { 176 return 0; 177 } 178 179 static inline void cmos_write_bank2(unsigned char val, unsigned char addr) 180 { 181 } 182 183 #endif 184 185 /*----------------------------------------------------------------*/ 186 187 static int cmos_read_time(struct device *dev, struct rtc_time *t) 188 { 189 /* REVISIT: if the clock has a "century" register, use 190 * that instead of the heuristic in get_rtc_time(). 191 * That'll make Y3K compatility (year > 2070) easy! 192 */ 193 get_rtc_time(t); 194 return 0; 195 } 196 197 static int cmos_set_time(struct device *dev, struct rtc_time *t) 198 { 199 /* REVISIT: set the "century" register if available 200 * 201 * NOTE: this ignores the issue whereby updating the seconds 202 * takes effect exactly 500ms after we write the register. 203 * (Also queueing and other delays before we get this far.) 204 */ 205 return set_rtc_time(t); 206 } 207 208 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t) 209 { 210 struct cmos_rtc *cmos = dev_get_drvdata(dev); 211 unsigned char rtc_control; 212 213 if (!is_valid_irq(cmos->irq)) 214 return -EIO; 215 216 /* Basic alarms only support hour, minute, and seconds fields. 217 * Some also support day and month, for alarms up to a year in 218 * the future. 219 */ 220 t->time.tm_mday = -1; 221 t->time.tm_mon = -1; 222 223 spin_lock_irq(&rtc_lock); 224 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM); 225 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM); 226 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM); 227 228 if (cmos->day_alrm) { 229 /* ignore upper bits on readback per ACPI spec */ 230 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f; 231 if (!t->time.tm_mday) 232 t->time.tm_mday = -1; 233 234 if (cmos->mon_alrm) { 235 t->time.tm_mon = CMOS_READ(cmos->mon_alrm); 236 if (!t->time.tm_mon) 237 t->time.tm_mon = -1; 238 } 239 } 240 241 rtc_control = CMOS_READ(RTC_CONTROL); 242 spin_unlock_irq(&rtc_lock); 243 244 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 245 if (((unsigned)t->time.tm_sec) < 0x60) 246 t->time.tm_sec = bcd2bin(t->time.tm_sec); 247 else 248 t->time.tm_sec = -1; 249 if (((unsigned)t->time.tm_min) < 0x60) 250 t->time.tm_min = bcd2bin(t->time.tm_min); 251 else 252 t->time.tm_min = -1; 253 if (((unsigned)t->time.tm_hour) < 0x24) 254 t->time.tm_hour = bcd2bin(t->time.tm_hour); 255 else 256 t->time.tm_hour = -1; 257 258 if (cmos->day_alrm) { 259 if (((unsigned)t->time.tm_mday) <= 0x31) 260 t->time.tm_mday = bcd2bin(t->time.tm_mday); 261 else 262 t->time.tm_mday = -1; 263 264 if (cmos->mon_alrm) { 265 if (((unsigned)t->time.tm_mon) <= 0x12) 266 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1; 267 else 268 t->time.tm_mon = -1; 269 } 270 } 271 } 272 t->time.tm_year = -1; 273 274 t->enabled = !!(rtc_control & RTC_AIE); 275 t->pending = 0; 276 277 return 0; 278 } 279 280 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control) 281 { 282 unsigned char rtc_intr; 283 284 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS; 285 * allegedly some older rtcs need that to handle irqs properly 286 */ 287 rtc_intr = CMOS_READ(RTC_INTR_FLAGS); 288 289 if (is_hpet_enabled()) 290 return; 291 292 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 293 if (is_intr(rtc_intr)) 294 rtc_update_irq(cmos->rtc, 1, rtc_intr); 295 } 296 297 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask) 298 { 299 unsigned char rtc_control; 300 301 /* flush any pending IRQ status, notably for update irqs, 302 * before we enable new IRQs 303 */ 304 rtc_control = CMOS_READ(RTC_CONTROL); 305 cmos_checkintr(cmos, rtc_control); 306 307 rtc_control |= mask; 308 CMOS_WRITE(rtc_control, RTC_CONTROL); 309 hpet_set_rtc_irq_bit(mask); 310 311 cmos_checkintr(cmos, rtc_control); 312 } 313 314 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask) 315 { 316 unsigned char rtc_control; 317 318 rtc_control = CMOS_READ(RTC_CONTROL); 319 rtc_control &= ~mask; 320 CMOS_WRITE(rtc_control, RTC_CONTROL); 321 hpet_mask_rtc_irq_bit(mask); 322 323 cmos_checkintr(cmos, rtc_control); 324 } 325 326 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t) 327 { 328 struct cmos_rtc *cmos = dev_get_drvdata(dev); 329 unsigned char mon, mday, hrs, min, sec, rtc_control; 330 331 if (!is_valid_irq(cmos->irq)) 332 return -EIO; 333 334 mon = t->time.tm_mon + 1; 335 mday = t->time.tm_mday; 336 hrs = t->time.tm_hour; 337 min = t->time.tm_min; 338 sec = t->time.tm_sec; 339 340 rtc_control = CMOS_READ(RTC_CONTROL); 341 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 342 /* Writing 0xff means "don't care" or "match all". */ 343 mon = (mon <= 12) ? bin2bcd(mon) : 0xff; 344 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff; 345 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff; 346 min = (min < 60) ? bin2bcd(min) : 0xff; 347 sec = (sec < 60) ? bin2bcd(sec) : 0xff; 348 } 349 350 spin_lock_irq(&rtc_lock); 351 352 /* next rtc irq must not be from previous alarm setting */ 353 cmos_irq_disable(cmos, RTC_AIE); 354 355 /* update alarm */ 356 CMOS_WRITE(hrs, RTC_HOURS_ALARM); 357 CMOS_WRITE(min, RTC_MINUTES_ALARM); 358 CMOS_WRITE(sec, RTC_SECONDS_ALARM); 359 360 /* the system may support an "enhanced" alarm */ 361 if (cmos->day_alrm) { 362 CMOS_WRITE(mday, cmos->day_alrm); 363 if (cmos->mon_alrm) 364 CMOS_WRITE(mon, cmos->mon_alrm); 365 } 366 367 /* FIXME the HPET alarm glue currently ignores day_alrm 368 * and mon_alrm ... 369 */ 370 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec); 371 372 if (t->enabled) 373 cmos_irq_enable(cmos, RTC_AIE); 374 375 spin_unlock_irq(&rtc_lock); 376 377 return 0; 378 } 379 380 /* 381 * Do not disable RTC alarm on shutdown - workaround for b0rked BIOSes. 382 */ 383 static bool alarm_disable_quirk; 384 385 static int __init set_alarm_disable_quirk(const struct dmi_system_id *id) 386 { 387 alarm_disable_quirk = true; 388 pr_info("rtc-cmos: BIOS has alarm-disable quirk. "); 389 pr_info("RTC alarms disabled\n"); 390 return 0; 391 } 392 393 static const struct dmi_system_id rtc_quirks[] __initconst = { 394 /* https://bugzilla.novell.com/show_bug.cgi?id=805740 */ 395 { 396 .callback = set_alarm_disable_quirk, 397 .ident = "IBM Truman", 398 .matches = { 399 DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"), 400 DMI_MATCH(DMI_PRODUCT_NAME, "4852570"), 401 }, 402 }, 403 /* https://bugzilla.novell.com/show_bug.cgi?id=812592 */ 404 { 405 .callback = set_alarm_disable_quirk, 406 .ident = "Gigabyte GA-990XA-UD3", 407 .matches = { 408 DMI_MATCH(DMI_SYS_VENDOR, 409 "Gigabyte Technology Co., Ltd."), 410 DMI_MATCH(DMI_PRODUCT_NAME, "GA-990XA-UD3"), 411 }, 412 }, 413 /* http://permalink.gmane.org/gmane.linux.kernel/1604474 */ 414 { 415 .callback = set_alarm_disable_quirk, 416 .ident = "Toshiba Satellite L300", 417 .matches = { 418 DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"), 419 DMI_MATCH(DMI_PRODUCT_NAME, "Satellite L300"), 420 }, 421 }, 422 {} 423 }; 424 425 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled) 426 { 427 struct cmos_rtc *cmos = dev_get_drvdata(dev); 428 unsigned long flags; 429 430 if (!is_valid_irq(cmos->irq)) 431 return -EINVAL; 432 433 if (alarm_disable_quirk) 434 return 0; 435 436 spin_lock_irqsave(&rtc_lock, flags); 437 438 if (enabled) 439 cmos_irq_enable(cmos, RTC_AIE); 440 else 441 cmos_irq_disable(cmos, RTC_AIE); 442 443 spin_unlock_irqrestore(&rtc_lock, flags); 444 return 0; 445 } 446 447 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE) 448 449 static int cmos_procfs(struct device *dev, struct seq_file *seq) 450 { 451 struct cmos_rtc *cmos = dev_get_drvdata(dev); 452 unsigned char rtc_control, valid; 453 454 spin_lock_irq(&rtc_lock); 455 rtc_control = CMOS_READ(RTC_CONTROL); 456 valid = CMOS_READ(RTC_VALID); 457 spin_unlock_irq(&rtc_lock); 458 459 /* NOTE: at least ICH6 reports battery status using a different 460 * (non-RTC) bit; and SQWE is ignored on many current systems. 461 */ 462 return seq_printf(seq, 463 "periodic_IRQ\t: %s\n" 464 "update_IRQ\t: %s\n" 465 "HPET_emulated\t: %s\n" 466 // "square_wave\t: %s\n" 467 "BCD\t\t: %s\n" 468 "DST_enable\t: %s\n" 469 "periodic_freq\t: %d\n" 470 "batt_status\t: %s\n", 471 (rtc_control & RTC_PIE) ? "yes" : "no", 472 (rtc_control & RTC_UIE) ? "yes" : "no", 473 is_hpet_enabled() ? "yes" : "no", 474 // (rtc_control & RTC_SQWE) ? "yes" : "no", 475 (rtc_control & RTC_DM_BINARY) ? "no" : "yes", 476 (rtc_control & RTC_DST_EN) ? "yes" : "no", 477 cmos->rtc->irq_freq, 478 (valid & RTC_VRT) ? "okay" : "dead"); 479 } 480 481 #else 482 #define cmos_procfs NULL 483 #endif 484 485 static const struct rtc_class_ops cmos_rtc_ops = { 486 .read_time = cmos_read_time, 487 .set_time = cmos_set_time, 488 .read_alarm = cmos_read_alarm, 489 .set_alarm = cmos_set_alarm, 490 .proc = cmos_procfs, 491 .alarm_irq_enable = cmos_alarm_irq_enable, 492 }; 493 494 /*----------------------------------------------------------------*/ 495 496 /* 497 * All these chips have at least 64 bytes of address space, shared by 498 * RTC registers and NVRAM. Most of those bytes of NVRAM are used 499 * by boot firmware. Modern chips have 128 or 256 bytes. 500 */ 501 502 #define NVRAM_OFFSET (RTC_REG_D + 1) 503 504 static ssize_t 505 cmos_nvram_read(struct file *filp, struct kobject *kobj, 506 struct bin_attribute *attr, 507 char *buf, loff_t off, size_t count) 508 { 509 int retval; 510 511 if (unlikely(off >= attr->size)) 512 return 0; 513 if (unlikely(off < 0)) 514 return -EINVAL; 515 if ((off + count) > attr->size) 516 count = attr->size - off; 517 518 off += NVRAM_OFFSET; 519 spin_lock_irq(&rtc_lock); 520 for (retval = 0; count; count--, off++, retval++) { 521 if (off < 128) 522 *buf++ = CMOS_READ(off); 523 else if (can_bank2) 524 *buf++ = cmos_read_bank2(off); 525 else 526 break; 527 } 528 spin_unlock_irq(&rtc_lock); 529 530 return retval; 531 } 532 533 static ssize_t 534 cmos_nvram_write(struct file *filp, struct kobject *kobj, 535 struct bin_attribute *attr, 536 char *buf, loff_t off, size_t count) 537 { 538 struct cmos_rtc *cmos; 539 int retval; 540 541 cmos = dev_get_drvdata(container_of(kobj, struct device, kobj)); 542 if (unlikely(off >= attr->size)) 543 return -EFBIG; 544 if (unlikely(off < 0)) 545 return -EINVAL; 546 if ((off + count) > attr->size) 547 count = attr->size - off; 548 549 /* NOTE: on at least PCs and Ataris, the boot firmware uses a 550 * checksum on part of the NVRAM data. That's currently ignored 551 * here. If userspace is smart enough to know what fields of 552 * NVRAM to update, updating checksums is also part of its job. 553 */ 554 off += NVRAM_OFFSET; 555 spin_lock_irq(&rtc_lock); 556 for (retval = 0; count; count--, off++, retval++) { 557 /* don't trash RTC registers */ 558 if (off == cmos->day_alrm 559 || off == cmos->mon_alrm 560 || off == cmos->century) 561 buf++; 562 else if (off < 128) 563 CMOS_WRITE(*buf++, off); 564 else if (can_bank2) 565 cmos_write_bank2(*buf++, off); 566 else 567 break; 568 } 569 spin_unlock_irq(&rtc_lock); 570 571 return retval; 572 } 573 574 static struct bin_attribute nvram = { 575 .attr = { 576 .name = "nvram", 577 .mode = S_IRUGO | S_IWUSR, 578 }, 579 580 .read = cmos_nvram_read, 581 .write = cmos_nvram_write, 582 /* size gets set up later */ 583 }; 584 585 /*----------------------------------------------------------------*/ 586 587 static struct cmos_rtc cmos_rtc; 588 589 static irqreturn_t cmos_interrupt(int irq, void *p) 590 { 591 u8 irqstat; 592 u8 rtc_control; 593 594 spin_lock(&rtc_lock); 595 596 /* When the HPET interrupt handler calls us, the interrupt 597 * status is passed as arg1 instead of the irq number. But 598 * always clear irq status, even when HPET is in the way. 599 * 600 * Note that HPET and RTC are almost certainly out of phase, 601 * giving different IRQ status ... 602 */ 603 irqstat = CMOS_READ(RTC_INTR_FLAGS); 604 rtc_control = CMOS_READ(RTC_CONTROL); 605 if (is_hpet_enabled()) 606 irqstat = (unsigned long)irq & 0xF0; 607 608 /* If we were suspended, RTC_CONTROL may not be accurate since the 609 * bios may have cleared it. 610 */ 611 if (!cmos_rtc.suspend_ctrl) 612 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 613 else 614 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF; 615 616 /* All Linux RTC alarms should be treated as if they were oneshot. 617 * Similar code may be needed in system wakeup paths, in case the 618 * alarm woke the system. 619 */ 620 if (irqstat & RTC_AIE) { 621 cmos_rtc.suspend_ctrl &= ~RTC_AIE; 622 rtc_control &= ~RTC_AIE; 623 CMOS_WRITE(rtc_control, RTC_CONTROL); 624 hpet_mask_rtc_irq_bit(RTC_AIE); 625 CMOS_READ(RTC_INTR_FLAGS); 626 } 627 spin_unlock(&rtc_lock); 628 629 if (is_intr(irqstat)) { 630 rtc_update_irq(p, 1, irqstat); 631 return IRQ_HANDLED; 632 } else 633 return IRQ_NONE; 634 } 635 636 #ifdef CONFIG_PNP 637 #define INITSECTION 638 639 #else 640 #define INITSECTION __init 641 #endif 642 643 static int INITSECTION 644 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq) 645 { 646 struct cmos_rtc_board_info *info = dev_get_platdata(dev); 647 int retval = 0; 648 unsigned char rtc_control; 649 unsigned address_space; 650 651 /* there can be only one ... */ 652 if (cmos_rtc.dev) 653 return -EBUSY; 654 655 if (!ports) 656 return -ENODEV; 657 658 /* Claim I/O ports ASAP, minimizing conflict with legacy driver. 659 * 660 * REVISIT non-x86 systems may instead use memory space resources 661 * (needing ioremap etc), not i/o space resources like this ... 662 */ 663 ports = request_region(ports->start, 664 resource_size(ports), 665 driver_name); 666 if (!ports) { 667 dev_dbg(dev, "i/o registers already in use\n"); 668 return -EBUSY; 669 } 670 671 cmos_rtc.irq = rtc_irq; 672 cmos_rtc.iomem = ports; 673 674 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM 675 * driver did, but don't reject unknown configs. Old hardware 676 * won't address 128 bytes. Newer chips have multiple banks, 677 * though they may not be listed in one I/O resource. 678 */ 679 #if defined(CONFIG_ATARI) 680 address_space = 64; 681 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \ 682 || defined(__sparc__) || defined(__mips__) \ 683 || defined(__powerpc__) 684 address_space = 128; 685 #else 686 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes. 687 address_space = 128; 688 #endif 689 if (can_bank2 && ports->end > (ports->start + 1)) 690 address_space = 256; 691 692 /* For ACPI systems extension info comes from the FADT. On others, 693 * board specific setup provides it as appropriate. Systems where 694 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and 695 * some almost-clones) can provide hooks to make that behave. 696 * 697 * Note that ACPI doesn't preclude putting these registers into 698 * "extended" areas of the chip, including some that we won't yet 699 * expect CMOS_READ and friends to handle. 700 */ 701 if (info) { 702 if (info->rtc_day_alarm && info->rtc_day_alarm < 128) 703 cmos_rtc.day_alrm = info->rtc_day_alarm; 704 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128) 705 cmos_rtc.mon_alrm = info->rtc_mon_alarm; 706 if (info->rtc_century && info->rtc_century < 128) 707 cmos_rtc.century = info->rtc_century; 708 709 if (info->wake_on && info->wake_off) { 710 cmos_rtc.wake_on = info->wake_on; 711 cmos_rtc.wake_off = info->wake_off; 712 } 713 } 714 715 cmos_rtc.dev = dev; 716 dev_set_drvdata(dev, &cmos_rtc); 717 718 cmos_rtc.rtc = rtc_device_register(driver_name, dev, 719 &cmos_rtc_ops, THIS_MODULE); 720 if (IS_ERR(cmos_rtc.rtc)) { 721 retval = PTR_ERR(cmos_rtc.rtc); 722 goto cleanup0; 723 } 724 725 rename_region(ports, dev_name(&cmos_rtc.rtc->dev)); 726 727 spin_lock_irq(&rtc_lock); 728 729 /* force periodic irq to CMOS reset default of 1024Hz; 730 * 731 * REVISIT it's been reported that at least one x86_64 ALI mobo 732 * doesn't use 32KHz here ... for portability we might need to 733 * do something about other clock frequencies. 734 */ 735 cmos_rtc.rtc->irq_freq = 1024; 736 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq); 737 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT); 738 739 /* disable irqs */ 740 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE); 741 742 rtc_control = CMOS_READ(RTC_CONTROL); 743 744 spin_unlock_irq(&rtc_lock); 745 746 /* FIXME: 747 * <asm-generic/rtc.h> doesn't know 12-hour mode either. 748 */ 749 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) { 750 dev_warn(dev, "only 24-hr supported\n"); 751 retval = -ENXIO; 752 goto cleanup1; 753 } 754 755 if (is_valid_irq(rtc_irq)) { 756 irq_handler_t rtc_cmos_int_handler; 757 758 if (is_hpet_enabled()) { 759 rtc_cmos_int_handler = hpet_rtc_interrupt; 760 retval = hpet_register_irq_handler(cmos_interrupt); 761 if (retval) { 762 dev_warn(dev, "hpet_register_irq_handler " 763 " failed in rtc_init()."); 764 goto cleanup1; 765 } 766 } else 767 rtc_cmos_int_handler = cmos_interrupt; 768 769 retval = request_irq(rtc_irq, rtc_cmos_int_handler, 770 0, dev_name(&cmos_rtc.rtc->dev), 771 cmos_rtc.rtc); 772 if (retval < 0) { 773 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq); 774 goto cleanup1; 775 } 776 } 777 hpet_rtc_timer_init(); 778 779 /* export at least the first block of NVRAM */ 780 nvram.size = address_space - NVRAM_OFFSET; 781 retval = sysfs_create_bin_file(&dev->kobj, &nvram); 782 if (retval < 0) { 783 dev_dbg(dev, "can't create nvram file? %d\n", retval); 784 goto cleanup2; 785 } 786 787 dev_info(dev, "%s%s, %zd bytes nvram%s\n", 788 !is_valid_irq(rtc_irq) ? "no alarms" : 789 cmos_rtc.mon_alrm ? "alarms up to one year" : 790 cmos_rtc.day_alrm ? "alarms up to one month" : 791 "alarms up to one day", 792 cmos_rtc.century ? ", y3k" : "", 793 nvram.size, 794 is_hpet_enabled() ? ", hpet irqs" : ""); 795 796 return 0; 797 798 cleanup2: 799 if (is_valid_irq(rtc_irq)) 800 free_irq(rtc_irq, cmos_rtc.rtc); 801 cleanup1: 802 cmos_rtc.dev = NULL; 803 rtc_device_unregister(cmos_rtc.rtc); 804 cleanup0: 805 release_region(ports->start, resource_size(ports)); 806 return retval; 807 } 808 809 static void cmos_do_shutdown(void) 810 { 811 spin_lock_irq(&rtc_lock); 812 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK); 813 spin_unlock_irq(&rtc_lock); 814 } 815 816 static void __exit cmos_do_remove(struct device *dev) 817 { 818 struct cmos_rtc *cmos = dev_get_drvdata(dev); 819 struct resource *ports; 820 821 cmos_do_shutdown(); 822 823 sysfs_remove_bin_file(&dev->kobj, &nvram); 824 825 if (is_valid_irq(cmos->irq)) { 826 free_irq(cmos->irq, cmos->rtc); 827 hpet_unregister_irq_handler(cmos_interrupt); 828 } 829 830 rtc_device_unregister(cmos->rtc); 831 cmos->rtc = NULL; 832 833 ports = cmos->iomem; 834 release_region(ports->start, resource_size(ports)); 835 cmos->iomem = NULL; 836 837 cmos->dev = NULL; 838 } 839 840 #ifdef CONFIG_PM 841 842 static int cmos_suspend(struct device *dev) 843 { 844 struct cmos_rtc *cmos = dev_get_drvdata(dev); 845 unsigned char tmp; 846 847 /* only the alarm might be a wakeup event source */ 848 spin_lock_irq(&rtc_lock); 849 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL); 850 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) { 851 unsigned char mask; 852 853 if (device_may_wakeup(dev)) 854 mask = RTC_IRQMASK & ~RTC_AIE; 855 else 856 mask = RTC_IRQMASK; 857 tmp &= ~mask; 858 CMOS_WRITE(tmp, RTC_CONTROL); 859 hpet_mask_rtc_irq_bit(mask); 860 861 cmos_checkintr(cmos, tmp); 862 } 863 spin_unlock_irq(&rtc_lock); 864 865 if (tmp & RTC_AIE) { 866 cmos->enabled_wake = 1; 867 if (cmos->wake_on) 868 cmos->wake_on(dev); 869 else 870 enable_irq_wake(cmos->irq); 871 } 872 873 dev_dbg(dev, "suspend%s, ctrl %02x\n", 874 (tmp & RTC_AIE) ? ", alarm may wake" : "", 875 tmp); 876 877 return 0; 878 } 879 880 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even 881 * after a detour through G3 "mechanical off", although the ACPI spec 882 * says wakeup should only work from G1/S4 "hibernate". To most users, 883 * distinctions between S4 and S5 are pointless. So when the hardware 884 * allows, don't draw that distinction. 885 */ 886 static inline int cmos_poweroff(struct device *dev) 887 { 888 return cmos_suspend(dev); 889 } 890 891 static int cmos_resume(struct device *dev) 892 { 893 struct cmos_rtc *cmos = dev_get_drvdata(dev); 894 unsigned char tmp; 895 896 if (cmos->enabled_wake) { 897 if (cmos->wake_off) 898 cmos->wake_off(dev); 899 else 900 disable_irq_wake(cmos->irq); 901 cmos->enabled_wake = 0; 902 } 903 904 spin_lock_irq(&rtc_lock); 905 tmp = cmos->suspend_ctrl; 906 cmos->suspend_ctrl = 0; 907 /* re-enable any irqs previously active */ 908 if (tmp & RTC_IRQMASK) { 909 unsigned char mask; 910 911 if (device_may_wakeup(dev)) 912 hpet_rtc_timer_init(); 913 914 do { 915 CMOS_WRITE(tmp, RTC_CONTROL); 916 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK); 917 918 mask = CMOS_READ(RTC_INTR_FLAGS); 919 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF; 920 if (!is_hpet_enabled() || !is_intr(mask)) 921 break; 922 923 /* force one-shot behavior if HPET blocked 924 * the wake alarm's irq 925 */ 926 rtc_update_irq(cmos->rtc, 1, mask); 927 tmp &= ~RTC_AIE; 928 hpet_mask_rtc_irq_bit(RTC_AIE); 929 } while (mask & RTC_AIE); 930 } 931 spin_unlock_irq(&rtc_lock); 932 933 dev_dbg(dev, "resume, ctrl %02x\n", tmp); 934 935 return 0; 936 } 937 938 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume); 939 940 #else 941 942 static inline int cmos_poweroff(struct device *dev) 943 { 944 return -ENOSYS; 945 } 946 947 #endif 948 949 /*----------------------------------------------------------------*/ 950 951 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus. 952 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs 953 * probably list them in similar PNPBIOS tables; so PNP is more common. 954 * 955 * We don't use legacy "poke at the hardware" probing. Ancient PCs that 956 * predate even PNPBIOS should set up platform_bus devices. 957 */ 958 959 #ifdef CONFIG_ACPI 960 961 #include <linux/acpi.h> 962 963 static u32 rtc_handler(void *context) 964 { 965 struct device *dev = context; 966 967 pm_wakeup_event(dev, 0); 968 acpi_clear_event(ACPI_EVENT_RTC); 969 acpi_disable_event(ACPI_EVENT_RTC, 0); 970 return ACPI_INTERRUPT_HANDLED; 971 } 972 973 static inline void rtc_wake_setup(struct device *dev) 974 { 975 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev); 976 /* 977 * After the RTC handler is installed, the Fixed_RTC event should 978 * be disabled. Only when the RTC alarm is set will it be enabled. 979 */ 980 acpi_clear_event(ACPI_EVENT_RTC); 981 acpi_disable_event(ACPI_EVENT_RTC, 0); 982 } 983 984 static void rtc_wake_on(struct device *dev) 985 { 986 acpi_clear_event(ACPI_EVENT_RTC); 987 acpi_enable_event(ACPI_EVENT_RTC, 0); 988 } 989 990 static void rtc_wake_off(struct device *dev) 991 { 992 acpi_disable_event(ACPI_EVENT_RTC, 0); 993 } 994 995 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find 996 * its device node and pass extra config data. This helps its driver use 997 * capabilities that the now-obsolete mc146818 didn't have, and informs it 998 * that this board's RTC is wakeup-capable (per ACPI spec). 999 */ 1000 static struct cmos_rtc_board_info acpi_rtc_info; 1001 1002 static void cmos_wake_setup(struct device *dev) 1003 { 1004 if (acpi_disabled) 1005 return; 1006 1007 rtc_wake_setup(dev); 1008 acpi_rtc_info.wake_on = rtc_wake_on; 1009 acpi_rtc_info.wake_off = rtc_wake_off; 1010 1011 /* workaround bug in some ACPI tables */ 1012 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) { 1013 dev_dbg(dev, "bogus FADT month_alarm (%d)\n", 1014 acpi_gbl_FADT.month_alarm); 1015 acpi_gbl_FADT.month_alarm = 0; 1016 } 1017 1018 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm; 1019 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm; 1020 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century; 1021 1022 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */ 1023 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE) 1024 dev_info(dev, "RTC can wake from S4\n"); 1025 1026 dev->platform_data = &acpi_rtc_info; 1027 1028 /* RTC always wakes from S1/S2/S3, and often S4/STD */ 1029 device_init_wakeup(dev, 1); 1030 } 1031 1032 #else 1033 1034 static void cmos_wake_setup(struct device *dev) 1035 { 1036 } 1037 1038 #endif 1039 1040 #ifdef CONFIG_PNP 1041 1042 #include <linux/pnp.h> 1043 1044 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id) 1045 { 1046 cmos_wake_setup(&pnp->dev); 1047 1048 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) 1049 /* Some machines contain a PNP entry for the RTC, but 1050 * don't define the IRQ. It should always be safe to 1051 * hardcode it in these cases 1052 */ 1053 return cmos_do_probe(&pnp->dev, 1054 pnp_get_resource(pnp, IORESOURCE_IO, 0), 8); 1055 else 1056 return cmos_do_probe(&pnp->dev, 1057 pnp_get_resource(pnp, IORESOURCE_IO, 0), 1058 pnp_irq(pnp, 0)); 1059 } 1060 1061 static void __exit cmos_pnp_remove(struct pnp_dev *pnp) 1062 { 1063 cmos_do_remove(&pnp->dev); 1064 } 1065 1066 static void cmos_pnp_shutdown(struct pnp_dev *pnp) 1067 { 1068 if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pnp->dev)) 1069 return; 1070 1071 cmos_do_shutdown(); 1072 } 1073 1074 static const struct pnp_device_id rtc_ids[] = { 1075 { .id = "PNP0b00", }, 1076 { .id = "PNP0b01", }, 1077 { .id = "PNP0b02", }, 1078 { }, 1079 }; 1080 MODULE_DEVICE_TABLE(pnp, rtc_ids); 1081 1082 static struct pnp_driver cmos_pnp_driver = { 1083 .name = (char *) driver_name, 1084 .id_table = rtc_ids, 1085 .probe = cmos_pnp_probe, 1086 .remove = __exit_p(cmos_pnp_remove), 1087 .shutdown = cmos_pnp_shutdown, 1088 1089 /* flag ensures resume() gets called, and stops syslog spam */ 1090 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE, 1091 #ifdef CONFIG_PM_SLEEP 1092 .driver = { 1093 .pm = &cmos_pm_ops, 1094 }, 1095 #endif 1096 }; 1097 1098 #endif /* CONFIG_PNP */ 1099 1100 #ifdef CONFIG_OF 1101 static const struct of_device_id of_cmos_match[] = { 1102 { 1103 .compatible = "motorola,mc146818", 1104 }, 1105 { }, 1106 }; 1107 MODULE_DEVICE_TABLE(of, of_cmos_match); 1108 1109 static __init void cmos_of_init(struct platform_device *pdev) 1110 { 1111 struct device_node *node = pdev->dev.of_node; 1112 struct rtc_time time; 1113 int ret; 1114 const __be32 *val; 1115 1116 if (!node) 1117 return; 1118 1119 val = of_get_property(node, "ctrl-reg", NULL); 1120 if (val) 1121 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL); 1122 1123 val = of_get_property(node, "freq-reg", NULL); 1124 if (val) 1125 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT); 1126 1127 get_rtc_time(&time); 1128 ret = rtc_valid_tm(&time); 1129 if (ret) { 1130 struct rtc_time def_time = { 1131 .tm_year = 1, 1132 .tm_mday = 1, 1133 }; 1134 set_rtc_time(&def_time); 1135 } 1136 } 1137 #else 1138 static inline void cmos_of_init(struct platform_device *pdev) {} 1139 #endif 1140 /*----------------------------------------------------------------*/ 1141 1142 /* Platform setup should have set up an RTC device, when PNP is 1143 * unavailable ... this could happen even on (older) PCs. 1144 */ 1145 1146 static int __init cmos_platform_probe(struct platform_device *pdev) 1147 { 1148 cmos_of_init(pdev); 1149 cmos_wake_setup(&pdev->dev); 1150 return cmos_do_probe(&pdev->dev, 1151 platform_get_resource(pdev, IORESOURCE_IO, 0), 1152 platform_get_irq(pdev, 0)); 1153 } 1154 1155 static int __exit cmos_platform_remove(struct platform_device *pdev) 1156 { 1157 cmos_do_remove(&pdev->dev); 1158 return 0; 1159 } 1160 1161 static void cmos_platform_shutdown(struct platform_device *pdev) 1162 { 1163 if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pdev->dev)) 1164 return; 1165 1166 cmos_do_shutdown(); 1167 } 1168 1169 /* work with hotplug and coldplug */ 1170 MODULE_ALIAS("platform:rtc_cmos"); 1171 1172 static struct platform_driver cmos_platform_driver = { 1173 .remove = __exit_p(cmos_platform_remove), 1174 .shutdown = cmos_platform_shutdown, 1175 .driver = { 1176 .name = driver_name, 1177 #ifdef CONFIG_PM 1178 .pm = &cmos_pm_ops, 1179 #endif 1180 .of_match_table = of_match_ptr(of_cmos_match), 1181 } 1182 }; 1183 1184 #ifdef CONFIG_PNP 1185 static bool pnp_driver_registered; 1186 #endif 1187 static bool platform_driver_registered; 1188 1189 static int __init cmos_init(void) 1190 { 1191 int retval = 0; 1192 1193 #ifdef CONFIG_PNP 1194 retval = pnp_register_driver(&cmos_pnp_driver); 1195 if (retval == 0) 1196 pnp_driver_registered = true; 1197 #endif 1198 1199 if (!cmos_rtc.dev) { 1200 retval = platform_driver_probe(&cmos_platform_driver, 1201 cmos_platform_probe); 1202 if (retval == 0) 1203 platform_driver_registered = true; 1204 } 1205 1206 dmi_check_system(rtc_quirks); 1207 1208 if (retval == 0) 1209 return 0; 1210 1211 #ifdef CONFIG_PNP 1212 if (pnp_driver_registered) 1213 pnp_unregister_driver(&cmos_pnp_driver); 1214 #endif 1215 return retval; 1216 } 1217 module_init(cmos_init); 1218 1219 static void __exit cmos_exit(void) 1220 { 1221 #ifdef CONFIG_PNP 1222 if (pnp_driver_registered) 1223 pnp_unregister_driver(&cmos_pnp_driver); 1224 #endif 1225 if (platform_driver_registered) 1226 platform_driver_unregister(&cmos_platform_driver); 1227 } 1228 module_exit(cmos_exit); 1229 1230 1231 MODULE_AUTHOR("David Brownell"); 1232 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs"); 1233 MODULE_LICENSE("GPL"); 1234