1 /* 2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc 3 * 4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c) 5 * Copyright (C) 2006 David Brownell (convert to new framework) 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 /* 14 * The original "cmos clock" chip was an MC146818 chip, now obsolete. 15 * That defined the register interface now provided by all PCs, some 16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets 17 * integrate an MC146818 clone in their southbridge, and boards use 18 * that instead of discrete clones like the DS12887 or M48T86. There 19 * are also clones that connect using the LPC bus. 20 * 21 * That register API is also used directly by various other drivers 22 * (notably for integrated NVRAM), infrastructure (x86 has code to 23 * bypass the RTC framework, directly reading the RTC during boot 24 * and updating minutes/seconds for systems using NTP synch) and 25 * utilities (like userspace 'hwclock', if no /dev node exists). 26 * 27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with 28 * interrupts disabled, holding the global rtc_lock, to exclude those 29 * other drivers and utilities on correctly configured systems. 30 */ 31 #include <linux/kernel.h> 32 #include <linux/module.h> 33 #include <linux/init.h> 34 #include <linux/interrupt.h> 35 #include <linux/spinlock.h> 36 #include <linux/platform_device.h> 37 #include <linux/mod_devicetable.h> 38 #include <linux/log2.h> 39 #include <linux/pm.h> 40 #include <linux/of.h> 41 #include <linux/of_platform.h> 42 43 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */ 44 #include <asm-generic/rtc.h> 45 46 struct cmos_rtc { 47 struct rtc_device *rtc; 48 struct device *dev; 49 int irq; 50 struct resource *iomem; 51 52 void (*wake_on)(struct device *); 53 void (*wake_off)(struct device *); 54 55 u8 enabled_wake; 56 u8 suspend_ctrl; 57 58 /* newer hardware extends the original register set */ 59 u8 day_alrm; 60 u8 mon_alrm; 61 u8 century; 62 }; 63 64 /* both platform and pnp busses use negative numbers for invalid irqs */ 65 #define is_valid_irq(n) ((n) > 0) 66 67 static const char driver_name[] = "rtc_cmos"; 68 69 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear; 70 * always mask it against the irq enable bits in RTC_CONTROL. Bit values 71 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both. 72 */ 73 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF) 74 75 static inline int is_intr(u8 rtc_intr) 76 { 77 if (!(rtc_intr & RTC_IRQF)) 78 return 0; 79 return rtc_intr & RTC_IRQMASK; 80 } 81 82 /*----------------------------------------------------------------*/ 83 84 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because 85 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly 86 * used in a broken "legacy replacement" mode. The breakage includes 87 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for 88 * other (better) use. 89 * 90 * When that broken mode is in use, platform glue provides a partial 91 * emulation of hardware RTC IRQ facilities using HPET #1. We don't 92 * want to use HPET for anything except those IRQs though... 93 */ 94 #ifdef CONFIG_HPET_EMULATE_RTC 95 #include <asm/hpet.h> 96 #else 97 98 static inline int is_hpet_enabled(void) 99 { 100 return 0; 101 } 102 103 static inline int hpet_mask_rtc_irq_bit(unsigned long mask) 104 { 105 return 0; 106 } 107 108 static inline int hpet_set_rtc_irq_bit(unsigned long mask) 109 { 110 return 0; 111 } 112 113 static inline int 114 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec) 115 { 116 return 0; 117 } 118 119 static inline int hpet_set_periodic_freq(unsigned long freq) 120 { 121 return 0; 122 } 123 124 static inline int hpet_rtc_dropped_irq(void) 125 { 126 return 0; 127 } 128 129 static inline int hpet_rtc_timer_init(void) 130 { 131 return 0; 132 } 133 134 extern irq_handler_t hpet_rtc_interrupt; 135 136 static inline int hpet_register_irq_handler(irq_handler_t handler) 137 { 138 return 0; 139 } 140 141 static inline int hpet_unregister_irq_handler(irq_handler_t handler) 142 { 143 return 0; 144 } 145 146 #endif 147 148 /*----------------------------------------------------------------*/ 149 150 #ifdef RTC_PORT 151 152 /* Most newer x86 systems have two register banks, the first used 153 * for RTC and NVRAM and the second only for NVRAM. Caller must 154 * own rtc_lock ... and we won't worry about access during NMI. 155 */ 156 #define can_bank2 true 157 158 static inline unsigned char cmos_read_bank2(unsigned char addr) 159 { 160 outb(addr, RTC_PORT(2)); 161 return inb(RTC_PORT(3)); 162 } 163 164 static inline void cmos_write_bank2(unsigned char val, unsigned char addr) 165 { 166 outb(addr, RTC_PORT(2)); 167 outb(val, RTC_PORT(3)); 168 } 169 170 #else 171 172 #define can_bank2 false 173 174 static inline unsigned char cmos_read_bank2(unsigned char addr) 175 { 176 return 0; 177 } 178 179 static inline void cmos_write_bank2(unsigned char val, unsigned char addr) 180 { 181 } 182 183 #endif 184 185 /*----------------------------------------------------------------*/ 186 187 static int cmos_read_time(struct device *dev, struct rtc_time *t) 188 { 189 /* REVISIT: if the clock has a "century" register, use 190 * that instead of the heuristic in get_rtc_time(). 191 * That'll make Y3K compatility (year > 2070) easy! 192 */ 193 get_rtc_time(t); 194 return 0; 195 } 196 197 static int cmos_set_time(struct device *dev, struct rtc_time *t) 198 { 199 /* REVISIT: set the "century" register if available 200 * 201 * NOTE: this ignores the issue whereby updating the seconds 202 * takes effect exactly 500ms after we write the register. 203 * (Also queueing and other delays before we get this far.) 204 */ 205 return set_rtc_time(t); 206 } 207 208 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t) 209 { 210 struct cmos_rtc *cmos = dev_get_drvdata(dev); 211 unsigned char rtc_control; 212 213 if (!is_valid_irq(cmos->irq)) 214 return -EIO; 215 216 /* Basic alarms only support hour, minute, and seconds fields. 217 * Some also support day and month, for alarms up to a year in 218 * the future. 219 */ 220 t->time.tm_mday = -1; 221 t->time.tm_mon = -1; 222 223 spin_lock_irq(&rtc_lock); 224 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM); 225 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM); 226 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM); 227 228 if (cmos->day_alrm) { 229 /* ignore upper bits on readback per ACPI spec */ 230 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f; 231 if (!t->time.tm_mday) 232 t->time.tm_mday = -1; 233 234 if (cmos->mon_alrm) { 235 t->time.tm_mon = CMOS_READ(cmos->mon_alrm); 236 if (!t->time.tm_mon) 237 t->time.tm_mon = -1; 238 } 239 } 240 241 rtc_control = CMOS_READ(RTC_CONTROL); 242 spin_unlock_irq(&rtc_lock); 243 244 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 245 if (((unsigned)t->time.tm_sec) < 0x60) 246 t->time.tm_sec = bcd2bin(t->time.tm_sec); 247 else 248 t->time.tm_sec = -1; 249 if (((unsigned)t->time.tm_min) < 0x60) 250 t->time.tm_min = bcd2bin(t->time.tm_min); 251 else 252 t->time.tm_min = -1; 253 if (((unsigned)t->time.tm_hour) < 0x24) 254 t->time.tm_hour = bcd2bin(t->time.tm_hour); 255 else 256 t->time.tm_hour = -1; 257 258 if (cmos->day_alrm) { 259 if (((unsigned)t->time.tm_mday) <= 0x31) 260 t->time.tm_mday = bcd2bin(t->time.tm_mday); 261 else 262 t->time.tm_mday = -1; 263 264 if (cmos->mon_alrm) { 265 if (((unsigned)t->time.tm_mon) <= 0x12) 266 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1; 267 else 268 t->time.tm_mon = -1; 269 } 270 } 271 } 272 t->time.tm_year = -1; 273 274 t->enabled = !!(rtc_control & RTC_AIE); 275 t->pending = 0; 276 277 return 0; 278 } 279 280 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control) 281 { 282 unsigned char rtc_intr; 283 284 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS; 285 * allegedly some older rtcs need that to handle irqs properly 286 */ 287 rtc_intr = CMOS_READ(RTC_INTR_FLAGS); 288 289 if (is_hpet_enabled()) 290 return; 291 292 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 293 if (is_intr(rtc_intr)) 294 rtc_update_irq(cmos->rtc, 1, rtc_intr); 295 } 296 297 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask) 298 { 299 unsigned char rtc_control; 300 301 /* flush any pending IRQ status, notably for update irqs, 302 * before we enable new IRQs 303 */ 304 rtc_control = CMOS_READ(RTC_CONTROL); 305 cmos_checkintr(cmos, rtc_control); 306 307 rtc_control |= mask; 308 CMOS_WRITE(rtc_control, RTC_CONTROL); 309 hpet_set_rtc_irq_bit(mask); 310 311 cmos_checkintr(cmos, rtc_control); 312 } 313 314 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask) 315 { 316 unsigned char rtc_control; 317 318 rtc_control = CMOS_READ(RTC_CONTROL); 319 rtc_control &= ~mask; 320 CMOS_WRITE(rtc_control, RTC_CONTROL); 321 hpet_mask_rtc_irq_bit(mask); 322 323 cmos_checkintr(cmos, rtc_control); 324 } 325 326 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t) 327 { 328 struct cmos_rtc *cmos = dev_get_drvdata(dev); 329 unsigned char mon, mday, hrs, min, sec, rtc_control; 330 331 if (!is_valid_irq(cmos->irq)) 332 return -EIO; 333 334 mon = t->time.tm_mon + 1; 335 mday = t->time.tm_mday; 336 hrs = t->time.tm_hour; 337 min = t->time.tm_min; 338 sec = t->time.tm_sec; 339 340 rtc_control = CMOS_READ(RTC_CONTROL); 341 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 342 /* Writing 0xff means "don't care" or "match all". */ 343 mon = (mon <= 12) ? bin2bcd(mon) : 0xff; 344 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff; 345 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff; 346 min = (min < 60) ? bin2bcd(min) : 0xff; 347 sec = (sec < 60) ? bin2bcd(sec) : 0xff; 348 } 349 350 spin_lock_irq(&rtc_lock); 351 352 /* next rtc irq must not be from previous alarm setting */ 353 cmos_irq_disable(cmos, RTC_AIE); 354 355 /* update alarm */ 356 CMOS_WRITE(hrs, RTC_HOURS_ALARM); 357 CMOS_WRITE(min, RTC_MINUTES_ALARM); 358 CMOS_WRITE(sec, RTC_SECONDS_ALARM); 359 360 /* the system may support an "enhanced" alarm */ 361 if (cmos->day_alrm) { 362 CMOS_WRITE(mday, cmos->day_alrm); 363 if (cmos->mon_alrm) 364 CMOS_WRITE(mon, cmos->mon_alrm); 365 } 366 367 /* FIXME the HPET alarm glue currently ignores day_alrm 368 * and mon_alrm ... 369 */ 370 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec); 371 372 if (t->enabled) 373 cmos_irq_enable(cmos, RTC_AIE); 374 375 spin_unlock_irq(&rtc_lock); 376 377 return 0; 378 } 379 380 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled) 381 { 382 struct cmos_rtc *cmos = dev_get_drvdata(dev); 383 unsigned long flags; 384 385 if (!is_valid_irq(cmos->irq)) 386 return -EINVAL; 387 388 spin_lock_irqsave(&rtc_lock, flags); 389 390 if (enabled) 391 cmos_irq_enable(cmos, RTC_AIE); 392 else 393 cmos_irq_disable(cmos, RTC_AIE); 394 395 spin_unlock_irqrestore(&rtc_lock, flags); 396 return 0; 397 } 398 399 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE) 400 401 static int cmos_procfs(struct device *dev, struct seq_file *seq) 402 { 403 struct cmos_rtc *cmos = dev_get_drvdata(dev); 404 unsigned char rtc_control, valid; 405 406 spin_lock_irq(&rtc_lock); 407 rtc_control = CMOS_READ(RTC_CONTROL); 408 valid = CMOS_READ(RTC_VALID); 409 spin_unlock_irq(&rtc_lock); 410 411 /* NOTE: at least ICH6 reports battery status using a different 412 * (non-RTC) bit; and SQWE is ignored on many current systems. 413 */ 414 return seq_printf(seq, 415 "periodic_IRQ\t: %s\n" 416 "update_IRQ\t: %s\n" 417 "HPET_emulated\t: %s\n" 418 // "square_wave\t: %s\n" 419 "BCD\t\t: %s\n" 420 "DST_enable\t: %s\n" 421 "periodic_freq\t: %d\n" 422 "batt_status\t: %s\n", 423 (rtc_control & RTC_PIE) ? "yes" : "no", 424 (rtc_control & RTC_UIE) ? "yes" : "no", 425 is_hpet_enabled() ? "yes" : "no", 426 // (rtc_control & RTC_SQWE) ? "yes" : "no", 427 (rtc_control & RTC_DM_BINARY) ? "no" : "yes", 428 (rtc_control & RTC_DST_EN) ? "yes" : "no", 429 cmos->rtc->irq_freq, 430 (valid & RTC_VRT) ? "okay" : "dead"); 431 } 432 433 #else 434 #define cmos_procfs NULL 435 #endif 436 437 static const struct rtc_class_ops cmos_rtc_ops = { 438 .read_time = cmos_read_time, 439 .set_time = cmos_set_time, 440 .read_alarm = cmos_read_alarm, 441 .set_alarm = cmos_set_alarm, 442 .proc = cmos_procfs, 443 .alarm_irq_enable = cmos_alarm_irq_enable, 444 }; 445 446 /*----------------------------------------------------------------*/ 447 448 /* 449 * All these chips have at least 64 bytes of address space, shared by 450 * RTC registers and NVRAM. Most of those bytes of NVRAM are used 451 * by boot firmware. Modern chips have 128 or 256 bytes. 452 */ 453 454 #define NVRAM_OFFSET (RTC_REG_D + 1) 455 456 static ssize_t 457 cmos_nvram_read(struct file *filp, struct kobject *kobj, 458 struct bin_attribute *attr, 459 char *buf, loff_t off, size_t count) 460 { 461 int retval; 462 463 if (unlikely(off >= attr->size)) 464 return 0; 465 if (unlikely(off < 0)) 466 return -EINVAL; 467 if ((off + count) > attr->size) 468 count = attr->size - off; 469 470 off += NVRAM_OFFSET; 471 spin_lock_irq(&rtc_lock); 472 for (retval = 0; count; count--, off++, retval++) { 473 if (off < 128) 474 *buf++ = CMOS_READ(off); 475 else if (can_bank2) 476 *buf++ = cmos_read_bank2(off); 477 else 478 break; 479 } 480 spin_unlock_irq(&rtc_lock); 481 482 return retval; 483 } 484 485 static ssize_t 486 cmos_nvram_write(struct file *filp, struct kobject *kobj, 487 struct bin_attribute *attr, 488 char *buf, loff_t off, size_t count) 489 { 490 struct cmos_rtc *cmos; 491 int retval; 492 493 cmos = dev_get_drvdata(container_of(kobj, struct device, kobj)); 494 if (unlikely(off >= attr->size)) 495 return -EFBIG; 496 if (unlikely(off < 0)) 497 return -EINVAL; 498 if ((off + count) > attr->size) 499 count = attr->size - off; 500 501 /* NOTE: on at least PCs and Ataris, the boot firmware uses a 502 * checksum on part of the NVRAM data. That's currently ignored 503 * here. If userspace is smart enough to know what fields of 504 * NVRAM to update, updating checksums is also part of its job. 505 */ 506 off += NVRAM_OFFSET; 507 spin_lock_irq(&rtc_lock); 508 for (retval = 0; count; count--, off++, retval++) { 509 /* don't trash RTC registers */ 510 if (off == cmos->day_alrm 511 || off == cmos->mon_alrm 512 || off == cmos->century) 513 buf++; 514 else if (off < 128) 515 CMOS_WRITE(*buf++, off); 516 else if (can_bank2) 517 cmos_write_bank2(*buf++, off); 518 else 519 break; 520 } 521 spin_unlock_irq(&rtc_lock); 522 523 return retval; 524 } 525 526 static struct bin_attribute nvram = { 527 .attr = { 528 .name = "nvram", 529 .mode = S_IRUGO | S_IWUSR, 530 }, 531 532 .read = cmos_nvram_read, 533 .write = cmos_nvram_write, 534 /* size gets set up later */ 535 }; 536 537 /*----------------------------------------------------------------*/ 538 539 static struct cmos_rtc cmos_rtc; 540 541 static irqreturn_t cmos_interrupt(int irq, void *p) 542 { 543 u8 irqstat; 544 u8 rtc_control; 545 546 spin_lock(&rtc_lock); 547 548 /* When the HPET interrupt handler calls us, the interrupt 549 * status is passed as arg1 instead of the irq number. But 550 * always clear irq status, even when HPET is in the way. 551 * 552 * Note that HPET and RTC are almost certainly out of phase, 553 * giving different IRQ status ... 554 */ 555 irqstat = CMOS_READ(RTC_INTR_FLAGS); 556 rtc_control = CMOS_READ(RTC_CONTROL); 557 if (is_hpet_enabled()) 558 irqstat = (unsigned long)irq & 0xF0; 559 560 /* If we were suspended, RTC_CONTROL may not be accurate since the 561 * bios may have cleared it. 562 */ 563 if (!cmos_rtc.suspend_ctrl) 564 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 565 else 566 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF; 567 568 /* All Linux RTC alarms should be treated as if they were oneshot. 569 * Similar code may be needed in system wakeup paths, in case the 570 * alarm woke the system. 571 */ 572 if (irqstat & RTC_AIE) { 573 cmos_rtc.suspend_ctrl &= ~RTC_AIE; 574 rtc_control &= ~RTC_AIE; 575 CMOS_WRITE(rtc_control, RTC_CONTROL); 576 hpet_mask_rtc_irq_bit(RTC_AIE); 577 CMOS_READ(RTC_INTR_FLAGS); 578 } 579 spin_unlock(&rtc_lock); 580 581 if (is_intr(irqstat)) { 582 rtc_update_irq(p, 1, irqstat); 583 return IRQ_HANDLED; 584 } else 585 return IRQ_NONE; 586 } 587 588 #ifdef CONFIG_PNP 589 #define INITSECTION 590 591 #else 592 #define INITSECTION __init 593 #endif 594 595 static int INITSECTION 596 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq) 597 { 598 struct cmos_rtc_board_info *info = dev_get_platdata(dev); 599 int retval = 0; 600 unsigned char rtc_control; 601 unsigned address_space; 602 603 /* there can be only one ... */ 604 if (cmos_rtc.dev) 605 return -EBUSY; 606 607 if (!ports) 608 return -ENODEV; 609 610 /* Claim I/O ports ASAP, minimizing conflict with legacy driver. 611 * 612 * REVISIT non-x86 systems may instead use memory space resources 613 * (needing ioremap etc), not i/o space resources like this ... 614 */ 615 ports = request_region(ports->start, 616 resource_size(ports), 617 driver_name); 618 if (!ports) { 619 dev_dbg(dev, "i/o registers already in use\n"); 620 return -EBUSY; 621 } 622 623 cmos_rtc.irq = rtc_irq; 624 cmos_rtc.iomem = ports; 625 626 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM 627 * driver did, but don't reject unknown configs. Old hardware 628 * won't address 128 bytes. Newer chips have multiple banks, 629 * though they may not be listed in one I/O resource. 630 */ 631 #if defined(CONFIG_ATARI) 632 address_space = 64; 633 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \ 634 || defined(__sparc__) || defined(__mips__) \ 635 || defined(__powerpc__) 636 address_space = 128; 637 #else 638 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes. 639 address_space = 128; 640 #endif 641 if (can_bank2 && ports->end > (ports->start + 1)) 642 address_space = 256; 643 644 /* For ACPI systems extension info comes from the FADT. On others, 645 * board specific setup provides it as appropriate. Systems where 646 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and 647 * some almost-clones) can provide hooks to make that behave. 648 * 649 * Note that ACPI doesn't preclude putting these registers into 650 * "extended" areas of the chip, including some that we won't yet 651 * expect CMOS_READ and friends to handle. 652 */ 653 if (info) { 654 if (info->rtc_day_alarm && info->rtc_day_alarm < 128) 655 cmos_rtc.day_alrm = info->rtc_day_alarm; 656 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128) 657 cmos_rtc.mon_alrm = info->rtc_mon_alarm; 658 if (info->rtc_century && info->rtc_century < 128) 659 cmos_rtc.century = info->rtc_century; 660 661 if (info->wake_on && info->wake_off) { 662 cmos_rtc.wake_on = info->wake_on; 663 cmos_rtc.wake_off = info->wake_off; 664 } 665 } 666 667 cmos_rtc.dev = dev; 668 dev_set_drvdata(dev, &cmos_rtc); 669 670 cmos_rtc.rtc = rtc_device_register(driver_name, dev, 671 &cmos_rtc_ops, THIS_MODULE); 672 if (IS_ERR(cmos_rtc.rtc)) { 673 retval = PTR_ERR(cmos_rtc.rtc); 674 goto cleanup0; 675 } 676 677 rename_region(ports, dev_name(&cmos_rtc.rtc->dev)); 678 679 spin_lock_irq(&rtc_lock); 680 681 /* force periodic irq to CMOS reset default of 1024Hz; 682 * 683 * REVISIT it's been reported that at least one x86_64 ALI mobo 684 * doesn't use 32KHz here ... for portability we might need to 685 * do something about other clock frequencies. 686 */ 687 cmos_rtc.rtc->irq_freq = 1024; 688 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq); 689 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT); 690 691 /* disable irqs */ 692 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE); 693 694 rtc_control = CMOS_READ(RTC_CONTROL); 695 696 spin_unlock_irq(&rtc_lock); 697 698 /* FIXME: 699 * <asm-generic/rtc.h> doesn't know 12-hour mode either. 700 */ 701 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) { 702 dev_warn(dev, "only 24-hr supported\n"); 703 retval = -ENXIO; 704 goto cleanup1; 705 } 706 707 if (is_valid_irq(rtc_irq)) { 708 irq_handler_t rtc_cmos_int_handler; 709 710 if (is_hpet_enabled()) { 711 int err; 712 713 rtc_cmos_int_handler = hpet_rtc_interrupt; 714 err = hpet_register_irq_handler(cmos_interrupt); 715 if (err != 0) { 716 dev_warn(dev, "hpet_register_irq_handler " 717 " failed in rtc_init()."); 718 goto cleanup1; 719 } 720 } else 721 rtc_cmos_int_handler = cmos_interrupt; 722 723 retval = request_irq(rtc_irq, rtc_cmos_int_handler, 724 0, dev_name(&cmos_rtc.rtc->dev), 725 cmos_rtc.rtc); 726 if (retval < 0) { 727 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq); 728 goto cleanup1; 729 } 730 } 731 hpet_rtc_timer_init(); 732 733 /* export at least the first block of NVRAM */ 734 nvram.size = address_space - NVRAM_OFFSET; 735 retval = sysfs_create_bin_file(&dev->kobj, &nvram); 736 if (retval < 0) { 737 dev_dbg(dev, "can't create nvram file? %d\n", retval); 738 goto cleanup2; 739 } 740 741 dev_info(dev, "%s%s, %zd bytes nvram%s\n", 742 !is_valid_irq(rtc_irq) ? "no alarms" : 743 cmos_rtc.mon_alrm ? "alarms up to one year" : 744 cmos_rtc.day_alrm ? "alarms up to one month" : 745 "alarms up to one day", 746 cmos_rtc.century ? ", y3k" : "", 747 nvram.size, 748 is_hpet_enabled() ? ", hpet irqs" : ""); 749 750 return 0; 751 752 cleanup2: 753 if (is_valid_irq(rtc_irq)) 754 free_irq(rtc_irq, cmos_rtc.rtc); 755 cleanup1: 756 cmos_rtc.dev = NULL; 757 rtc_device_unregister(cmos_rtc.rtc); 758 cleanup0: 759 release_region(ports->start, resource_size(ports)); 760 return retval; 761 } 762 763 static void cmos_do_shutdown(void) 764 { 765 spin_lock_irq(&rtc_lock); 766 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK); 767 spin_unlock_irq(&rtc_lock); 768 } 769 770 static void __exit cmos_do_remove(struct device *dev) 771 { 772 struct cmos_rtc *cmos = dev_get_drvdata(dev); 773 struct resource *ports; 774 775 cmos_do_shutdown(); 776 777 sysfs_remove_bin_file(&dev->kobj, &nvram); 778 779 if (is_valid_irq(cmos->irq)) { 780 free_irq(cmos->irq, cmos->rtc); 781 hpet_unregister_irq_handler(cmos_interrupt); 782 } 783 784 rtc_device_unregister(cmos->rtc); 785 cmos->rtc = NULL; 786 787 ports = cmos->iomem; 788 release_region(ports->start, resource_size(ports)); 789 cmos->iomem = NULL; 790 791 cmos->dev = NULL; 792 } 793 794 #ifdef CONFIG_PM 795 796 static int cmos_suspend(struct device *dev) 797 { 798 struct cmos_rtc *cmos = dev_get_drvdata(dev); 799 unsigned char tmp; 800 801 /* only the alarm might be a wakeup event source */ 802 spin_lock_irq(&rtc_lock); 803 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL); 804 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) { 805 unsigned char mask; 806 807 if (device_may_wakeup(dev)) 808 mask = RTC_IRQMASK & ~RTC_AIE; 809 else 810 mask = RTC_IRQMASK; 811 tmp &= ~mask; 812 CMOS_WRITE(tmp, RTC_CONTROL); 813 hpet_mask_rtc_irq_bit(mask); 814 815 cmos_checkintr(cmos, tmp); 816 } 817 spin_unlock_irq(&rtc_lock); 818 819 if (tmp & RTC_AIE) { 820 cmos->enabled_wake = 1; 821 if (cmos->wake_on) 822 cmos->wake_on(dev); 823 else 824 enable_irq_wake(cmos->irq); 825 } 826 827 dev_dbg(dev, "suspend%s, ctrl %02x\n", 828 (tmp & RTC_AIE) ? ", alarm may wake" : "", 829 tmp); 830 831 return 0; 832 } 833 834 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even 835 * after a detour through G3 "mechanical off", although the ACPI spec 836 * says wakeup should only work from G1/S4 "hibernate". To most users, 837 * distinctions between S4 and S5 are pointless. So when the hardware 838 * allows, don't draw that distinction. 839 */ 840 static inline int cmos_poweroff(struct device *dev) 841 { 842 return cmos_suspend(dev); 843 } 844 845 static int cmos_resume(struct device *dev) 846 { 847 struct cmos_rtc *cmos = dev_get_drvdata(dev); 848 unsigned char tmp; 849 850 if (cmos->enabled_wake) { 851 if (cmos->wake_off) 852 cmos->wake_off(dev); 853 else 854 disable_irq_wake(cmos->irq); 855 cmos->enabled_wake = 0; 856 } 857 858 spin_lock_irq(&rtc_lock); 859 tmp = cmos->suspend_ctrl; 860 cmos->suspend_ctrl = 0; 861 /* re-enable any irqs previously active */ 862 if (tmp & RTC_IRQMASK) { 863 unsigned char mask; 864 865 if (device_may_wakeup(dev)) 866 hpet_rtc_timer_init(); 867 868 do { 869 CMOS_WRITE(tmp, RTC_CONTROL); 870 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK); 871 872 mask = CMOS_READ(RTC_INTR_FLAGS); 873 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF; 874 if (!is_hpet_enabled() || !is_intr(mask)) 875 break; 876 877 /* force one-shot behavior if HPET blocked 878 * the wake alarm's irq 879 */ 880 rtc_update_irq(cmos->rtc, 1, mask); 881 tmp &= ~RTC_AIE; 882 hpet_mask_rtc_irq_bit(RTC_AIE); 883 } while (mask & RTC_AIE); 884 } 885 spin_unlock_irq(&rtc_lock); 886 887 dev_dbg(dev, "resume, ctrl %02x\n", tmp); 888 889 return 0; 890 } 891 892 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume); 893 894 #else 895 896 static inline int cmos_poweroff(struct device *dev) 897 { 898 return -ENOSYS; 899 } 900 901 #endif 902 903 /*----------------------------------------------------------------*/ 904 905 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus. 906 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs 907 * probably list them in similar PNPBIOS tables; so PNP is more common. 908 * 909 * We don't use legacy "poke at the hardware" probing. Ancient PCs that 910 * predate even PNPBIOS should set up platform_bus devices. 911 */ 912 913 #ifdef CONFIG_ACPI 914 915 #include <linux/acpi.h> 916 917 static u32 rtc_handler(void *context) 918 { 919 struct device *dev = context; 920 921 pm_wakeup_event(dev, 0); 922 acpi_clear_event(ACPI_EVENT_RTC); 923 acpi_disable_event(ACPI_EVENT_RTC, 0); 924 return ACPI_INTERRUPT_HANDLED; 925 } 926 927 static inline void rtc_wake_setup(struct device *dev) 928 { 929 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev); 930 /* 931 * After the RTC handler is installed, the Fixed_RTC event should 932 * be disabled. Only when the RTC alarm is set will it be enabled. 933 */ 934 acpi_clear_event(ACPI_EVENT_RTC); 935 acpi_disable_event(ACPI_EVENT_RTC, 0); 936 } 937 938 static void rtc_wake_on(struct device *dev) 939 { 940 acpi_clear_event(ACPI_EVENT_RTC); 941 acpi_enable_event(ACPI_EVENT_RTC, 0); 942 } 943 944 static void rtc_wake_off(struct device *dev) 945 { 946 acpi_disable_event(ACPI_EVENT_RTC, 0); 947 } 948 949 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find 950 * its device node and pass extra config data. This helps its driver use 951 * capabilities that the now-obsolete mc146818 didn't have, and informs it 952 * that this board's RTC is wakeup-capable (per ACPI spec). 953 */ 954 static struct cmos_rtc_board_info acpi_rtc_info; 955 956 static void cmos_wake_setup(struct device *dev) 957 { 958 if (acpi_disabled) 959 return; 960 961 rtc_wake_setup(dev); 962 acpi_rtc_info.wake_on = rtc_wake_on; 963 acpi_rtc_info.wake_off = rtc_wake_off; 964 965 /* workaround bug in some ACPI tables */ 966 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) { 967 dev_dbg(dev, "bogus FADT month_alarm (%d)\n", 968 acpi_gbl_FADT.month_alarm); 969 acpi_gbl_FADT.month_alarm = 0; 970 } 971 972 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm; 973 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm; 974 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century; 975 976 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */ 977 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE) 978 dev_info(dev, "RTC can wake from S4\n"); 979 980 dev->platform_data = &acpi_rtc_info; 981 982 /* RTC always wakes from S1/S2/S3, and often S4/STD */ 983 device_init_wakeup(dev, 1); 984 } 985 986 #else 987 988 static void cmos_wake_setup(struct device *dev) 989 { 990 } 991 992 #endif 993 994 #ifdef CONFIG_PNP 995 996 #include <linux/pnp.h> 997 998 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id) 999 { 1000 cmos_wake_setup(&pnp->dev); 1001 1002 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) 1003 /* Some machines contain a PNP entry for the RTC, but 1004 * don't define the IRQ. It should always be safe to 1005 * hardcode it in these cases 1006 */ 1007 return cmos_do_probe(&pnp->dev, 1008 pnp_get_resource(pnp, IORESOURCE_IO, 0), 8); 1009 else 1010 return cmos_do_probe(&pnp->dev, 1011 pnp_get_resource(pnp, IORESOURCE_IO, 0), 1012 pnp_irq(pnp, 0)); 1013 } 1014 1015 static void __exit cmos_pnp_remove(struct pnp_dev *pnp) 1016 { 1017 cmos_do_remove(&pnp->dev); 1018 } 1019 1020 static void cmos_pnp_shutdown(struct pnp_dev *pnp) 1021 { 1022 if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pnp->dev)) 1023 return; 1024 1025 cmos_do_shutdown(); 1026 } 1027 1028 static const struct pnp_device_id rtc_ids[] = { 1029 { .id = "PNP0b00", }, 1030 { .id = "PNP0b01", }, 1031 { .id = "PNP0b02", }, 1032 { }, 1033 }; 1034 MODULE_DEVICE_TABLE(pnp, rtc_ids); 1035 1036 static struct pnp_driver cmos_pnp_driver = { 1037 .name = (char *) driver_name, 1038 .id_table = rtc_ids, 1039 .probe = cmos_pnp_probe, 1040 .remove = __exit_p(cmos_pnp_remove), 1041 .shutdown = cmos_pnp_shutdown, 1042 1043 /* flag ensures resume() gets called, and stops syslog spam */ 1044 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE, 1045 #ifdef CONFIG_PM_SLEEP 1046 .driver = { 1047 .pm = &cmos_pm_ops, 1048 }, 1049 #endif 1050 }; 1051 1052 #endif /* CONFIG_PNP */ 1053 1054 #ifdef CONFIG_OF 1055 static const struct of_device_id of_cmos_match[] = { 1056 { 1057 .compatible = "motorola,mc146818", 1058 }, 1059 { }, 1060 }; 1061 MODULE_DEVICE_TABLE(of, of_cmos_match); 1062 1063 static __init void cmos_of_init(struct platform_device *pdev) 1064 { 1065 struct device_node *node = pdev->dev.of_node; 1066 struct rtc_time time; 1067 int ret; 1068 const __be32 *val; 1069 1070 if (!node) 1071 return; 1072 1073 val = of_get_property(node, "ctrl-reg", NULL); 1074 if (val) 1075 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL); 1076 1077 val = of_get_property(node, "freq-reg", NULL); 1078 if (val) 1079 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT); 1080 1081 get_rtc_time(&time); 1082 ret = rtc_valid_tm(&time); 1083 if (ret) { 1084 struct rtc_time def_time = { 1085 .tm_year = 1, 1086 .tm_mday = 1, 1087 }; 1088 set_rtc_time(&def_time); 1089 } 1090 } 1091 #else 1092 static inline void cmos_of_init(struct platform_device *pdev) {} 1093 #endif 1094 /*----------------------------------------------------------------*/ 1095 1096 /* Platform setup should have set up an RTC device, when PNP is 1097 * unavailable ... this could happen even on (older) PCs. 1098 */ 1099 1100 static int __init cmos_platform_probe(struct platform_device *pdev) 1101 { 1102 cmos_of_init(pdev); 1103 cmos_wake_setup(&pdev->dev); 1104 return cmos_do_probe(&pdev->dev, 1105 platform_get_resource(pdev, IORESOURCE_IO, 0), 1106 platform_get_irq(pdev, 0)); 1107 } 1108 1109 static int __exit cmos_platform_remove(struct platform_device *pdev) 1110 { 1111 cmos_do_remove(&pdev->dev); 1112 return 0; 1113 } 1114 1115 static void cmos_platform_shutdown(struct platform_device *pdev) 1116 { 1117 if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pdev->dev)) 1118 return; 1119 1120 cmos_do_shutdown(); 1121 } 1122 1123 /* work with hotplug and coldplug */ 1124 MODULE_ALIAS("platform:rtc_cmos"); 1125 1126 static struct platform_driver cmos_platform_driver = { 1127 .remove = __exit_p(cmos_platform_remove), 1128 .shutdown = cmos_platform_shutdown, 1129 .driver = { 1130 .name = (char *) driver_name, 1131 #ifdef CONFIG_PM 1132 .pm = &cmos_pm_ops, 1133 #endif 1134 .of_match_table = of_match_ptr(of_cmos_match), 1135 } 1136 }; 1137 1138 #ifdef CONFIG_PNP 1139 static bool pnp_driver_registered; 1140 #endif 1141 static bool platform_driver_registered; 1142 1143 static int __init cmos_init(void) 1144 { 1145 int retval = 0; 1146 1147 #ifdef CONFIG_PNP 1148 retval = pnp_register_driver(&cmos_pnp_driver); 1149 if (retval == 0) 1150 pnp_driver_registered = true; 1151 #endif 1152 1153 if (!cmos_rtc.dev) { 1154 retval = platform_driver_probe(&cmos_platform_driver, 1155 cmos_platform_probe); 1156 if (retval == 0) 1157 platform_driver_registered = true; 1158 } 1159 1160 if (retval == 0) 1161 return 0; 1162 1163 #ifdef CONFIG_PNP 1164 if (pnp_driver_registered) 1165 pnp_unregister_driver(&cmos_pnp_driver); 1166 #endif 1167 return retval; 1168 } 1169 module_init(cmos_init); 1170 1171 static void __exit cmos_exit(void) 1172 { 1173 #ifdef CONFIG_PNP 1174 if (pnp_driver_registered) 1175 pnp_unregister_driver(&cmos_pnp_driver); 1176 #endif 1177 if (platform_driver_registered) 1178 platform_driver_unregister(&cmos_platform_driver); 1179 } 1180 module_exit(cmos_exit); 1181 1182 1183 MODULE_AUTHOR("David Brownell"); 1184 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs"); 1185 MODULE_LICENSE("GPL"); 1186