1 /* 2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc 3 * 4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c) 5 * Copyright (C) 2006 David Brownell (convert to new framework) 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 /* 14 * The original "cmos clock" chip was an MC146818 chip, now obsolete. 15 * That defined the register interface now provided by all PCs, some 16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets 17 * integrate an MC146818 clone in their southbridge, and boards use 18 * that instead of discrete clones like the DS12887 or M48T86. There 19 * are also clones that connect using the LPC bus. 20 * 21 * That register API is also used directly by various other drivers 22 * (notably for integrated NVRAM), infrastructure (x86 has code to 23 * bypass the RTC framework, directly reading the RTC during boot 24 * and updating minutes/seconds for systems using NTP synch) and 25 * utilities (like userspace 'hwclock', if no /dev node exists). 26 * 27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with 28 * interrupts disabled, holding the global rtc_lock, to exclude those 29 * other drivers and utilities on correctly configured systems. 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/kernel.h> 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/interrupt.h> 38 #include <linux/spinlock.h> 39 #include <linux/platform_device.h> 40 #include <linux/log2.h> 41 #include <linux/pm.h> 42 #include <linux/of.h> 43 #include <linux/of_platform.h> 44 45 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */ 46 #include <linux/mc146818rtc.h> 47 48 struct cmos_rtc { 49 struct rtc_device *rtc; 50 struct device *dev; 51 int irq; 52 struct resource *iomem; 53 time64_t alarm_expires; 54 55 void (*wake_on)(struct device *); 56 void (*wake_off)(struct device *); 57 58 u8 enabled_wake; 59 u8 suspend_ctrl; 60 61 /* newer hardware extends the original register set */ 62 u8 day_alrm; 63 u8 mon_alrm; 64 u8 century; 65 66 struct rtc_wkalrm saved_wkalrm; 67 }; 68 69 /* both platform and pnp busses use negative numbers for invalid irqs */ 70 #define is_valid_irq(n) ((n) > 0) 71 72 static const char driver_name[] = "rtc_cmos"; 73 74 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear; 75 * always mask it against the irq enable bits in RTC_CONTROL. Bit values 76 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both. 77 */ 78 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF) 79 80 static inline int is_intr(u8 rtc_intr) 81 { 82 if (!(rtc_intr & RTC_IRQF)) 83 return 0; 84 return rtc_intr & RTC_IRQMASK; 85 } 86 87 /*----------------------------------------------------------------*/ 88 89 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because 90 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly 91 * used in a broken "legacy replacement" mode. The breakage includes 92 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for 93 * other (better) use. 94 * 95 * When that broken mode is in use, platform glue provides a partial 96 * emulation of hardware RTC IRQ facilities using HPET #1. We don't 97 * want to use HPET for anything except those IRQs though... 98 */ 99 #ifdef CONFIG_HPET_EMULATE_RTC 100 #include <asm/hpet.h> 101 #else 102 103 static inline int is_hpet_enabled(void) 104 { 105 return 0; 106 } 107 108 static inline int hpet_mask_rtc_irq_bit(unsigned long mask) 109 { 110 return 0; 111 } 112 113 static inline int hpet_set_rtc_irq_bit(unsigned long mask) 114 { 115 return 0; 116 } 117 118 static inline int 119 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec) 120 { 121 return 0; 122 } 123 124 static inline int hpet_set_periodic_freq(unsigned long freq) 125 { 126 return 0; 127 } 128 129 static inline int hpet_rtc_dropped_irq(void) 130 { 131 return 0; 132 } 133 134 static inline int hpet_rtc_timer_init(void) 135 { 136 return 0; 137 } 138 139 extern irq_handler_t hpet_rtc_interrupt; 140 141 static inline int hpet_register_irq_handler(irq_handler_t handler) 142 { 143 return 0; 144 } 145 146 static inline int hpet_unregister_irq_handler(irq_handler_t handler) 147 { 148 return 0; 149 } 150 151 #endif 152 153 /*----------------------------------------------------------------*/ 154 155 #ifdef RTC_PORT 156 157 /* Most newer x86 systems have two register banks, the first used 158 * for RTC and NVRAM and the second only for NVRAM. Caller must 159 * own rtc_lock ... and we won't worry about access during NMI. 160 */ 161 #define can_bank2 true 162 163 static inline unsigned char cmos_read_bank2(unsigned char addr) 164 { 165 outb(addr, RTC_PORT(2)); 166 return inb(RTC_PORT(3)); 167 } 168 169 static inline void cmos_write_bank2(unsigned char val, unsigned char addr) 170 { 171 outb(addr, RTC_PORT(2)); 172 outb(val, RTC_PORT(3)); 173 } 174 175 #else 176 177 #define can_bank2 false 178 179 static inline unsigned char cmos_read_bank2(unsigned char addr) 180 { 181 return 0; 182 } 183 184 static inline void cmos_write_bank2(unsigned char val, unsigned char addr) 185 { 186 } 187 188 #endif 189 190 /*----------------------------------------------------------------*/ 191 192 static int cmos_read_time(struct device *dev, struct rtc_time *t) 193 { 194 /* REVISIT: if the clock has a "century" register, use 195 * that instead of the heuristic in mc146818_get_time(). 196 * That'll make Y3K compatility (year > 2070) easy! 197 */ 198 mc146818_get_time(t); 199 return 0; 200 } 201 202 static int cmos_set_time(struct device *dev, struct rtc_time *t) 203 { 204 /* REVISIT: set the "century" register if available 205 * 206 * NOTE: this ignores the issue whereby updating the seconds 207 * takes effect exactly 500ms after we write the register. 208 * (Also queueing and other delays before we get this far.) 209 */ 210 return mc146818_set_time(t); 211 } 212 213 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t) 214 { 215 struct cmos_rtc *cmos = dev_get_drvdata(dev); 216 unsigned char rtc_control; 217 218 if (!is_valid_irq(cmos->irq)) 219 return -EIO; 220 221 /* Basic alarms only support hour, minute, and seconds fields. 222 * Some also support day and month, for alarms up to a year in 223 * the future. 224 */ 225 226 spin_lock_irq(&rtc_lock); 227 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM); 228 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM); 229 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM); 230 231 if (cmos->day_alrm) { 232 /* ignore upper bits on readback per ACPI spec */ 233 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f; 234 if (!t->time.tm_mday) 235 t->time.tm_mday = -1; 236 237 if (cmos->mon_alrm) { 238 t->time.tm_mon = CMOS_READ(cmos->mon_alrm); 239 if (!t->time.tm_mon) 240 t->time.tm_mon = -1; 241 } 242 } 243 244 rtc_control = CMOS_READ(RTC_CONTROL); 245 spin_unlock_irq(&rtc_lock); 246 247 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 248 if (((unsigned)t->time.tm_sec) < 0x60) 249 t->time.tm_sec = bcd2bin(t->time.tm_sec); 250 else 251 t->time.tm_sec = -1; 252 if (((unsigned)t->time.tm_min) < 0x60) 253 t->time.tm_min = bcd2bin(t->time.tm_min); 254 else 255 t->time.tm_min = -1; 256 if (((unsigned)t->time.tm_hour) < 0x24) 257 t->time.tm_hour = bcd2bin(t->time.tm_hour); 258 else 259 t->time.tm_hour = -1; 260 261 if (cmos->day_alrm) { 262 if (((unsigned)t->time.tm_mday) <= 0x31) 263 t->time.tm_mday = bcd2bin(t->time.tm_mday); 264 else 265 t->time.tm_mday = -1; 266 267 if (cmos->mon_alrm) { 268 if (((unsigned)t->time.tm_mon) <= 0x12) 269 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1; 270 else 271 t->time.tm_mon = -1; 272 } 273 } 274 } 275 276 t->enabled = !!(rtc_control & RTC_AIE); 277 t->pending = 0; 278 279 return 0; 280 } 281 282 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control) 283 { 284 unsigned char rtc_intr; 285 286 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS; 287 * allegedly some older rtcs need that to handle irqs properly 288 */ 289 rtc_intr = CMOS_READ(RTC_INTR_FLAGS); 290 291 if (is_hpet_enabled()) 292 return; 293 294 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 295 if (is_intr(rtc_intr)) 296 rtc_update_irq(cmos->rtc, 1, rtc_intr); 297 } 298 299 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask) 300 { 301 unsigned char rtc_control; 302 303 /* flush any pending IRQ status, notably for update irqs, 304 * before we enable new IRQs 305 */ 306 rtc_control = CMOS_READ(RTC_CONTROL); 307 cmos_checkintr(cmos, rtc_control); 308 309 rtc_control |= mask; 310 CMOS_WRITE(rtc_control, RTC_CONTROL); 311 hpet_set_rtc_irq_bit(mask); 312 313 cmos_checkintr(cmos, rtc_control); 314 } 315 316 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask) 317 { 318 unsigned char rtc_control; 319 320 rtc_control = CMOS_READ(RTC_CONTROL); 321 rtc_control &= ~mask; 322 CMOS_WRITE(rtc_control, RTC_CONTROL); 323 hpet_mask_rtc_irq_bit(mask); 324 325 cmos_checkintr(cmos, rtc_control); 326 } 327 328 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t) 329 { 330 struct cmos_rtc *cmos = dev_get_drvdata(dev); 331 unsigned char mon, mday, hrs, min, sec, rtc_control; 332 333 if (!is_valid_irq(cmos->irq)) 334 return -EIO; 335 336 mon = t->time.tm_mon + 1; 337 mday = t->time.tm_mday; 338 hrs = t->time.tm_hour; 339 min = t->time.tm_min; 340 sec = t->time.tm_sec; 341 342 rtc_control = CMOS_READ(RTC_CONTROL); 343 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 344 /* Writing 0xff means "don't care" or "match all". */ 345 mon = (mon <= 12) ? bin2bcd(mon) : 0xff; 346 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff; 347 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff; 348 min = (min < 60) ? bin2bcd(min) : 0xff; 349 sec = (sec < 60) ? bin2bcd(sec) : 0xff; 350 } 351 352 spin_lock_irq(&rtc_lock); 353 354 /* next rtc irq must not be from previous alarm setting */ 355 cmos_irq_disable(cmos, RTC_AIE); 356 357 /* update alarm */ 358 CMOS_WRITE(hrs, RTC_HOURS_ALARM); 359 CMOS_WRITE(min, RTC_MINUTES_ALARM); 360 CMOS_WRITE(sec, RTC_SECONDS_ALARM); 361 362 /* the system may support an "enhanced" alarm */ 363 if (cmos->day_alrm) { 364 CMOS_WRITE(mday, cmos->day_alrm); 365 if (cmos->mon_alrm) 366 CMOS_WRITE(mon, cmos->mon_alrm); 367 } 368 369 /* FIXME the HPET alarm glue currently ignores day_alrm 370 * and mon_alrm ... 371 */ 372 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec); 373 374 if (t->enabled) 375 cmos_irq_enable(cmos, RTC_AIE); 376 377 spin_unlock_irq(&rtc_lock); 378 379 cmos->alarm_expires = rtc_tm_to_time64(&t->time); 380 381 return 0; 382 } 383 384 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled) 385 { 386 struct cmos_rtc *cmos = dev_get_drvdata(dev); 387 unsigned long flags; 388 389 if (!is_valid_irq(cmos->irq)) 390 return -EINVAL; 391 392 spin_lock_irqsave(&rtc_lock, flags); 393 394 if (enabled) 395 cmos_irq_enable(cmos, RTC_AIE); 396 else 397 cmos_irq_disable(cmos, RTC_AIE); 398 399 spin_unlock_irqrestore(&rtc_lock, flags); 400 return 0; 401 } 402 403 #if IS_ENABLED(CONFIG_RTC_INTF_PROC) 404 405 static int cmos_procfs(struct device *dev, struct seq_file *seq) 406 { 407 struct cmos_rtc *cmos = dev_get_drvdata(dev); 408 unsigned char rtc_control, valid; 409 410 spin_lock_irq(&rtc_lock); 411 rtc_control = CMOS_READ(RTC_CONTROL); 412 valid = CMOS_READ(RTC_VALID); 413 spin_unlock_irq(&rtc_lock); 414 415 /* NOTE: at least ICH6 reports battery status using a different 416 * (non-RTC) bit; and SQWE is ignored on many current systems. 417 */ 418 seq_printf(seq, 419 "periodic_IRQ\t: %s\n" 420 "update_IRQ\t: %s\n" 421 "HPET_emulated\t: %s\n" 422 // "square_wave\t: %s\n" 423 "BCD\t\t: %s\n" 424 "DST_enable\t: %s\n" 425 "periodic_freq\t: %d\n" 426 "batt_status\t: %s\n", 427 (rtc_control & RTC_PIE) ? "yes" : "no", 428 (rtc_control & RTC_UIE) ? "yes" : "no", 429 is_hpet_enabled() ? "yes" : "no", 430 // (rtc_control & RTC_SQWE) ? "yes" : "no", 431 (rtc_control & RTC_DM_BINARY) ? "no" : "yes", 432 (rtc_control & RTC_DST_EN) ? "yes" : "no", 433 cmos->rtc->irq_freq, 434 (valid & RTC_VRT) ? "okay" : "dead"); 435 436 return 0; 437 } 438 439 #else 440 #define cmos_procfs NULL 441 #endif 442 443 static const struct rtc_class_ops cmos_rtc_ops = { 444 .read_time = cmos_read_time, 445 .set_time = cmos_set_time, 446 .read_alarm = cmos_read_alarm, 447 .set_alarm = cmos_set_alarm, 448 .proc = cmos_procfs, 449 .alarm_irq_enable = cmos_alarm_irq_enable, 450 }; 451 452 /*----------------------------------------------------------------*/ 453 454 /* 455 * All these chips have at least 64 bytes of address space, shared by 456 * RTC registers and NVRAM. Most of those bytes of NVRAM are used 457 * by boot firmware. Modern chips have 128 or 256 bytes. 458 */ 459 460 #define NVRAM_OFFSET (RTC_REG_D + 1) 461 462 static ssize_t 463 cmos_nvram_read(struct file *filp, struct kobject *kobj, 464 struct bin_attribute *attr, 465 char *buf, loff_t off, size_t count) 466 { 467 int retval; 468 469 off += NVRAM_OFFSET; 470 spin_lock_irq(&rtc_lock); 471 for (retval = 0; count; count--, off++, retval++) { 472 if (off < 128) 473 *buf++ = CMOS_READ(off); 474 else if (can_bank2) 475 *buf++ = cmos_read_bank2(off); 476 else 477 break; 478 } 479 spin_unlock_irq(&rtc_lock); 480 481 return retval; 482 } 483 484 static ssize_t 485 cmos_nvram_write(struct file *filp, struct kobject *kobj, 486 struct bin_attribute *attr, 487 char *buf, loff_t off, size_t count) 488 { 489 struct cmos_rtc *cmos; 490 int retval; 491 492 cmos = dev_get_drvdata(container_of(kobj, struct device, kobj)); 493 494 /* NOTE: on at least PCs and Ataris, the boot firmware uses a 495 * checksum on part of the NVRAM data. That's currently ignored 496 * here. If userspace is smart enough to know what fields of 497 * NVRAM to update, updating checksums is also part of its job. 498 */ 499 off += NVRAM_OFFSET; 500 spin_lock_irq(&rtc_lock); 501 for (retval = 0; count; count--, off++, retval++) { 502 /* don't trash RTC registers */ 503 if (off == cmos->day_alrm 504 || off == cmos->mon_alrm 505 || off == cmos->century) 506 buf++; 507 else if (off < 128) 508 CMOS_WRITE(*buf++, off); 509 else if (can_bank2) 510 cmos_write_bank2(*buf++, off); 511 else 512 break; 513 } 514 spin_unlock_irq(&rtc_lock); 515 516 return retval; 517 } 518 519 static struct bin_attribute nvram = { 520 .attr = { 521 .name = "nvram", 522 .mode = S_IRUGO | S_IWUSR, 523 }, 524 525 .read = cmos_nvram_read, 526 .write = cmos_nvram_write, 527 /* size gets set up later */ 528 }; 529 530 /*----------------------------------------------------------------*/ 531 532 static struct cmos_rtc cmos_rtc; 533 534 static irqreturn_t cmos_interrupt(int irq, void *p) 535 { 536 u8 irqstat; 537 u8 rtc_control; 538 539 spin_lock(&rtc_lock); 540 541 /* When the HPET interrupt handler calls us, the interrupt 542 * status is passed as arg1 instead of the irq number. But 543 * always clear irq status, even when HPET is in the way. 544 * 545 * Note that HPET and RTC are almost certainly out of phase, 546 * giving different IRQ status ... 547 */ 548 irqstat = CMOS_READ(RTC_INTR_FLAGS); 549 rtc_control = CMOS_READ(RTC_CONTROL); 550 if (is_hpet_enabled()) 551 irqstat = (unsigned long)irq & 0xF0; 552 553 /* If we were suspended, RTC_CONTROL may not be accurate since the 554 * bios may have cleared it. 555 */ 556 if (!cmos_rtc.suspend_ctrl) 557 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 558 else 559 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF; 560 561 /* All Linux RTC alarms should be treated as if they were oneshot. 562 * Similar code may be needed in system wakeup paths, in case the 563 * alarm woke the system. 564 */ 565 if (irqstat & RTC_AIE) { 566 cmos_rtc.suspend_ctrl &= ~RTC_AIE; 567 rtc_control &= ~RTC_AIE; 568 CMOS_WRITE(rtc_control, RTC_CONTROL); 569 hpet_mask_rtc_irq_bit(RTC_AIE); 570 CMOS_READ(RTC_INTR_FLAGS); 571 } 572 spin_unlock(&rtc_lock); 573 574 if (is_intr(irqstat)) { 575 rtc_update_irq(p, 1, irqstat); 576 return IRQ_HANDLED; 577 } else 578 return IRQ_NONE; 579 } 580 581 #ifdef CONFIG_PNP 582 #define INITSECTION 583 584 #else 585 #define INITSECTION __init 586 #endif 587 588 static int INITSECTION 589 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq) 590 { 591 struct cmos_rtc_board_info *info = dev_get_platdata(dev); 592 int retval = 0; 593 unsigned char rtc_control; 594 unsigned address_space; 595 u32 flags = 0; 596 597 /* there can be only one ... */ 598 if (cmos_rtc.dev) 599 return -EBUSY; 600 601 if (!ports) 602 return -ENODEV; 603 604 /* Claim I/O ports ASAP, minimizing conflict with legacy driver. 605 * 606 * REVISIT non-x86 systems may instead use memory space resources 607 * (needing ioremap etc), not i/o space resources like this ... 608 */ 609 if (RTC_IOMAPPED) 610 ports = request_region(ports->start, resource_size(ports), 611 driver_name); 612 else 613 ports = request_mem_region(ports->start, resource_size(ports), 614 driver_name); 615 if (!ports) { 616 dev_dbg(dev, "i/o registers already in use\n"); 617 return -EBUSY; 618 } 619 620 cmos_rtc.irq = rtc_irq; 621 cmos_rtc.iomem = ports; 622 623 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM 624 * driver did, but don't reject unknown configs. Old hardware 625 * won't address 128 bytes. Newer chips have multiple banks, 626 * though they may not be listed in one I/O resource. 627 */ 628 #if defined(CONFIG_ATARI) 629 address_space = 64; 630 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \ 631 || defined(__sparc__) || defined(__mips__) \ 632 || defined(__powerpc__) || defined(CONFIG_MN10300) 633 address_space = 128; 634 #else 635 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes. 636 address_space = 128; 637 #endif 638 if (can_bank2 && ports->end > (ports->start + 1)) 639 address_space = 256; 640 641 /* For ACPI systems extension info comes from the FADT. On others, 642 * board specific setup provides it as appropriate. Systems where 643 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and 644 * some almost-clones) can provide hooks to make that behave. 645 * 646 * Note that ACPI doesn't preclude putting these registers into 647 * "extended" areas of the chip, including some that we won't yet 648 * expect CMOS_READ and friends to handle. 649 */ 650 if (info) { 651 if (info->flags) 652 flags = info->flags; 653 if (info->address_space) 654 address_space = info->address_space; 655 656 if (info->rtc_day_alarm && info->rtc_day_alarm < 128) 657 cmos_rtc.day_alrm = info->rtc_day_alarm; 658 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128) 659 cmos_rtc.mon_alrm = info->rtc_mon_alarm; 660 if (info->rtc_century && info->rtc_century < 128) 661 cmos_rtc.century = info->rtc_century; 662 663 if (info->wake_on && info->wake_off) { 664 cmos_rtc.wake_on = info->wake_on; 665 cmos_rtc.wake_off = info->wake_off; 666 } 667 } 668 669 cmos_rtc.dev = dev; 670 dev_set_drvdata(dev, &cmos_rtc); 671 672 cmos_rtc.rtc = rtc_device_register(driver_name, dev, 673 &cmos_rtc_ops, THIS_MODULE); 674 if (IS_ERR(cmos_rtc.rtc)) { 675 retval = PTR_ERR(cmos_rtc.rtc); 676 goto cleanup0; 677 } 678 679 rename_region(ports, dev_name(&cmos_rtc.rtc->dev)); 680 681 spin_lock_irq(&rtc_lock); 682 683 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) { 684 /* force periodic irq to CMOS reset default of 1024Hz; 685 * 686 * REVISIT it's been reported that at least one x86_64 ALI 687 * mobo doesn't use 32KHz here ... for portability we might 688 * need to do something about other clock frequencies. 689 */ 690 cmos_rtc.rtc->irq_freq = 1024; 691 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq); 692 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT); 693 } 694 695 /* disable irqs */ 696 if (is_valid_irq(rtc_irq)) 697 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE); 698 699 rtc_control = CMOS_READ(RTC_CONTROL); 700 701 spin_unlock_irq(&rtc_lock); 702 703 /* FIXME: 704 * <asm-generic/rtc.h> doesn't know 12-hour mode either. 705 */ 706 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) { 707 dev_warn(dev, "only 24-hr supported\n"); 708 retval = -ENXIO; 709 goto cleanup1; 710 } 711 712 hpet_rtc_timer_init(); 713 714 if (is_valid_irq(rtc_irq)) { 715 irq_handler_t rtc_cmos_int_handler; 716 717 if (is_hpet_enabled()) { 718 rtc_cmos_int_handler = hpet_rtc_interrupt; 719 retval = hpet_register_irq_handler(cmos_interrupt); 720 if (retval) { 721 hpet_mask_rtc_irq_bit(RTC_IRQMASK); 722 dev_warn(dev, "hpet_register_irq_handler " 723 " failed in rtc_init()."); 724 goto cleanup1; 725 } 726 } else 727 rtc_cmos_int_handler = cmos_interrupt; 728 729 retval = request_irq(rtc_irq, rtc_cmos_int_handler, 730 IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev), 731 cmos_rtc.rtc); 732 if (retval < 0) { 733 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq); 734 goto cleanup1; 735 } 736 } 737 738 /* export at least the first block of NVRAM */ 739 nvram.size = address_space - NVRAM_OFFSET; 740 retval = sysfs_create_bin_file(&dev->kobj, &nvram); 741 if (retval < 0) { 742 dev_dbg(dev, "can't create nvram file? %d\n", retval); 743 goto cleanup2; 744 } 745 746 dev_info(dev, "%s%s, %zd bytes nvram%s\n", 747 !is_valid_irq(rtc_irq) ? "no alarms" : 748 cmos_rtc.mon_alrm ? "alarms up to one year" : 749 cmos_rtc.day_alrm ? "alarms up to one month" : 750 "alarms up to one day", 751 cmos_rtc.century ? ", y3k" : "", 752 nvram.size, 753 is_hpet_enabled() ? ", hpet irqs" : ""); 754 755 return 0; 756 757 cleanup2: 758 if (is_valid_irq(rtc_irq)) 759 free_irq(rtc_irq, cmos_rtc.rtc); 760 cleanup1: 761 cmos_rtc.dev = NULL; 762 rtc_device_unregister(cmos_rtc.rtc); 763 cleanup0: 764 if (RTC_IOMAPPED) 765 release_region(ports->start, resource_size(ports)); 766 else 767 release_mem_region(ports->start, resource_size(ports)); 768 return retval; 769 } 770 771 static void cmos_do_shutdown(int rtc_irq) 772 { 773 spin_lock_irq(&rtc_lock); 774 if (is_valid_irq(rtc_irq)) 775 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK); 776 spin_unlock_irq(&rtc_lock); 777 } 778 779 static void __exit cmos_do_remove(struct device *dev) 780 { 781 struct cmos_rtc *cmos = dev_get_drvdata(dev); 782 struct resource *ports; 783 784 cmos_do_shutdown(cmos->irq); 785 786 sysfs_remove_bin_file(&dev->kobj, &nvram); 787 788 if (is_valid_irq(cmos->irq)) { 789 free_irq(cmos->irq, cmos->rtc); 790 hpet_unregister_irq_handler(cmos_interrupt); 791 } 792 793 rtc_device_unregister(cmos->rtc); 794 cmos->rtc = NULL; 795 796 ports = cmos->iomem; 797 if (RTC_IOMAPPED) 798 release_region(ports->start, resource_size(ports)); 799 else 800 release_mem_region(ports->start, resource_size(ports)); 801 cmos->iomem = NULL; 802 803 cmos->dev = NULL; 804 } 805 806 static int cmos_aie_poweroff(struct device *dev) 807 { 808 struct cmos_rtc *cmos = dev_get_drvdata(dev); 809 struct rtc_time now; 810 time64_t t_now; 811 int retval = 0; 812 unsigned char rtc_control; 813 814 if (!cmos->alarm_expires) 815 return -EINVAL; 816 817 spin_lock_irq(&rtc_lock); 818 rtc_control = CMOS_READ(RTC_CONTROL); 819 spin_unlock_irq(&rtc_lock); 820 821 /* We only care about the situation where AIE is disabled. */ 822 if (rtc_control & RTC_AIE) 823 return -EBUSY; 824 825 cmos_read_time(dev, &now); 826 t_now = rtc_tm_to_time64(&now); 827 828 /* 829 * When enabling "RTC wake-up" in BIOS setup, the machine reboots 830 * automatically right after shutdown on some buggy boxes. 831 * This automatic rebooting issue won't happen when the alarm 832 * time is larger than now+1 seconds. 833 * 834 * If the alarm time is equal to now+1 seconds, the issue can be 835 * prevented by cancelling the alarm. 836 */ 837 if (cmos->alarm_expires == t_now + 1) { 838 struct rtc_wkalrm alarm; 839 840 /* Cancel the AIE timer by configuring the past time. */ 841 rtc_time64_to_tm(t_now - 1, &alarm.time); 842 alarm.enabled = 0; 843 retval = cmos_set_alarm(dev, &alarm); 844 } else if (cmos->alarm_expires > t_now + 1) { 845 retval = -EBUSY; 846 } 847 848 return retval; 849 } 850 851 static int cmos_suspend(struct device *dev) 852 { 853 struct cmos_rtc *cmos = dev_get_drvdata(dev); 854 unsigned char tmp; 855 856 /* only the alarm might be a wakeup event source */ 857 spin_lock_irq(&rtc_lock); 858 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL); 859 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) { 860 unsigned char mask; 861 862 if (device_may_wakeup(dev)) 863 mask = RTC_IRQMASK & ~RTC_AIE; 864 else 865 mask = RTC_IRQMASK; 866 tmp &= ~mask; 867 CMOS_WRITE(tmp, RTC_CONTROL); 868 hpet_mask_rtc_irq_bit(mask); 869 870 cmos_checkintr(cmos, tmp); 871 } 872 spin_unlock_irq(&rtc_lock); 873 874 if (tmp & RTC_AIE) { 875 cmos->enabled_wake = 1; 876 if (cmos->wake_on) 877 cmos->wake_on(dev); 878 else 879 enable_irq_wake(cmos->irq); 880 } 881 882 cmos_read_alarm(dev, &cmos->saved_wkalrm); 883 884 dev_dbg(dev, "suspend%s, ctrl %02x\n", 885 (tmp & RTC_AIE) ? ", alarm may wake" : "", 886 tmp); 887 888 return 0; 889 } 890 891 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even 892 * after a detour through G3 "mechanical off", although the ACPI spec 893 * says wakeup should only work from G1/S4 "hibernate". To most users, 894 * distinctions between S4 and S5 are pointless. So when the hardware 895 * allows, don't draw that distinction. 896 */ 897 static inline int cmos_poweroff(struct device *dev) 898 { 899 if (!IS_ENABLED(CONFIG_PM)) 900 return -ENOSYS; 901 902 return cmos_suspend(dev); 903 } 904 905 static void cmos_check_wkalrm(struct device *dev) 906 { 907 struct cmos_rtc *cmos = dev_get_drvdata(dev); 908 struct rtc_wkalrm current_alarm; 909 time64_t t_current_expires; 910 time64_t t_saved_expires; 911 912 cmos_read_alarm(dev, ¤t_alarm); 913 t_current_expires = rtc_tm_to_time64(¤t_alarm.time); 914 t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time); 915 if (t_current_expires != t_saved_expires || 916 cmos->saved_wkalrm.enabled != current_alarm.enabled) { 917 cmos_set_alarm(dev, &cmos->saved_wkalrm); 918 } 919 } 920 921 static void cmos_check_acpi_rtc_status(struct device *dev, 922 unsigned char *rtc_control); 923 924 static int __maybe_unused cmos_resume(struct device *dev) 925 { 926 struct cmos_rtc *cmos = dev_get_drvdata(dev); 927 unsigned char tmp; 928 929 if (cmos->enabled_wake) { 930 if (cmos->wake_off) 931 cmos->wake_off(dev); 932 else 933 disable_irq_wake(cmos->irq); 934 cmos->enabled_wake = 0; 935 } 936 937 /* The BIOS might have changed the alarm, restore it */ 938 cmos_check_wkalrm(dev); 939 940 spin_lock_irq(&rtc_lock); 941 tmp = cmos->suspend_ctrl; 942 cmos->suspend_ctrl = 0; 943 /* re-enable any irqs previously active */ 944 if (tmp & RTC_IRQMASK) { 945 unsigned char mask; 946 947 if (device_may_wakeup(dev)) 948 hpet_rtc_timer_init(); 949 950 do { 951 CMOS_WRITE(tmp, RTC_CONTROL); 952 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK); 953 954 mask = CMOS_READ(RTC_INTR_FLAGS); 955 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF; 956 if (!is_hpet_enabled() || !is_intr(mask)) 957 break; 958 959 /* force one-shot behavior if HPET blocked 960 * the wake alarm's irq 961 */ 962 rtc_update_irq(cmos->rtc, 1, mask); 963 tmp &= ~RTC_AIE; 964 hpet_mask_rtc_irq_bit(RTC_AIE); 965 } while (mask & RTC_AIE); 966 967 if (tmp & RTC_AIE) 968 cmos_check_acpi_rtc_status(dev, &tmp); 969 } 970 spin_unlock_irq(&rtc_lock); 971 972 dev_dbg(dev, "resume, ctrl %02x\n", tmp); 973 974 return 0; 975 } 976 977 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume); 978 979 /*----------------------------------------------------------------*/ 980 981 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus. 982 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs 983 * probably list them in similar PNPBIOS tables; so PNP is more common. 984 * 985 * We don't use legacy "poke at the hardware" probing. Ancient PCs that 986 * predate even PNPBIOS should set up platform_bus devices. 987 */ 988 989 #ifdef CONFIG_ACPI 990 991 #include <linux/acpi.h> 992 993 static u32 rtc_handler(void *context) 994 { 995 struct device *dev = context; 996 struct cmos_rtc *cmos = dev_get_drvdata(dev); 997 unsigned char rtc_control = 0; 998 unsigned char rtc_intr; 999 1000 spin_lock_irq(&rtc_lock); 1001 if (cmos_rtc.suspend_ctrl) 1002 rtc_control = CMOS_READ(RTC_CONTROL); 1003 if (rtc_control & RTC_AIE) { 1004 cmos_rtc.suspend_ctrl &= ~RTC_AIE; 1005 CMOS_WRITE(rtc_control, RTC_CONTROL); 1006 rtc_intr = CMOS_READ(RTC_INTR_FLAGS); 1007 rtc_update_irq(cmos->rtc, 1, rtc_intr); 1008 } 1009 spin_unlock_irq(&rtc_lock); 1010 1011 pm_wakeup_event(dev, 0); 1012 acpi_clear_event(ACPI_EVENT_RTC); 1013 acpi_disable_event(ACPI_EVENT_RTC, 0); 1014 return ACPI_INTERRUPT_HANDLED; 1015 } 1016 1017 static inline void rtc_wake_setup(struct device *dev) 1018 { 1019 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev); 1020 /* 1021 * After the RTC handler is installed, the Fixed_RTC event should 1022 * be disabled. Only when the RTC alarm is set will it be enabled. 1023 */ 1024 acpi_clear_event(ACPI_EVENT_RTC); 1025 acpi_disable_event(ACPI_EVENT_RTC, 0); 1026 } 1027 1028 static void rtc_wake_on(struct device *dev) 1029 { 1030 acpi_clear_event(ACPI_EVENT_RTC); 1031 acpi_enable_event(ACPI_EVENT_RTC, 0); 1032 } 1033 1034 static void rtc_wake_off(struct device *dev) 1035 { 1036 acpi_disable_event(ACPI_EVENT_RTC, 0); 1037 } 1038 1039 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find 1040 * its device node and pass extra config data. This helps its driver use 1041 * capabilities that the now-obsolete mc146818 didn't have, and informs it 1042 * that this board's RTC is wakeup-capable (per ACPI spec). 1043 */ 1044 static struct cmos_rtc_board_info acpi_rtc_info; 1045 1046 static void cmos_wake_setup(struct device *dev) 1047 { 1048 if (acpi_disabled) 1049 return; 1050 1051 rtc_wake_setup(dev); 1052 acpi_rtc_info.wake_on = rtc_wake_on; 1053 acpi_rtc_info.wake_off = rtc_wake_off; 1054 1055 /* workaround bug in some ACPI tables */ 1056 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) { 1057 dev_dbg(dev, "bogus FADT month_alarm (%d)\n", 1058 acpi_gbl_FADT.month_alarm); 1059 acpi_gbl_FADT.month_alarm = 0; 1060 } 1061 1062 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm; 1063 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm; 1064 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century; 1065 1066 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */ 1067 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE) 1068 dev_info(dev, "RTC can wake from S4\n"); 1069 1070 dev->platform_data = &acpi_rtc_info; 1071 1072 /* RTC always wakes from S1/S2/S3, and often S4/STD */ 1073 device_init_wakeup(dev, 1); 1074 } 1075 1076 static void cmos_check_acpi_rtc_status(struct device *dev, 1077 unsigned char *rtc_control) 1078 { 1079 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1080 acpi_event_status rtc_status; 1081 acpi_status status; 1082 1083 if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC) 1084 return; 1085 1086 status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status); 1087 if (ACPI_FAILURE(status)) { 1088 dev_err(dev, "Could not get RTC status\n"); 1089 } else if (rtc_status & ACPI_EVENT_FLAG_SET) { 1090 unsigned char mask; 1091 *rtc_control &= ~RTC_AIE; 1092 CMOS_WRITE(*rtc_control, RTC_CONTROL); 1093 mask = CMOS_READ(RTC_INTR_FLAGS); 1094 rtc_update_irq(cmos->rtc, 1, mask); 1095 } 1096 } 1097 1098 #else 1099 1100 static void cmos_wake_setup(struct device *dev) 1101 { 1102 } 1103 1104 static void cmos_check_acpi_rtc_status(struct device *dev, 1105 unsigned char *rtc_control) 1106 { 1107 } 1108 1109 #endif 1110 1111 #ifdef CONFIG_PNP 1112 1113 #include <linux/pnp.h> 1114 1115 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id) 1116 { 1117 cmos_wake_setup(&pnp->dev); 1118 1119 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) 1120 /* Some machines contain a PNP entry for the RTC, but 1121 * don't define the IRQ. It should always be safe to 1122 * hardcode it in these cases 1123 */ 1124 return cmos_do_probe(&pnp->dev, 1125 pnp_get_resource(pnp, IORESOURCE_IO, 0), 8); 1126 else 1127 return cmos_do_probe(&pnp->dev, 1128 pnp_get_resource(pnp, IORESOURCE_IO, 0), 1129 pnp_irq(pnp, 0)); 1130 } 1131 1132 static void __exit cmos_pnp_remove(struct pnp_dev *pnp) 1133 { 1134 cmos_do_remove(&pnp->dev); 1135 } 1136 1137 static void cmos_pnp_shutdown(struct pnp_dev *pnp) 1138 { 1139 struct device *dev = &pnp->dev; 1140 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1141 1142 if (system_state == SYSTEM_POWER_OFF) { 1143 int retval = cmos_poweroff(dev); 1144 1145 if (cmos_aie_poweroff(dev) < 0 && !retval) 1146 return; 1147 } 1148 1149 cmos_do_shutdown(cmos->irq); 1150 } 1151 1152 static const struct pnp_device_id rtc_ids[] = { 1153 { .id = "PNP0b00", }, 1154 { .id = "PNP0b01", }, 1155 { .id = "PNP0b02", }, 1156 { }, 1157 }; 1158 MODULE_DEVICE_TABLE(pnp, rtc_ids); 1159 1160 static struct pnp_driver cmos_pnp_driver = { 1161 .name = (char *) driver_name, 1162 .id_table = rtc_ids, 1163 .probe = cmos_pnp_probe, 1164 .remove = __exit_p(cmos_pnp_remove), 1165 .shutdown = cmos_pnp_shutdown, 1166 1167 /* flag ensures resume() gets called, and stops syslog spam */ 1168 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE, 1169 .driver = { 1170 .pm = &cmos_pm_ops, 1171 }, 1172 }; 1173 1174 #endif /* CONFIG_PNP */ 1175 1176 #ifdef CONFIG_OF 1177 static const struct of_device_id of_cmos_match[] = { 1178 { 1179 .compatible = "motorola,mc146818", 1180 }, 1181 { }, 1182 }; 1183 MODULE_DEVICE_TABLE(of, of_cmos_match); 1184 1185 static __init void cmos_of_init(struct platform_device *pdev) 1186 { 1187 struct device_node *node = pdev->dev.of_node; 1188 struct rtc_time time; 1189 int ret; 1190 const __be32 *val; 1191 1192 if (!node) 1193 return; 1194 1195 val = of_get_property(node, "ctrl-reg", NULL); 1196 if (val) 1197 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL); 1198 1199 val = of_get_property(node, "freq-reg", NULL); 1200 if (val) 1201 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT); 1202 1203 cmos_read_time(&pdev->dev, &time); 1204 ret = rtc_valid_tm(&time); 1205 if (ret) { 1206 struct rtc_time def_time = { 1207 .tm_year = 1, 1208 .tm_mday = 1, 1209 }; 1210 cmos_set_time(&pdev->dev, &def_time); 1211 } 1212 } 1213 #else 1214 static inline void cmos_of_init(struct platform_device *pdev) {} 1215 #endif 1216 /*----------------------------------------------------------------*/ 1217 1218 /* Platform setup should have set up an RTC device, when PNP is 1219 * unavailable ... this could happen even on (older) PCs. 1220 */ 1221 1222 static int __init cmos_platform_probe(struct platform_device *pdev) 1223 { 1224 struct resource *resource; 1225 int irq; 1226 1227 cmos_of_init(pdev); 1228 cmos_wake_setup(&pdev->dev); 1229 1230 if (RTC_IOMAPPED) 1231 resource = platform_get_resource(pdev, IORESOURCE_IO, 0); 1232 else 1233 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1234 irq = platform_get_irq(pdev, 0); 1235 if (irq < 0) 1236 irq = -1; 1237 1238 return cmos_do_probe(&pdev->dev, resource, irq); 1239 } 1240 1241 static int __exit cmos_platform_remove(struct platform_device *pdev) 1242 { 1243 cmos_do_remove(&pdev->dev); 1244 return 0; 1245 } 1246 1247 static void cmos_platform_shutdown(struct platform_device *pdev) 1248 { 1249 struct device *dev = &pdev->dev; 1250 struct cmos_rtc *cmos = dev_get_drvdata(dev); 1251 1252 if (system_state == SYSTEM_POWER_OFF) { 1253 int retval = cmos_poweroff(dev); 1254 1255 if (cmos_aie_poweroff(dev) < 0 && !retval) 1256 return; 1257 } 1258 1259 cmos_do_shutdown(cmos->irq); 1260 } 1261 1262 /* work with hotplug and coldplug */ 1263 MODULE_ALIAS("platform:rtc_cmos"); 1264 1265 static struct platform_driver cmos_platform_driver = { 1266 .remove = __exit_p(cmos_platform_remove), 1267 .shutdown = cmos_platform_shutdown, 1268 .driver = { 1269 .name = driver_name, 1270 .pm = &cmos_pm_ops, 1271 .of_match_table = of_match_ptr(of_cmos_match), 1272 } 1273 }; 1274 1275 #ifdef CONFIG_PNP 1276 static bool pnp_driver_registered; 1277 #endif 1278 static bool platform_driver_registered; 1279 1280 static int __init cmos_init(void) 1281 { 1282 int retval = 0; 1283 1284 #ifdef CONFIG_PNP 1285 retval = pnp_register_driver(&cmos_pnp_driver); 1286 if (retval == 0) 1287 pnp_driver_registered = true; 1288 #endif 1289 1290 if (!cmos_rtc.dev) { 1291 retval = platform_driver_probe(&cmos_platform_driver, 1292 cmos_platform_probe); 1293 if (retval == 0) 1294 platform_driver_registered = true; 1295 } 1296 1297 if (retval == 0) 1298 return 0; 1299 1300 #ifdef CONFIG_PNP 1301 if (pnp_driver_registered) 1302 pnp_unregister_driver(&cmos_pnp_driver); 1303 #endif 1304 return retval; 1305 } 1306 module_init(cmos_init); 1307 1308 static void __exit cmos_exit(void) 1309 { 1310 #ifdef CONFIG_PNP 1311 if (pnp_driver_registered) 1312 pnp_unregister_driver(&cmos_pnp_driver); 1313 #endif 1314 if (platform_driver_registered) 1315 platform_driver_unregister(&cmos_platform_driver); 1316 } 1317 module_exit(cmos_exit); 1318 1319 1320 MODULE_AUTHOR("David Brownell"); 1321 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs"); 1322 MODULE_LICENSE("GPL"); 1323