1 /* 2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc 3 * 4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c) 5 * Copyright (C) 2006 David Brownell (convert to new framework) 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 /* 14 * The original "cmos clock" chip was an MC146818 chip, now obsolete. 15 * That defined the register interface now provided by all PCs, some 16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets 17 * integrate an MC146818 clone in their southbridge, and boards use 18 * that instead of discrete clones like the DS12887 or M48T86. There 19 * are also clones that connect using the LPC bus. 20 * 21 * That register API is also used directly by various other drivers 22 * (notably for integrated NVRAM), infrastructure (x86 has code to 23 * bypass the RTC framework, directly reading the RTC during boot 24 * and updating minutes/seconds for systems using NTP synch) and 25 * utilities (like userspace 'hwclock', if no /dev node exists). 26 * 27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with 28 * interrupts disabled, holding the global rtc_lock, to exclude those 29 * other drivers and utilities on correctly configured systems. 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/kernel.h> 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/interrupt.h> 38 #include <linux/spinlock.h> 39 #include <linux/platform_device.h> 40 #include <linux/log2.h> 41 #include <linux/pm.h> 42 #include <linux/of.h> 43 #include <linux/of_platform.h> 44 45 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */ 46 #include <asm-generic/rtc.h> 47 48 struct cmos_rtc { 49 struct rtc_device *rtc; 50 struct device *dev; 51 int irq; 52 struct resource *iomem; 53 time64_t alarm_expires; 54 55 void (*wake_on)(struct device *); 56 void (*wake_off)(struct device *); 57 58 u8 enabled_wake; 59 u8 suspend_ctrl; 60 61 /* newer hardware extends the original register set */ 62 u8 day_alrm; 63 u8 mon_alrm; 64 u8 century; 65 }; 66 67 /* both platform and pnp busses use negative numbers for invalid irqs */ 68 #define is_valid_irq(n) ((n) > 0) 69 70 static const char driver_name[] = "rtc_cmos"; 71 72 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear; 73 * always mask it against the irq enable bits in RTC_CONTROL. Bit values 74 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both. 75 */ 76 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF) 77 78 static inline int is_intr(u8 rtc_intr) 79 { 80 if (!(rtc_intr & RTC_IRQF)) 81 return 0; 82 return rtc_intr & RTC_IRQMASK; 83 } 84 85 /*----------------------------------------------------------------*/ 86 87 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because 88 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly 89 * used in a broken "legacy replacement" mode. The breakage includes 90 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for 91 * other (better) use. 92 * 93 * When that broken mode is in use, platform glue provides a partial 94 * emulation of hardware RTC IRQ facilities using HPET #1. We don't 95 * want to use HPET for anything except those IRQs though... 96 */ 97 #ifdef CONFIG_HPET_EMULATE_RTC 98 #include <asm/hpet.h> 99 #else 100 101 static inline int is_hpet_enabled(void) 102 { 103 return 0; 104 } 105 106 static inline int hpet_mask_rtc_irq_bit(unsigned long mask) 107 { 108 return 0; 109 } 110 111 static inline int hpet_set_rtc_irq_bit(unsigned long mask) 112 { 113 return 0; 114 } 115 116 static inline int 117 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec) 118 { 119 return 0; 120 } 121 122 static inline int hpet_set_periodic_freq(unsigned long freq) 123 { 124 return 0; 125 } 126 127 static inline int hpet_rtc_dropped_irq(void) 128 { 129 return 0; 130 } 131 132 static inline int hpet_rtc_timer_init(void) 133 { 134 return 0; 135 } 136 137 extern irq_handler_t hpet_rtc_interrupt; 138 139 static inline int hpet_register_irq_handler(irq_handler_t handler) 140 { 141 return 0; 142 } 143 144 static inline int hpet_unregister_irq_handler(irq_handler_t handler) 145 { 146 return 0; 147 } 148 149 #endif 150 151 /*----------------------------------------------------------------*/ 152 153 #ifdef RTC_PORT 154 155 /* Most newer x86 systems have two register banks, the first used 156 * for RTC and NVRAM and the second only for NVRAM. Caller must 157 * own rtc_lock ... and we won't worry about access during NMI. 158 */ 159 #define can_bank2 true 160 161 static inline unsigned char cmos_read_bank2(unsigned char addr) 162 { 163 outb(addr, RTC_PORT(2)); 164 return inb(RTC_PORT(3)); 165 } 166 167 static inline void cmos_write_bank2(unsigned char val, unsigned char addr) 168 { 169 outb(addr, RTC_PORT(2)); 170 outb(val, RTC_PORT(3)); 171 } 172 173 #else 174 175 #define can_bank2 false 176 177 static inline unsigned char cmos_read_bank2(unsigned char addr) 178 { 179 return 0; 180 } 181 182 static inline void cmos_write_bank2(unsigned char val, unsigned char addr) 183 { 184 } 185 186 #endif 187 188 /*----------------------------------------------------------------*/ 189 190 static int cmos_read_time(struct device *dev, struct rtc_time *t) 191 { 192 /* REVISIT: if the clock has a "century" register, use 193 * that instead of the heuristic in get_rtc_time(). 194 * That'll make Y3K compatility (year > 2070) easy! 195 */ 196 get_rtc_time(t); 197 return 0; 198 } 199 200 static int cmos_set_time(struct device *dev, struct rtc_time *t) 201 { 202 /* REVISIT: set the "century" register if available 203 * 204 * NOTE: this ignores the issue whereby updating the seconds 205 * takes effect exactly 500ms after we write the register. 206 * (Also queueing and other delays before we get this far.) 207 */ 208 return set_rtc_time(t); 209 } 210 211 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t) 212 { 213 struct cmos_rtc *cmos = dev_get_drvdata(dev); 214 unsigned char rtc_control; 215 216 if (!is_valid_irq(cmos->irq)) 217 return -EIO; 218 219 /* Basic alarms only support hour, minute, and seconds fields. 220 * Some also support day and month, for alarms up to a year in 221 * the future. 222 */ 223 t->time.tm_mday = -1; 224 t->time.tm_mon = -1; 225 226 spin_lock_irq(&rtc_lock); 227 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM); 228 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM); 229 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM); 230 231 if (cmos->day_alrm) { 232 /* ignore upper bits on readback per ACPI spec */ 233 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f; 234 if (!t->time.tm_mday) 235 t->time.tm_mday = -1; 236 237 if (cmos->mon_alrm) { 238 t->time.tm_mon = CMOS_READ(cmos->mon_alrm); 239 if (!t->time.tm_mon) 240 t->time.tm_mon = -1; 241 } 242 } 243 244 rtc_control = CMOS_READ(RTC_CONTROL); 245 spin_unlock_irq(&rtc_lock); 246 247 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 248 if (((unsigned)t->time.tm_sec) < 0x60) 249 t->time.tm_sec = bcd2bin(t->time.tm_sec); 250 else 251 t->time.tm_sec = -1; 252 if (((unsigned)t->time.tm_min) < 0x60) 253 t->time.tm_min = bcd2bin(t->time.tm_min); 254 else 255 t->time.tm_min = -1; 256 if (((unsigned)t->time.tm_hour) < 0x24) 257 t->time.tm_hour = bcd2bin(t->time.tm_hour); 258 else 259 t->time.tm_hour = -1; 260 261 if (cmos->day_alrm) { 262 if (((unsigned)t->time.tm_mday) <= 0x31) 263 t->time.tm_mday = bcd2bin(t->time.tm_mday); 264 else 265 t->time.tm_mday = -1; 266 267 if (cmos->mon_alrm) { 268 if (((unsigned)t->time.tm_mon) <= 0x12) 269 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1; 270 else 271 t->time.tm_mon = -1; 272 } 273 } 274 } 275 t->time.tm_year = -1; 276 277 t->enabled = !!(rtc_control & RTC_AIE); 278 t->pending = 0; 279 280 return 0; 281 } 282 283 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control) 284 { 285 unsigned char rtc_intr; 286 287 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS; 288 * allegedly some older rtcs need that to handle irqs properly 289 */ 290 rtc_intr = CMOS_READ(RTC_INTR_FLAGS); 291 292 if (is_hpet_enabled()) 293 return; 294 295 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 296 if (is_intr(rtc_intr)) 297 rtc_update_irq(cmos->rtc, 1, rtc_intr); 298 } 299 300 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask) 301 { 302 unsigned char rtc_control; 303 304 /* flush any pending IRQ status, notably for update irqs, 305 * before we enable new IRQs 306 */ 307 rtc_control = CMOS_READ(RTC_CONTROL); 308 cmos_checkintr(cmos, rtc_control); 309 310 rtc_control |= mask; 311 CMOS_WRITE(rtc_control, RTC_CONTROL); 312 hpet_set_rtc_irq_bit(mask); 313 314 cmos_checkintr(cmos, rtc_control); 315 } 316 317 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask) 318 { 319 unsigned char rtc_control; 320 321 rtc_control = CMOS_READ(RTC_CONTROL); 322 rtc_control &= ~mask; 323 CMOS_WRITE(rtc_control, RTC_CONTROL); 324 hpet_mask_rtc_irq_bit(mask); 325 326 cmos_checkintr(cmos, rtc_control); 327 } 328 329 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t) 330 { 331 struct cmos_rtc *cmos = dev_get_drvdata(dev); 332 unsigned char mon, mday, hrs, min, sec, rtc_control; 333 334 if (!is_valid_irq(cmos->irq)) 335 return -EIO; 336 337 mon = t->time.tm_mon + 1; 338 mday = t->time.tm_mday; 339 hrs = t->time.tm_hour; 340 min = t->time.tm_min; 341 sec = t->time.tm_sec; 342 343 rtc_control = CMOS_READ(RTC_CONTROL); 344 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 345 /* Writing 0xff means "don't care" or "match all". */ 346 mon = (mon <= 12) ? bin2bcd(mon) : 0xff; 347 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff; 348 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff; 349 min = (min < 60) ? bin2bcd(min) : 0xff; 350 sec = (sec < 60) ? bin2bcd(sec) : 0xff; 351 } 352 353 spin_lock_irq(&rtc_lock); 354 355 /* next rtc irq must not be from previous alarm setting */ 356 cmos_irq_disable(cmos, RTC_AIE); 357 358 /* update alarm */ 359 CMOS_WRITE(hrs, RTC_HOURS_ALARM); 360 CMOS_WRITE(min, RTC_MINUTES_ALARM); 361 CMOS_WRITE(sec, RTC_SECONDS_ALARM); 362 363 /* the system may support an "enhanced" alarm */ 364 if (cmos->day_alrm) { 365 CMOS_WRITE(mday, cmos->day_alrm); 366 if (cmos->mon_alrm) 367 CMOS_WRITE(mon, cmos->mon_alrm); 368 } 369 370 /* FIXME the HPET alarm glue currently ignores day_alrm 371 * and mon_alrm ... 372 */ 373 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec); 374 375 if (t->enabled) 376 cmos_irq_enable(cmos, RTC_AIE); 377 378 spin_unlock_irq(&rtc_lock); 379 380 cmos->alarm_expires = rtc_tm_to_time64(&t->time); 381 382 return 0; 383 } 384 385 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled) 386 { 387 struct cmos_rtc *cmos = dev_get_drvdata(dev); 388 unsigned long flags; 389 390 if (!is_valid_irq(cmos->irq)) 391 return -EINVAL; 392 393 spin_lock_irqsave(&rtc_lock, flags); 394 395 if (enabled) 396 cmos_irq_enable(cmos, RTC_AIE); 397 else 398 cmos_irq_disable(cmos, RTC_AIE); 399 400 spin_unlock_irqrestore(&rtc_lock, flags); 401 return 0; 402 } 403 404 #if IS_ENABLED(CONFIG_RTC_INTF_PROC) 405 406 static int cmos_procfs(struct device *dev, struct seq_file *seq) 407 { 408 struct cmos_rtc *cmos = dev_get_drvdata(dev); 409 unsigned char rtc_control, valid; 410 411 spin_lock_irq(&rtc_lock); 412 rtc_control = CMOS_READ(RTC_CONTROL); 413 valid = CMOS_READ(RTC_VALID); 414 spin_unlock_irq(&rtc_lock); 415 416 /* NOTE: at least ICH6 reports battery status using a different 417 * (non-RTC) bit; and SQWE is ignored on many current systems. 418 */ 419 seq_printf(seq, 420 "periodic_IRQ\t: %s\n" 421 "update_IRQ\t: %s\n" 422 "HPET_emulated\t: %s\n" 423 // "square_wave\t: %s\n" 424 "BCD\t\t: %s\n" 425 "DST_enable\t: %s\n" 426 "periodic_freq\t: %d\n" 427 "batt_status\t: %s\n", 428 (rtc_control & RTC_PIE) ? "yes" : "no", 429 (rtc_control & RTC_UIE) ? "yes" : "no", 430 is_hpet_enabled() ? "yes" : "no", 431 // (rtc_control & RTC_SQWE) ? "yes" : "no", 432 (rtc_control & RTC_DM_BINARY) ? "no" : "yes", 433 (rtc_control & RTC_DST_EN) ? "yes" : "no", 434 cmos->rtc->irq_freq, 435 (valid & RTC_VRT) ? "okay" : "dead"); 436 437 return 0; 438 } 439 440 #else 441 #define cmos_procfs NULL 442 #endif 443 444 static const struct rtc_class_ops cmos_rtc_ops = { 445 .read_time = cmos_read_time, 446 .set_time = cmos_set_time, 447 .read_alarm = cmos_read_alarm, 448 .set_alarm = cmos_set_alarm, 449 .proc = cmos_procfs, 450 .alarm_irq_enable = cmos_alarm_irq_enable, 451 }; 452 453 /*----------------------------------------------------------------*/ 454 455 /* 456 * All these chips have at least 64 bytes of address space, shared by 457 * RTC registers and NVRAM. Most of those bytes of NVRAM are used 458 * by boot firmware. Modern chips have 128 or 256 bytes. 459 */ 460 461 #define NVRAM_OFFSET (RTC_REG_D + 1) 462 463 static ssize_t 464 cmos_nvram_read(struct file *filp, struct kobject *kobj, 465 struct bin_attribute *attr, 466 char *buf, loff_t off, size_t count) 467 { 468 int retval; 469 470 off += NVRAM_OFFSET; 471 spin_lock_irq(&rtc_lock); 472 for (retval = 0; count; count--, off++, retval++) { 473 if (off < 128) 474 *buf++ = CMOS_READ(off); 475 else if (can_bank2) 476 *buf++ = cmos_read_bank2(off); 477 else 478 break; 479 } 480 spin_unlock_irq(&rtc_lock); 481 482 return retval; 483 } 484 485 static ssize_t 486 cmos_nvram_write(struct file *filp, struct kobject *kobj, 487 struct bin_attribute *attr, 488 char *buf, loff_t off, size_t count) 489 { 490 struct cmos_rtc *cmos; 491 int retval; 492 493 cmos = dev_get_drvdata(container_of(kobj, struct device, kobj)); 494 495 /* NOTE: on at least PCs and Ataris, the boot firmware uses a 496 * checksum on part of the NVRAM data. That's currently ignored 497 * here. If userspace is smart enough to know what fields of 498 * NVRAM to update, updating checksums is also part of its job. 499 */ 500 off += NVRAM_OFFSET; 501 spin_lock_irq(&rtc_lock); 502 for (retval = 0; count; count--, off++, retval++) { 503 /* don't trash RTC registers */ 504 if (off == cmos->day_alrm 505 || off == cmos->mon_alrm 506 || off == cmos->century) 507 buf++; 508 else if (off < 128) 509 CMOS_WRITE(*buf++, off); 510 else if (can_bank2) 511 cmos_write_bank2(*buf++, off); 512 else 513 break; 514 } 515 spin_unlock_irq(&rtc_lock); 516 517 return retval; 518 } 519 520 static struct bin_attribute nvram = { 521 .attr = { 522 .name = "nvram", 523 .mode = S_IRUGO | S_IWUSR, 524 }, 525 526 .read = cmos_nvram_read, 527 .write = cmos_nvram_write, 528 /* size gets set up later */ 529 }; 530 531 /*----------------------------------------------------------------*/ 532 533 static struct cmos_rtc cmos_rtc; 534 535 static irqreturn_t cmos_interrupt(int irq, void *p) 536 { 537 u8 irqstat; 538 u8 rtc_control; 539 540 spin_lock(&rtc_lock); 541 542 /* When the HPET interrupt handler calls us, the interrupt 543 * status is passed as arg1 instead of the irq number. But 544 * always clear irq status, even when HPET is in the way. 545 * 546 * Note that HPET and RTC are almost certainly out of phase, 547 * giving different IRQ status ... 548 */ 549 irqstat = CMOS_READ(RTC_INTR_FLAGS); 550 rtc_control = CMOS_READ(RTC_CONTROL); 551 if (is_hpet_enabled()) 552 irqstat = (unsigned long)irq & 0xF0; 553 554 /* If we were suspended, RTC_CONTROL may not be accurate since the 555 * bios may have cleared it. 556 */ 557 if (!cmos_rtc.suspend_ctrl) 558 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 559 else 560 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF; 561 562 /* All Linux RTC alarms should be treated as if they were oneshot. 563 * Similar code may be needed in system wakeup paths, in case the 564 * alarm woke the system. 565 */ 566 if (irqstat & RTC_AIE) { 567 cmos_rtc.suspend_ctrl &= ~RTC_AIE; 568 rtc_control &= ~RTC_AIE; 569 CMOS_WRITE(rtc_control, RTC_CONTROL); 570 hpet_mask_rtc_irq_bit(RTC_AIE); 571 CMOS_READ(RTC_INTR_FLAGS); 572 } 573 spin_unlock(&rtc_lock); 574 575 if (is_intr(irqstat)) { 576 rtc_update_irq(p, 1, irqstat); 577 return IRQ_HANDLED; 578 } else 579 return IRQ_NONE; 580 } 581 582 #ifdef CONFIG_PNP 583 #define INITSECTION 584 585 #else 586 #define INITSECTION __init 587 #endif 588 589 static int INITSECTION 590 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq) 591 { 592 struct cmos_rtc_board_info *info = dev_get_platdata(dev); 593 int retval = 0; 594 unsigned char rtc_control; 595 unsigned address_space; 596 u32 flags = 0; 597 598 /* there can be only one ... */ 599 if (cmos_rtc.dev) 600 return -EBUSY; 601 602 if (!ports) 603 return -ENODEV; 604 605 /* Claim I/O ports ASAP, minimizing conflict with legacy driver. 606 * 607 * REVISIT non-x86 systems may instead use memory space resources 608 * (needing ioremap etc), not i/o space resources like this ... 609 */ 610 if (RTC_IOMAPPED) 611 ports = request_region(ports->start, resource_size(ports), 612 driver_name); 613 else 614 ports = request_mem_region(ports->start, resource_size(ports), 615 driver_name); 616 if (!ports) { 617 dev_dbg(dev, "i/o registers already in use\n"); 618 return -EBUSY; 619 } 620 621 cmos_rtc.irq = rtc_irq; 622 cmos_rtc.iomem = ports; 623 624 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM 625 * driver did, but don't reject unknown configs. Old hardware 626 * won't address 128 bytes. Newer chips have multiple banks, 627 * though they may not be listed in one I/O resource. 628 */ 629 #if defined(CONFIG_ATARI) 630 address_space = 64; 631 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \ 632 || defined(__sparc__) || defined(__mips__) \ 633 || defined(__powerpc__) 634 address_space = 128; 635 #else 636 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes. 637 address_space = 128; 638 #endif 639 if (can_bank2 && ports->end > (ports->start + 1)) 640 address_space = 256; 641 642 /* For ACPI systems extension info comes from the FADT. On others, 643 * board specific setup provides it as appropriate. Systems where 644 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and 645 * some almost-clones) can provide hooks to make that behave. 646 * 647 * Note that ACPI doesn't preclude putting these registers into 648 * "extended" areas of the chip, including some that we won't yet 649 * expect CMOS_READ and friends to handle. 650 */ 651 if (info) { 652 if (info->flags) 653 flags = info->flags; 654 if (info->address_space) 655 address_space = info->address_space; 656 657 if (info->rtc_day_alarm && info->rtc_day_alarm < 128) 658 cmos_rtc.day_alrm = info->rtc_day_alarm; 659 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128) 660 cmos_rtc.mon_alrm = info->rtc_mon_alarm; 661 if (info->rtc_century && info->rtc_century < 128) 662 cmos_rtc.century = info->rtc_century; 663 664 if (info->wake_on && info->wake_off) { 665 cmos_rtc.wake_on = info->wake_on; 666 cmos_rtc.wake_off = info->wake_off; 667 } 668 } 669 670 cmos_rtc.dev = dev; 671 dev_set_drvdata(dev, &cmos_rtc); 672 673 cmos_rtc.rtc = rtc_device_register(driver_name, dev, 674 &cmos_rtc_ops, THIS_MODULE); 675 if (IS_ERR(cmos_rtc.rtc)) { 676 retval = PTR_ERR(cmos_rtc.rtc); 677 goto cleanup0; 678 } 679 680 rename_region(ports, dev_name(&cmos_rtc.rtc->dev)); 681 682 spin_lock_irq(&rtc_lock); 683 684 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) { 685 /* force periodic irq to CMOS reset default of 1024Hz; 686 * 687 * REVISIT it's been reported that at least one x86_64 ALI 688 * mobo doesn't use 32KHz here ... for portability we might 689 * need to do something about other clock frequencies. 690 */ 691 cmos_rtc.rtc->irq_freq = 1024; 692 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq); 693 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT); 694 } 695 696 /* disable irqs */ 697 if (is_valid_irq(rtc_irq)) 698 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE); 699 700 rtc_control = CMOS_READ(RTC_CONTROL); 701 702 spin_unlock_irq(&rtc_lock); 703 704 /* FIXME: 705 * <asm-generic/rtc.h> doesn't know 12-hour mode either. 706 */ 707 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) { 708 dev_warn(dev, "only 24-hr supported\n"); 709 retval = -ENXIO; 710 goto cleanup1; 711 } 712 713 if (is_valid_irq(rtc_irq)) { 714 irq_handler_t rtc_cmos_int_handler; 715 716 if (is_hpet_enabled()) { 717 rtc_cmos_int_handler = hpet_rtc_interrupt; 718 retval = hpet_register_irq_handler(cmos_interrupt); 719 if (retval) { 720 dev_warn(dev, "hpet_register_irq_handler " 721 " failed in rtc_init()."); 722 goto cleanup1; 723 } 724 } else 725 rtc_cmos_int_handler = cmos_interrupt; 726 727 retval = request_irq(rtc_irq, rtc_cmos_int_handler, 728 IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev), 729 cmos_rtc.rtc); 730 if (retval < 0) { 731 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq); 732 goto cleanup1; 733 } 734 } 735 hpet_rtc_timer_init(); 736 737 /* export at least the first block of NVRAM */ 738 nvram.size = address_space - NVRAM_OFFSET; 739 retval = sysfs_create_bin_file(&dev->kobj, &nvram); 740 if (retval < 0) { 741 dev_dbg(dev, "can't create nvram file? %d\n", retval); 742 goto cleanup2; 743 } 744 745 dev_info(dev, "%s%s, %zd bytes nvram%s\n", 746 !is_valid_irq(rtc_irq) ? "no alarms" : 747 cmos_rtc.mon_alrm ? "alarms up to one year" : 748 cmos_rtc.day_alrm ? "alarms up to one month" : 749 "alarms up to one day", 750 cmos_rtc.century ? ", y3k" : "", 751 nvram.size, 752 is_hpet_enabled() ? ", hpet irqs" : ""); 753 754 return 0; 755 756 cleanup2: 757 if (is_valid_irq(rtc_irq)) 758 free_irq(rtc_irq, cmos_rtc.rtc); 759 cleanup1: 760 cmos_rtc.dev = NULL; 761 rtc_device_unregister(cmos_rtc.rtc); 762 cleanup0: 763 if (RTC_IOMAPPED) 764 release_region(ports->start, resource_size(ports)); 765 else 766 release_mem_region(ports->start, resource_size(ports)); 767 return retval; 768 } 769 770 static void cmos_do_shutdown(int rtc_irq) 771 { 772 spin_lock_irq(&rtc_lock); 773 if (is_valid_irq(rtc_irq)) 774 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK); 775 spin_unlock_irq(&rtc_lock); 776 } 777 778 static void __exit cmos_do_remove(struct device *dev) 779 { 780 struct cmos_rtc *cmos = dev_get_drvdata(dev); 781 struct resource *ports; 782 783 cmos_do_shutdown(cmos->irq); 784 785 sysfs_remove_bin_file(&dev->kobj, &nvram); 786 787 if (is_valid_irq(cmos->irq)) { 788 free_irq(cmos->irq, cmos->rtc); 789 hpet_unregister_irq_handler(cmos_interrupt); 790 } 791 792 rtc_device_unregister(cmos->rtc); 793 cmos->rtc = NULL; 794 795 ports = cmos->iomem; 796 if (RTC_IOMAPPED) 797 release_region(ports->start, resource_size(ports)); 798 else 799 release_mem_region(ports->start, resource_size(ports)); 800 cmos->iomem = NULL; 801 802 cmos->dev = NULL; 803 } 804 805 static int cmos_aie_poweroff(struct device *dev) 806 { 807 struct cmos_rtc *cmos = dev_get_drvdata(dev); 808 struct rtc_time now; 809 time64_t t_now; 810 int retval = 0; 811 unsigned char rtc_control; 812 813 if (!cmos->alarm_expires) 814 return -EINVAL; 815 816 spin_lock_irq(&rtc_lock); 817 rtc_control = CMOS_READ(RTC_CONTROL); 818 spin_unlock_irq(&rtc_lock); 819 820 /* We only care about the situation where AIE is disabled. */ 821 if (rtc_control & RTC_AIE) 822 return -EBUSY; 823 824 cmos_read_time(dev, &now); 825 t_now = rtc_tm_to_time64(&now); 826 827 /* 828 * When enabling "RTC wake-up" in BIOS setup, the machine reboots 829 * automatically right after shutdown on some buggy boxes. 830 * This automatic rebooting issue won't happen when the alarm 831 * time is larger than now+1 seconds. 832 * 833 * If the alarm time is equal to now+1 seconds, the issue can be 834 * prevented by cancelling the alarm. 835 */ 836 if (cmos->alarm_expires == t_now + 1) { 837 struct rtc_wkalrm alarm; 838 839 /* Cancel the AIE timer by configuring the past time. */ 840 rtc_time64_to_tm(t_now - 1, &alarm.time); 841 alarm.enabled = 0; 842 retval = cmos_set_alarm(dev, &alarm); 843 } else if (cmos->alarm_expires > t_now + 1) { 844 retval = -EBUSY; 845 } 846 847 return retval; 848 } 849 850 #ifdef CONFIG_PM 851 852 static int cmos_suspend(struct device *dev) 853 { 854 struct cmos_rtc *cmos = dev_get_drvdata(dev); 855 unsigned char tmp; 856 857 /* only the alarm might be a wakeup event source */ 858 spin_lock_irq(&rtc_lock); 859 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL); 860 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) { 861 unsigned char mask; 862 863 if (device_may_wakeup(dev)) 864 mask = RTC_IRQMASK & ~RTC_AIE; 865 else 866 mask = RTC_IRQMASK; 867 tmp &= ~mask; 868 CMOS_WRITE(tmp, RTC_CONTROL); 869 hpet_mask_rtc_irq_bit(mask); 870 871 cmos_checkintr(cmos, tmp); 872 } 873 spin_unlock_irq(&rtc_lock); 874 875 if (tmp & RTC_AIE) { 876 cmos->enabled_wake = 1; 877 if (cmos->wake_on) 878 cmos->wake_on(dev); 879 else 880 enable_irq_wake(cmos->irq); 881 } 882 883 dev_dbg(dev, "suspend%s, ctrl %02x\n", 884 (tmp & RTC_AIE) ? ", alarm may wake" : "", 885 tmp); 886 887 return 0; 888 } 889 890 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even 891 * after a detour through G3 "mechanical off", although the ACPI spec 892 * says wakeup should only work from G1/S4 "hibernate". To most users, 893 * distinctions between S4 and S5 are pointless. So when the hardware 894 * allows, don't draw that distinction. 895 */ 896 static inline int cmos_poweroff(struct device *dev) 897 { 898 return cmos_suspend(dev); 899 } 900 901 #ifdef CONFIG_PM_SLEEP 902 903 static int cmos_resume(struct device *dev) 904 { 905 struct cmos_rtc *cmos = dev_get_drvdata(dev); 906 unsigned char tmp; 907 908 if (cmos->enabled_wake) { 909 if (cmos->wake_off) 910 cmos->wake_off(dev); 911 else 912 disable_irq_wake(cmos->irq); 913 cmos->enabled_wake = 0; 914 } 915 916 spin_lock_irq(&rtc_lock); 917 tmp = cmos->suspend_ctrl; 918 cmos->suspend_ctrl = 0; 919 /* re-enable any irqs previously active */ 920 if (tmp & RTC_IRQMASK) { 921 unsigned char mask; 922 923 if (device_may_wakeup(dev)) 924 hpet_rtc_timer_init(); 925 926 do { 927 CMOS_WRITE(tmp, RTC_CONTROL); 928 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK); 929 930 mask = CMOS_READ(RTC_INTR_FLAGS); 931 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF; 932 if (!is_hpet_enabled() || !is_intr(mask)) 933 break; 934 935 /* force one-shot behavior if HPET blocked 936 * the wake alarm's irq 937 */ 938 rtc_update_irq(cmos->rtc, 1, mask); 939 tmp &= ~RTC_AIE; 940 hpet_mask_rtc_irq_bit(RTC_AIE); 941 } while (mask & RTC_AIE); 942 } 943 spin_unlock_irq(&rtc_lock); 944 945 dev_dbg(dev, "resume, ctrl %02x\n", tmp); 946 947 return 0; 948 } 949 950 #endif 951 #else 952 953 static inline int cmos_poweroff(struct device *dev) 954 { 955 return -ENOSYS; 956 } 957 958 #endif 959 960 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume); 961 962 /*----------------------------------------------------------------*/ 963 964 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus. 965 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs 966 * probably list them in similar PNPBIOS tables; so PNP is more common. 967 * 968 * We don't use legacy "poke at the hardware" probing. Ancient PCs that 969 * predate even PNPBIOS should set up platform_bus devices. 970 */ 971 972 #ifdef CONFIG_ACPI 973 974 #include <linux/acpi.h> 975 976 static u32 rtc_handler(void *context) 977 { 978 struct device *dev = context; 979 980 pm_wakeup_event(dev, 0); 981 acpi_clear_event(ACPI_EVENT_RTC); 982 acpi_disable_event(ACPI_EVENT_RTC, 0); 983 return ACPI_INTERRUPT_HANDLED; 984 } 985 986 static inline void rtc_wake_setup(struct device *dev) 987 { 988 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev); 989 /* 990 * After the RTC handler is installed, the Fixed_RTC event should 991 * be disabled. Only when the RTC alarm is set will it be enabled. 992 */ 993 acpi_clear_event(ACPI_EVENT_RTC); 994 acpi_disable_event(ACPI_EVENT_RTC, 0); 995 } 996 997 static void rtc_wake_on(struct device *dev) 998 { 999 acpi_clear_event(ACPI_EVENT_RTC); 1000 acpi_enable_event(ACPI_EVENT_RTC, 0); 1001 } 1002 1003 static void rtc_wake_off(struct device *dev) 1004 { 1005 acpi_disable_event(ACPI_EVENT_RTC, 0); 1006 } 1007 1008 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find 1009 * its device node and pass extra config data. This helps its driver use 1010 * capabilities that the now-obsolete mc146818 didn't have, and informs it 1011 * that this board's RTC is wakeup-capable (per ACPI spec). 1012 */ 1013 static struct cmos_rtc_board_info acpi_rtc_info; 1014 1015 static void cmos_wake_setup(struct device *dev) 1016 { 1017 if (acpi_disabled) 1018 return; 1019 1020 rtc_wake_setup(dev); 1021 acpi_rtc_info.wake_on = rtc_wake_on; 1022 acpi_rtc_info.wake_off = rtc_wake_off; 1023 1024 /* workaround bug in some ACPI tables */ 1025 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) { 1026 dev_dbg(dev, "bogus FADT month_alarm (%d)\n", 1027 acpi_gbl_FADT.month_alarm); 1028 acpi_gbl_FADT.month_alarm = 0; 1029 } 1030 1031 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm; 1032 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm; 1033 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century; 1034 1035 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */ 1036 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE) 1037 dev_info(dev, "RTC can wake from S4\n"); 1038 1039 dev->platform_data = &acpi_rtc_info; 1040 1041 /* RTC always wakes from S1/S2/S3, and often S4/STD */ 1042 device_init_wakeup(dev, 1); 1043 } 1044 1045 #else 1046 1047 static void cmos_wake_setup(struct device *dev) 1048 { 1049 } 1050 1051 #endif 1052 1053 #ifdef CONFIG_PNP 1054 1055 #include <linux/pnp.h> 1056 1057 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id) 1058 { 1059 cmos_wake_setup(&pnp->dev); 1060 1061 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) 1062 /* Some machines contain a PNP entry for the RTC, but 1063 * don't define the IRQ. It should always be safe to 1064 * hardcode it in these cases 1065 */ 1066 return cmos_do_probe(&pnp->dev, 1067 pnp_get_resource(pnp, IORESOURCE_IO, 0), 8); 1068 else 1069 return cmos_do_probe(&pnp->dev, 1070 pnp_get_resource(pnp, IORESOURCE_IO, 0), 1071 pnp_irq(pnp, 0)); 1072 } 1073 1074 static void __exit cmos_pnp_remove(struct pnp_dev *pnp) 1075 { 1076 cmos_do_remove(&pnp->dev); 1077 } 1078 1079 static void cmos_pnp_shutdown(struct pnp_dev *pnp) 1080 { 1081 struct device *dev = &pnp->dev; 1082 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1083 1084 if (system_state == SYSTEM_POWER_OFF) { 1085 int retval = cmos_poweroff(dev); 1086 1087 if (cmos_aie_poweroff(dev) < 0 && !retval) 1088 return; 1089 } 1090 1091 cmos_do_shutdown(cmos->irq); 1092 } 1093 1094 static const struct pnp_device_id rtc_ids[] = { 1095 { .id = "PNP0b00", }, 1096 { .id = "PNP0b01", }, 1097 { .id = "PNP0b02", }, 1098 { }, 1099 }; 1100 MODULE_DEVICE_TABLE(pnp, rtc_ids); 1101 1102 static struct pnp_driver cmos_pnp_driver = { 1103 .name = (char *) driver_name, 1104 .id_table = rtc_ids, 1105 .probe = cmos_pnp_probe, 1106 .remove = __exit_p(cmos_pnp_remove), 1107 .shutdown = cmos_pnp_shutdown, 1108 1109 /* flag ensures resume() gets called, and stops syslog spam */ 1110 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE, 1111 .driver = { 1112 .pm = &cmos_pm_ops, 1113 }, 1114 }; 1115 1116 #endif /* CONFIG_PNP */ 1117 1118 #ifdef CONFIG_OF 1119 static const struct of_device_id of_cmos_match[] = { 1120 { 1121 .compatible = "motorola,mc146818", 1122 }, 1123 { }, 1124 }; 1125 MODULE_DEVICE_TABLE(of, of_cmos_match); 1126 1127 static __init void cmos_of_init(struct platform_device *pdev) 1128 { 1129 struct device_node *node = pdev->dev.of_node; 1130 struct rtc_time time; 1131 int ret; 1132 const __be32 *val; 1133 1134 if (!node) 1135 return; 1136 1137 val = of_get_property(node, "ctrl-reg", NULL); 1138 if (val) 1139 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL); 1140 1141 val = of_get_property(node, "freq-reg", NULL); 1142 if (val) 1143 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT); 1144 1145 get_rtc_time(&time); 1146 ret = rtc_valid_tm(&time); 1147 if (ret) { 1148 struct rtc_time def_time = { 1149 .tm_year = 1, 1150 .tm_mday = 1, 1151 }; 1152 set_rtc_time(&def_time); 1153 } 1154 } 1155 #else 1156 static inline void cmos_of_init(struct platform_device *pdev) {} 1157 #endif 1158 /*----------------------------------------------------------------*/ 1159 1160 /* Platform setup should have set up an RTC device, when PNP is 1161 * unavailable ... this could happen even on (older) PCs. 1162 */ 1163 1164 static int __init cmos_platform_probe(struct platform_device *pdev) 1165 { 1166 struct resource *resource; 1167 int irq; 1168 1169 cmos_of_init(pdev); 1170 cmos_wake_setup(&pdev->dev); 1171 1172 if (RTC_IOMAPPED) 1173 resource = platform_get_resource(pdev, IORESOURCE_IO, 0); 1174 else 1175 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1176 irq = platform_get_irq(pdev, 0); 1177 if (irq < 0) 1178 irq = -1; 1179 1180 return cmos_do_probe(&pdev->dev, resource, irq); 1181 } 1182 1183 static int __exit cmos_platform_remove(struct platform_device *pdev) 1184 { 1185 cmos_do_remove(&pdev->dev); 1186 return 0; 1187 } 1188 1189 static void cmos_platform_shutdown(struct platform_device *pdev) 1190 { 1191 struct device *dev = &pdev->dev; 1192 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1193 1194 if (system_state == SYSTEM_POWER_OFF) { 1195 int retval = cmos_poweroff(dev); 1196 1197 if (cmos_aie_poweroff(dev) < 0 && !retval) 1198 return; 1199 } 1200 1201 cmos_do_shutdown(cmos->irq); 1202 } 1203 1204 /* work with hotplug and coldplug */ 1205 MODULE_ALIAS("platform:rtc_cmos"); 1206 1207 static struct platform_driver cmos_platform_driver = { 1208 .remove = __exit_p(cmos_platform_remove), 1209 .shutdown = cmos_platform_shutdown, 1210 .driver = { 1211 .name = driver_name, 1212 #ifdef CONFIG_PM 1213 .pm = &cmos_pm_ops, 1214 #endif 1215 .of_match_table = of_match_ptr(of_cmos_match), 1216 } 1217 }; 1218 1219 #ifdef CONFIG_PNP 1220 static bool pnp_driver_registered; 1221 #endif 1222 static bool platform_driver_registered; 1223 1224 static int __init cmos_init(void) 1225 { 1226 int retval = 0; 1227 1228 #ifdef CONFIG_PNP 1229 retval = pnp_register_driver(&cmos_pnp_driver); 1230 if (retval == 0) 1231 pnp_driver_registered = true; 1232 #endif 1233 1234 if (!cmos_rtc.dev) { 1235 retval = platform_driver_probe(&cmos_platform_driver, 1236 cmos_platform_probe); 1237 if (retval == 0) 1238 platform_driver_registered = true; 1239 } 1240 1241 if (retval == 0) 1242 return 0; 1243 1244 #ifdef CONFIG_PNP 1245 if (pnp_driver_registered) 1246 pnp_unregister_driver(&cmos_pnp_driver); 1247 #endif 1248 return retval; 1249 } 1250 module_init(cmos_init); 1251 1252 static void __exit cmos_exit(void) 1253 { 1254 #ifdef CONFIG_PNP 1255 if (pnp_driver_registered) 1256 pnp_unregister_driver(&cmos_pnp_driver); 1257 #endif 1258 if (platform_driver_registered) 1259 platform_driver_unregister(&cmos_platform_driver); 1260 } 1261 module_exit(cmos_exit); 1262 1263 1264 MODULE_AUTHOR("David Brownell"); 1265 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs"); 1266 MODULE_LICENSE("GPL"); 1267