xref: /openbmc/linux/drivers/rtc/rtc-cmos.c (revision 5d0e4d78)
1 /*
2  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
3  *
4  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5  * Copyright (C) 2006 David Brownell (convert to new framework)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  */
12 
13 /*
14  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15  * That defined the register interface now provided by all PCs, some
16  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
17  * integrate an MC146818 clone in their southbridge, and boards use
18  * that instead of discrete clones like the DS12887 or M48T86.  There
19  * are also clones that connect using the LPC bus.
20  *
21  * That register API is also used directly by various other drivers
22  * (notably for integrated NVRAM), infrastructure (x86 has code to
23  * bypass the RTC framework, directly reading the RTC during boot
24  * and updating minutes/seconds for systems using NTP synch) and
25  * utilities (like userspace 'hwclock', if no /dev node exists).
26  *
27  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28  * interrupts disabled, holding the global rtc_lock, to exclude those
29  * other drivers and utilities on correctly configured systems.
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/spinlock.h>
39 #include <linux/platform_device.h>
40 #include <linux/log2.h>
41 #include <linux/pm.h>
42 #include <linux/of.h>
43 #include <linux/of_platform.h>
44 #ifdef CONFIG_X86
45 #include <asm/i8259.h>
46 #endif
47 
48 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
49 #include <linux/mc146818rtc.h>
50 
51 struct cmos_rtc {
52 	struct rtc_device	*rtc;
53 	struct device		*dev;
54 	int			irq;
55 	struct resource		*iomem;
56 	time64_t		alarm_expires;
57 
58 	void			(*wake_on)(struct device *);
59 	void			(*wake_off)(struct device *);
60 
61 	u8			enabled_wake;
62 	u8			suspend_ctrl;
63 
64 	/* newer hardware extends the original register set */
65 	u8			day_alrm;
66 	u8			mon_alrm;
67 	u8			century;
68 
69 	struct rtc_wkalrm	saved_wkalrm;
70 };
71 
72 /* both platform and pnp busses use negative numbers for invalid irqs */
73 #define is_valid_irq(n)		((n) > 0)
74 
75 static const char driver_name[] = "rtc_cmos";
76 
77 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
78  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
79  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
80  */
81 #define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
82 
83 static inline int is_intr(u8 rtc_intr)
84 {
85 	if (!(rtc_intr & RTC_IRQF))
86 		return 0;
87 	return rtc_intr & RTC_IRQMASK;
88 }
89 
90 /*----------------------------------------------------------------*/
91 
92 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
93  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
94  * used in a broken "legacy replacement" mode.  The breakage includes
95  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
96  * other (better) use.
97  *
98  * When that broken mode is in use, platform glue provides a partial
99  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
100  * want to use HPET for anything except those IRQs though...
101  */
102 #ifdef CONFIG_HPET_EMULATE_RTC
103 #include <asm/hpet.h>
104 #else
105 
106 static inline int is_hpet_enabled(void)
107 {
108 	return 0;
109 }
110 
111 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
112 {
113 	return 0;
114 }
115 
116 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
117 {
118 	return 0;
119 }
120 
121 static inline int
122 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
123 {
124 	return 0;
125 }
126 
127 static inline int hpet_set_periodic_freq(unsigned long freq)
128 {
129 	return 0;
130 }
131 
132 static inline int hpet_rtc_dropped_irq(void)
133 {
134 	return 0;
135 }
136 
137 static inline int hpet_rtc_timer_init(void)
138 {
139 	return 0;
140 }
141 
142 extern irq_handler_t hpet_rtc_interrupt;
143 
144 static inline int hpet_register_irq_handler(irq_handler_t handler)
145 {
146 	return 0;
147 }
148 
149 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
150 {
151 	return 0;
152 }
153 
154 #endif
155 
156 /*----------------------------------------------------------------*/
157 
158 #ifdef RTC_PORT
159 
160 /* Most newer x86 systems have two register banks, the first used
161  * for RTC and NVRAM and the second only for NVRAM.  Caller must
162  * own rtc_lock ... and we won't worry about access during NMI.
163  */
164 #define can_bank2	true
165 
166 static inline unsigned char cmos_read_bank2(unsigned char addr)
167 {
168 	outb(addr, RTC_PORT(2));
169 	return inb(RTC_PORT(3));
170 }
171 
172 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
173 {
174 	outb(addr, RTC_PORT(2));
175 	outb(val, RTC_PORT(3));
176 }
177 
178 #else
179 
180 #define can_bank2	false
181 
182 static inline unsigned char cmos_read_bank2(unsigned char addr)
183 {
184 	return 0;
185 }
186 
187 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
188 {
189 }
190 
191 #endif
192 
193 /*----------------------------------------------------------------*/
194 
195 static int cmos_read_time(struct device *dev, struct rtc_time *t)
196 {
197 	/*
198 	 * If pm_trace abused the RTC for storage, set the timespec to 0,
199 	 * which tells the caller that this RTC value is unusable.
200 	 */
201 	if (!pm_trace_rtc_valid())
202 		return -EIO;
203 
204 	/* REVISIT:  if the clock has a "century" register, use
205 	 * that instead of the heuristic in mc146818_get_time().
206 	 * That'll make Y3K compatility (year > 2070) easy!
207 	 */
208 	mc146818_get_time(t);
209 	return 0;
210 }
211 
212 static int cmos_set_time(struct device *dev, struct rtc_time *t)
213 {
214 	/* REVISIT:  set the "century" register if available
215 	 *
216 	 * NOTE: this ignores the issue whereby updating the seconds
217 	 * takes effect exactly 500ms after we write the register.
218 	 * (Also queueing and other delays before we get this far.)
219 	 */
220 	return mc146818_set_time(t);
221 }
222 
223 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
224 {
225 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
226 	unsigned char	rtc_control;
227 
228 	if (!is_valid_irq(cmos->irq))
229 		return -EIO;
230 
231 	/* Basic alarms only support hour, minute, and seconds fields.
232 	 * Some also support day and month, for alarms up to a year in
233 	 * the future.
234 	 */
235 
236 	spin_lock_irq(&rtc_lock);
237 	t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
238 	t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
239 	t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
240 
241 	if (cmos->day_alrm) {
242 		/* ignore upper bits on readback per ACPI spec */
243 		t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
244 		if (!t->time.tm_mday)
245 			t->time.tm_mday = -1;
246 
247 		if (cmos->mon_alrm) {
248 			t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
249 			if (!t->time.tm_mon)
250 				t->time.tm_mon = -1;
251 		}
252 	}
253 
254 	rtc_control = CMOS_READ(RTC_CONTROL);
255 	spin_unlock_irq(&rtc_lock);
256 
257 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
258 		if (((unsigned)t->time.tm_sec) < 0x60)
259 			t->time.tm_sec = bcd2bin(t->time.tm_sec);
260 		else
261 			t->time.tm_sec = -1;
262 		if (((unsigned)t->time.tm_min) < 0x60)
263 			t->time.tm_min = bcd2bin(t->time.tm_min);
264 		else
265 			t->time.tm_min = -1;
266 		if (((unsigned)t->time.tm_hour) < 0x24)
267 			t->time.tm_hour = bcd2bin(t->time.tm_hour);
268 		else
269 			t->time.tm_hour = -1;
270 
271 		if (cmos->day_alrm) {
272 			if (((unsigned)t->time.tm_mday) <= 0x31)
273 				t->time.tm_mday = bcd2bin(t->time.tm_mday);
274 			else
275 				t->time.tm_mday = -1;
276 
277 			if (cmos->mon_alrm) {
278 				if (((unsigned)t->time.tm_mon) <= 0x12)
279 					t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
280 				else
281 					t->time.tm_mon = -1;
282 			}
283 		}
284 	}
285 
286 	t->enabled = !!(rtc_control & RTC_AIE);
287 	t->pending = 0;
288 
289 	return 0;
290 }
291 
292 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
293 {
294 	unsigned char	rtc_intr;
295 
296 	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
297 	 * allegedly some older rtcs need that to handle irqs properly
298 	 */
299 	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
300 
301 	if (is_hpet_enabled())
302 		return;
303 
304 	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
305 	if (is_intr(rtc_intr))
306 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
307 }
308 
309 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
310 {
311 	unsigned char	rtc_control;
312 
313 	/* flush any pending IRQ status, notably for update irqs,
314 	 * before we enable new IRQs
315 	 */
316 	rtc_control = CMOS_READ(RTC_CONTROL);
317 	cmos_checkintr(cmos, rtc_control);
318 
319 	rtc_control |= mask;
320 	CMOS_WRITE(rtc_control, RTC_CONTROL);
321 	hpet_set_rtc_irq_bit(mask);
322 
323 	cmos_checkintr(cmos, rtc_control);
324 }
325 
326 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
327 {
328 	unsigned char	rtc_control;
329 
330 	rtc_control = CMOS_READ(RTC_CONTROL);
331 	rtc_control &= ~mask;
332 	CMOS_WRITE(rtc_control, RTC_CONTROL);
333 	hpet_mask_rtc_irq_bit(mask);
334 
335 	cmos_checkintr(cmos, rtc_control);
336 }
337 
338 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
339 {
340 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
341 	struct rtc_time now;
342 
343 	cmos_read_time(dev, &now);
344 
345 	if (!cmos->day_alrm) {
346 		time64_t t_max_date;
347 		time64_t t_alrm;
348 
349 		t_max_date = rtc_tm_to_time64(&now);
350 		t_max_date += 24 * 60 * 60 - 1;
351 		t_alrm = rtc_tm_to_time64(&t->time);
352 		if (t_alrm > t_max_date) {
353 			dev_err(dev,
354 				"Alarms can be up to one day in the future\n");
355 			return -EINVAL;
356 		}
357 	} else if (!cmos->mon_alrm) {
358 		struct rtc_time max_date = now;
359 		time64_t t_max_date;
360 		time64_t t_alrm;
361 		int max_mday;
362 
363 		if (max_date.tm_mon == 11) {
364 			max_date.tm_mon = 0;
365 			max_date.tm_year += 1;
366 		} else {
367 			max_date.tm_mon += 1;
368 		}
369 		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
370 		if (max_date.tm_mday > max_mday)
371 			max_date.tm_mday = max_mday;
372 
373 		t_max_date = rtc_tm_to_time64(&max_date);
374 		t_max_date -= 1;
375 		t_alrm = rtc_tm_to_time64(&t->time);
376 		if (t_alrm > t_max_date) {
377 			dev_err(dev,
378 				"Alarms can be up to one month in the future\n");
379 			return -EINVAL;
380 		}
381 	} else {
382 		struct rtc_time max_date = now;
383 		time64_t t_max_date;
384 		time64_t t_alrm;
385 		int max_mday;
386 
387 		max_date.tm_year += 1;
388 		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
389 		if (max_date.tm_mday > max_mday)
390 			max_date.tm_mday = max_mday;
391 
392 		t_max_date = rtc_tm_to_time64(&max_date);
393 		t_max_date -= 1;
394 		t_alrm = rtc_tm_to_time64(&t->time);
395 		if (t_alrm > t_max_date) {
396 			dev_err(dev,
397 				"Alarms can be up to one year in the future\n");
398 			return -EINVAL;
399 		}
400 	}
401 
402 	return 0;
403 }
404 
405 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
406 {
407 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
408 	unsigned char mon, mday, hrs, min, sec, rtc_control;
409 	int ret;
410 
411 	if (!is_valid_irq(cmos->irq))
412 		return -EIO;
413 
414 	ret = cmos_validate_alarm(dev, t);
415 	if (ret < 0)
416 		return ret;
417 
418 	mon = t->time.tm_mon + 1;
419 	mday = t->time.tm_mday;
420 	hrs = t->time.tm_hour;
421 	min = t->time.tm_min;
422 	sec = t->time.tm_sec;
423 
424 	rtc_control = CMOS_READ(RTC_CONTROL);
425 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
426 		/* Writing 0xff means "don't care" or "match all".  */
427 		mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
428 		mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
429 		hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
430 		min = (min < 60) ? bin2bcd(min) : 0xff;
431 		sec = (sec < 60) ? bin2bcd(sec) : 0xff;
432 	}
433 
434 	spin_lock_irq(&rtc_lock);
435 
436 	/* next rtc irq must not be from previous alarm setting */
437 	cmos_irq_disable(cmos, RTC_AIE);
438 
439 	/* update alarm */
440 	CMOS_WRITE(hrs, RTC_HOURS_ALARM);
441 	CMOS_WRITE(min, RTC_MINUTES_ALARM);
442 	CMOS_WRITE(sec, RTC_SECONDS_ALARM);
443 
444 	/* the system may support an "enhanced" alarm */
445 	if (cmos->day_alrm) {
446 		CMOS_WRITE(mday, cmos->day_alrm);
447 		if (cmos->mon_alrm)
448 			CMOS_WRITE(mon, cmos->mon_alrm);
449 	}
450 
451 	/* FIXME the HPET alarm glue currently ignores day_alrm
452 	 * and mon_alrm ...
453 	 */
454 	hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
455 
456 	if (t->enabled)
457 		cmos_irq_enable(cmos, RTC_AIE);
458 
459 	spin_unlock_irq(&rtc_lock);
460 
461 	cmos->alarm_expires = rtc_tm_to_time64(&t->time);
462 
463 	return 0;
464 }
465 
466 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
467 {
468 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
469 	unsigned long	flags;
470 
471 	if (!is_valid_irq(cmos->irq))
472 		return -EINVAL;
473 
474 	spin_lock_irqsave(&rtc_lock, flags);
475 
476 	if (enabled)
477 		cmos_irq_enable(cmos, RTC_AIE);
478 	else
479 		cmos_irq_disable(cmos, RTC_AIE);
480 
481 	spin_unlock_irqrestore(&rtc_lock, flags);
482 	return 0;
483 }
484 
485 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
486 
487 static int cmos_procfs(struct device *dev, struct seq_file *seq)
488 {
489 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
490 	unsigned char	rtc_control, valid;
491 
492 	spin_lock_irq(&rtc_lock);
493 	rtc_control = CMOS_READ(RTC_CONTROL);
494 	valid = CMOS_READ(RTC_VALID);
495 	spin_unlock_irq(&rtc_lock);
496 
497 	/* NOTE:  at least ICH6 reports battery status using a different
498 	 * (non-RTC) bit; and SQWE is ignored on many current systems.
499 	 */
500 	seq_printf(seq,
501 		   "periodic_IRQ\t: %s\n"
502 		   "update_IRQ\t: %s\n"
503 		   "HPET_emulated\t: %s\n"
504 		   // "square_wave\t: %s\n"
505 		   "BCD\t\t: %s\n"
506 		   "DST_enable\t: %s\n"
507 		   "periodic_freq\t: %d\n"
508 		   "batt_status\t: %s\n",
509 		   (rtc_control & RTC_PIE) ? "yes" : "no",
510 		   (rtc_control & RTC_UIE) ? "yes" : "no",
511 		   is_hpet_enabled() ? "yes" : "no",
512 		   // (rtc_control & RTC_SQWE) ? "yes" : "no",
513 		   (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
514 		   (rtc_control & RTC_DST_EN) ? "yes" : "no",
515 		   cmos->rtc->irq_freq,
516 		   (valid & RTC_VRT) ? "okay" : "dead");
517 
518 	return 0;
519 }
520 
521 #else
522 #define	cmos_procfs	NULL
523 #endif
524 
525 static const struct rtc_class_ops cmos_rtc_ops = {
526 	.read_time		= cmos_read_time,
527 	.set_time		= cmos_set_time,
528 	.read_alarm		= cmos_read_alarm,
529 	.set_alarm		= cmos_set_alarm,
530 	.proc			= cmos_procfs,
531 	.alarm_irq_enable	= cmos_alarm_irq_enable,
532 };
533 
534 /*----------------------------------------------------------------*/
535 
536 /*
537  * All these chips have at least 64 bytes of address space, shared by
538  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
539  * by boot firmware.  Modern chips have 128 or 256 bytes.
540  */
541 
542 #define NVRAM_OFFSET	(RTC_REG_D + 1)
543 
544 static ssize_t
545 cmos_nvram_read(struct file *filp, struct kobject *kobj,
546 		struct bin_attribute *attr,
547 		char *buf, loff_t off, size_t count)
548 {
549 	int	retval;
550 
551 	off += NVRAM_OFFSET;
552 	spin_lock_irq(&rtc_lock);
553 	for (retval = 0; count; count--, off++, retval++) {
554 		if (off < 128)
555 			*buf++ = CMOS_READ(off);
556 		else if (can_bank2)
557 			*buf++ = cmos_read_bank2(off);
558 		else
559 			break;
560 	}
561 	spin_unlock_irq(&rtc_lock);
562 
563 	return retval;
564 }
565 
566 static ssize_t
567 cmos_nvram_write(struct file *filp, struct kobject *kobj,
568 		struct bin_attribute *attr,
569 		char *buf, loff_t off, size_t count)
570 {
571 	struct cmos_rtc	*cmos;
572 	int		retval;
573 
574 	cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
575 
576 	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
577 	 * checksum on part of the NVRAM data.  That's currently ignored
578 	 * here.  If userspace is smart enough to know what fields of
579 	 * NVRAM to update, updating checksums is also part of its job.
580 	 */
581 	off += NVRAM_OFFSET;
582 	spin_lock_irq(&rtc_lock);
583 	for (retval = 0; count; count--, off++, retval++) {
584 		/* don't trash RTC registers */
585 		if (off == cmos->day_alrm
586 				|| off == cmos->mon_alrm
587 				|| off == cmos->century)
588 			buf++;
589 		else if (off < 128)
590 			CMOS_WRITE(*buf++, off);
591 		else if (can_bank2)
592 			cmos_write_bank2(*buf++, off);
593 		else
594 			break;
595 	}
596 	spin_unlock_irq(&rtc_lock);
597 
598 	return retval;
599 }
600 
601 static struct bin_attribute nvram = {
602 	.attr = {
603 		.name	= "nvram",
604 		.mode	= S_IRUGO | S_IWUSR,
605 	},
606 
607 	.read	= cmos_nvram_read,
608 	.write	= cmos_nvram_write,
609 	/* size gets set up later */
610 };
611 
612 /*----------------------------------------------------------------*/
613 
614 static struct cmos_rtc	cmos_rtc;
615 
616 static irqreturn_t cmos_interrupt(int irq, void *p)
617 {
618 	u8		irqstat;
619 	u8		rtc_control;
620 
621 	spin_lock(&rtc_lock);
622 
623 	/* When the HPET interrupt handler calls us, the interrupt
624 	 * status is passed as arg1 instead of the irq number.  But
625 	 * always clear irq status, even when HPET is in the way.
626 	 *
627 	 * Note that HPET and RTC are almost certainly out of phase,
628 	 * giving different IRQ status ...
629 	 */
630 	irqstat = CMOS_READ(RTC_INTR_FLAGS);
631 	rtc_control = CMOS_READ(RTC_CONTROL);
632 	if (is_hpet_enabled())
633 		irqstat = (unsigned long)irq & 0xF0;
634 
635 	/* If we were suspended, RTC_CONTROL may not be accurate since the
636 	 * bios may have cleared it.
637 	 */
638 	if (!cmos_rtc.suspend_ctrl)
639 		irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
640 	else
641 		irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
642 
643 	/* All Linux RTC alarms should be treated as if they were oneshot.
644 	 * Similar code may be needed in system wakeup paths, in case the
645 	 * alarm woke the system.
646 	 */
647 	if (irqstat & RTC_AIE) {
648 		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
649 		rtc_control &= ~RTC_AIE;
650 		CMOS_WRITE(rtc_control, RTC_CONTROL);
651 		hpet_mask_rtc_irq_bit(RTC_AIE);
652 		CMOS_READ(RTC_INTR_FLAGS);
653 	}
654 	spin_unlock(&rtc_lock);
655 
656 	if (is_intr(irqstat)) {
657 		rtc_update_irq(p, 1, irqstat);
658 		return IRQ_HANDLED;
659 	} else
660 		return IRQ_NONE;
661 }
662 
663 #ifdef	CONFIG_PNP
664 #define	INITSECTION
665 
666 #else
667 #define	INITSECTION	__init
668 #endif
669 
670 static int INITSECTION
671 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
672 {
673 	struct cmos_rtc_board_info	*info = dev_get_platdata(dev);
674 	int				retval = 0;
675 	unsigned char			rtc_control;
676 	unsigned			address_space;
677 	u32				flags = 0;
678 
679 	/* there can be only one ... */
680 	if (cmos_rtc.dev)
681 		return -EBUSY;
682 
683 	if (!ports)
684 		return -ENODEV;
685 
686 	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
687 	 *
688 	 * REVISIT non-x86 systems may instead use memory space resources
689 	 * (needing ioremap etc), not i/o space resources like this ...
690 	 */
691 	if (RTC_IOMAPPED)
692 		ports = request_region(ports->start, resource_size(ports),
693 				       driver_name);
694 	else
695 		ports = request_mem_region(ports->start, resource_size(ports),
696 					   driver_name);
697 	if (!ports) {
698 		dev_dbg(dev, "i/o registers already in use\n");
699 		return -EBUSY;
700 	}
701 
702 	cmos_rtc.irq = rtc_irq;
703 	cmos_rtc.iomem = ports;
704 
705 	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
706 	 * driver did, but don't reject unknown configs.   Old hardware
707 	 * won't address 128 bytes.  Newer chips have multiple banks,
708 	 * though they may not be listed in one I/O resource.
709 	 */
710 #if	defined(CONFIG_ATARI)
711 	address_space = 64;
712 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
713 			|| defined(__sparc__) || defined(__mips__) \
714 			|| defined(__powerpc__) || defined(CONFIG_MN10300)
715 	address_space = 128;
716 #else
717 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
718 	address_space = 128;
719 #endif
720 	if (can_bank2 && ports->end > (ports->start + 1))
721 		address_space = 256;
722 
723 	/* For ACPI systems extension info comes from the FADT.  On others,
724 	 * board specific setup provides it as appropriate.  Systems where
725 	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
726 	 * some almost-clones) can provide hooks to make that behave.
727 	 *
728 	 * Note that ACPI doesn't preclude putting these registers into
729 	 * "extended" areas of the chip, including some that we won't yet
730 	 * expect CMOS_READ and friends to handle.
731 	 */
732 	if (info) {
733 		if (info->flags)
734 			flags = info->flags;
735 		if (info->address_space)
736 			address_space = info->address_space;
737 
738 		if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
739 			cmos_rtc.day_alrm = info->rtc_day_alarm;
740 		if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
741 			cmos_rtc.mon_alrm = info->rtc_mon_alarm;
742 		if (info->rtc_century && info->rtc_century < 128)
743 			cmos_rtc.century = info->rtc_century;
744 
745 		if (info->wake_on && info->wake_off) {
746 			cmos_rtc.wake_on = info->wake_on;
747 			cmos_rtc.wake_off = info->wake_off;
748 		}
749 	}
750 
751 	cmos_rtc.dev = dev;
752 	dev_set_drvdata(dev, &cmos_rtc);
753 
754 	cmos_rtc.rtc = rtc_device_register(driver_name, dev,
755 				&cmos_rtc_ops, THIS_MODULE);
756 	if (IS_ERR(cmos_rtc.rtc)) {
757 		retval = PTR_ERR(cmos_rtc.rtc);
758 		goto cleanup0;
759 	}
760 
761 	rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
762 
763 	spin_lock_irq(&rtc_lock);
764 
765 	if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
766 		/* force periodic irq to CMOS reset default of 1024Hz;
767 		 *
768 		 * REVISIT it's been reported that at least one x86_64 ALI
769 		 * mobo doesn't use 32KHz here ... for portability we might
770 		 * need to do something about other clock frequencies.
771 		 */
772 		cmos_rtc.rtc->irq_freq = 1024;
773 		hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
774 		CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
775 	}
776 
777 	/* disable irqs */
778 	if (is_valid_irq(rtc_irq))
779 		cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
780 
781 	rtc_control = CMOS_READ(RTC_CONTROL);
782 
783 	spin_unlock_irq(&rtc_lock);
784 
785 	if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
786 		dev_warn(dev, "only 24-hr supported\n");
787 		retval = -ENXIO;
788 		goto cleanup1;
789 	}
790 
791 	hpet_rtc_timer_init();
792 
793 	if (is_valid_irq(rtc_irq)) {
794 		irq_handler_t rtc_cmos_int_handler;
795 
796 		if (is_hpet_enabled()) {
797 			rtc_cmos_int_handler = hpet_rtc_interrupt;
798 			retval = hpet_register_irq_handler(cmos_interrupt);
799 			if (retval) {
800 				hpet_mask_rtc_irq_bit(RTC_IRQMASK);
801 				dev_warn(dev, "hpet_register_irq_handler "
802 						" failed in rtc_init().");
803 				goto cleanup1;
804 			}
805 		} else
806 			rtc_cmos_int_handler = cmos_interrupt;
807 
808 		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
809 				IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev),
810 				cmos_rtc.rtc);
811 		if (retval < 0) {
812 			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
813 			goto cleanup1;
814 		}
815 	}
816 
817 	/* export at least the first block of NVRAM */
818 	nvram.size = address_space - NVRAM_OFFSET;
819 	retval = sysfs_create_bin_file(&dev->kobj, &nvram);
820 	if (retval < 0) {
821 		dev_dbg(dev, "can't create nvram file? %d\n", retval);
822 		goto cleanup2;
823 	}
824 
825 	dev_info(dev, "%s%s, %zd bytes nvram%s\n",
826 		!is_valid_irq(rtc_irq) ? "no alarms" :
827 			cmos_rtc.mon_alrm ? "alarms up to one year" :
828 			cmos_rtc.day_alrm ? "alarms up to one month" :
829 			"alarms up to one day",
830 		cmos_rtc.century ? ", y3k" : "",
831 		nvram.size,
832 		is_hpet_enabled() ? ", hpet irqs" : "");
833 
834 	return 0;
835 
836 cleanup2:
837 	if (is_valid_irq(rtc_irq))
838 		free_irq(rtc_irq, cmos_rtc.rtc);
839 cleanup1:
840 	cmos_rtc.dev = NULL;
841 	rtc_device_unregister(cmos_rtc.rtc);
842 cleanup0:
843 	if (RTC_IOMAPPED)
844 		release_region(ports->start, resource_size(ports));
845 	else
846 		release_mem_region(ports->start, resource_size(ports));
847 	return retval;
848 }
849 
850 static void cmos_do_shutdown(int rtc_irq)
851 {
852 	spin_lock_irq(&rtc_lock);
853 	if (is_valid_irq(rtc_irq))
854 		cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
855 	spin_unlock_irq(&rtc_lock);
856 }
857 
858 static void cmos_do_remove(struct device *dev)
859 {
860 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
861 	struct resource *ports;
862 
863 	cmos_do_shutdown(cmos->irq);
864 
865 	sysfs_remove_bin_file(&dev->kobj, &nvram);
866 
867 	if (is_valid_irq(cmos->irq)) {
868 		free_irq(cmos->irq, cmos->rtc);
869 		hpet_unregister_irq_handler(cmos_interrupt);
870 	}
871 
872 	rtc_device_unregister(cmos->rtc);
873 	cmos->rtc = NULL;
874 
875 	ports = cmos->iomem;
876 	if (RTC_IOMAPPED)
877 		release_region(ports->start, resource_size(ports));
878 	else
879 		release_mem_region(ports->start, resource_size(ports));
880 	cmos->iomem = NULL;
881 
882 	cmos->dev = NULL;
883 }
884 
885 static int cmos_aie_poweroff(struct device *dev)
886 {
887 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
888 	struct rtc_time now;
889 	time64_t t_now;
890 	int retval = 0;
891 	unsigned char rtc_control;
892 
893 	if (!cmos->alarm_expires)
894 		return -EINVAL;
895 
896 	spin_lock_irq(&rtc_lock);
897 	rtc_control = CMOS_READ(RTC_CONTROL);
898 	spin_unlock_irq(&rtc_lock);
899 
900 	/* We only care about the situation where AIE is disabled. */
901 	if (rtc_control & RTC_AIE)
902 		return -EBUSY;
903 
904 	cmos_read_time(dev, &now);
905 	t_now = rtc_tm_to_time64(&now);
906 
907 	/*
908 	 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
909 	 * automatically right after shutdown on some buggy boxes.
910 	 * This automatic rebooting issue won't happen when the alarm
911 	 * time is larger than now+1 seconds.
912 	 *
913 	 * If the alarm time is equal to now+1 seconds, the issue can be
914 	 * prevented by cancelling the alarm.
915 	 */
916 	if (cmos->alarm_expires == t_now + 1) {
917 		struct rtc_wkalrm alarm;
918 
919 		/* Cancel the AIE timer by configuring the past time. */
920 		rtc_time64_to_tm(t_now - 1, &alarm.time);
921 		alarm.enabled = 0;
922 		retval = cmos_set_alarm(dev, &alarm);
923 	} else if (cmos->alarm_expires > t_now + 1) {
924 		retval = -EBUSY;
925 	}
926 
927 	return retval;
928 }
929 
930 static int cmos_suspend(struct device *dev)
931 {
932 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
933 	unsigned char	tmp;
934 
935 	/* only the alarm might be a wakeup event source */
936 	spin_lock_irq(&rtc_lock);
937 	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
938 	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
939 		unsigned char	mask;
940 
941 		if (device_may_wakeup(dev))
942 			mask = RTC_IRQMASK & ~RTC_AIE;
943 		else
944 			mask = RTC_IRQMASK;
945 		tmp &= ~mask;
946 		CMOS_WRITE(tmp, RTC_CONTROL);
947 		hpet_mask_rtc_irq_bit(mask);
948 
949 		cmos_checkintr(cmos, tmp);
950 	}
951 	spin_unlock_irq(&rtc_lock);
952 
953 	if (tmp & RTC_AIE) {
954 		cmos->enabled_wake = 1;
955 		if (cmos->wake_on)
956 			cmos->wake_on(dev);
957 		else
958 			enable_irq_wake(cmos->irq);
959 	}
960 
961 	cmos_read_alarm(dev, &cmos->saved_wkalrm);
962 
963 	dev_dbg(dev, "suspend%s, ctrl %02x\n",
964 			(tmp & RTC_AIE) ? ", alarm may wake" : "",
965 			tmp);
966 
967 	return 0;
968 }
969 
970 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
971  * after a detour through G3 "mechanical off", although the ACPI spec
972  * says wakeup should only work from G1/S4 "hibernate".  To most users,
973  * distinctions between S4 and S5 are pointless.  So when the hardware
974  * allows, don't draw that distinction.
975  */
976 static inline int cmos_poweroff(struct device *dev)
977 {
978 	if (!IS_ENABLED(CONFIG_PM))
979 		return -ENOSYS;
980 
981 	return cmos_suspend(dev);
982 }
983 
984 static void cmos_check_wkalrm(struct device *dev)
985 {
986 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
987 	struct rtc_wkalrm current_alarm;
988 	time64_t t_current_expires;
989 	time64_t t_saved_expires;
990 
991 	cmos_read_alarm(dev, &current_alarm);
992 	t_current_expires = rtc_tm_to_time64(&current_alarm.time);
993 	t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
994 	if (t_current_expires != t_saved_expires ||
995 	    cmos->saved_wkalrm.enabled != current_alarm.enabled) {
996 		cmos_set_alarm(dev, &cmos->saved_wkalrm);
997 	}
998 }
999 
1000 static void cmos_check_acpi_rtc_status(struct device *dev,
1001 				       unsigned char *rtc_control);
1002 
1003 static int __maybe_unused cmos_resume(struct device *dev)
1004 {
1005 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1006 	unsigned char tmp;
1007 
1008 	if (cmos->enabled_wake) {
1009 		if (cmos->wake_off)
1010 			cmos->wake_off(dev);
1011 		else
1012 			disable_irq_wake(cmos->irq);
1013 		cmos->enabled_wake = 0;
1014 	}
1015 
1016 	/* The BIOS might have changed the alarm, restore it */
1017 	cmos_check_wkalrm(dev);
1018 
1019 	spin_lock_irq(&rtc_lock);
1020 	tmp = cmos->suspend_ctrl;
1021 	cmos->suspend_ctrl = 0;
1022 	/* re-enable any irqs previously active */
1023 	if (tmp & RTC_IRQMASK) {
1024 		unsigned char	mask;
1025 
1026 		if (device_may_wakeup(dev))
1027 			hpet_rtc_timer_init();
1028 
1029 		do {
1030 			CMOS_WRITE(tmp, RTC_CONTROL);
1031 			hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1032 
1033 			mask = CMOS_READ(RTC_INTR_FLAGS);
1034 			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1035 			if (!is_hpet_enabled() || !is_intr(mask))
1036 				break;
1037 
1038 			/* force one-shot behavior if HPET blocked
1039 			 * the wake alarm's irq
1040 			 */
1041 			rtc_update_irq(cmos->rtc, 1, mask);
1042 			tmp &= ~RTC_AIE;
1043 			hpet_mask_rtc_irq_bit(RTC_AIE);
1044 		} while (mask & RTC_AIE);
1045 
1046 		if (tmp & RTC_AIE)
1047 			cmos_check_acpi_rtc_status(dev, &tmp);
1048 	}
1049 	spin_unlock_irq(&rtc_lock);
1050 
1051 	dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1052 
1053 	return 0;
1054 }
1055 
1056 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1057 
1058 /*----------------------------------------------------------------*/
1059 
1060 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1061  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1062  * probably list them in similar PNPBIOS tables; so PNP is more common.
1063  *
1064  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
1065  * predate even PNPBIOS should set up platform_bus devices.
1066  */
1067 
1068 #ifdef	CONFIG_ACPI
1069 
1070 #include <linux/acpi.h>
1071 
1072 static u32 rtc_handler(void *context)
1073 {
1074 	struct device *dev = context;
1075 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
1076 	unsigned char rtc_control = 0;
1077 	unsigned char rtc_intr;
1078 	unsigned long flags;
1079 
1080 	spin_lock_irqsave(&rtc_lock, flags);
1081 	if (cmos_rtc.suspend_ctrl)
1082 		rtc_control = CMOS_READ(RTC_CONTROL);
1083 	if (rtc_control & RTC_AIE) {
1084 		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1085 		CMOS_WRITE(rtc_control, RTC_CONTROL);
1086 		rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1087 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
1088 	}
1089 	spin_unlock_irqrestore(&rtc_lock, flags);
1090 
1091 	pm_wakeup_hard_event(dev);
1092 	acpi_clear_event(ACPI_EVENT_RTC);
1093 	acpi_disable_event(ACPI_EVENT_RTC, 0);
1094 	return ACPI_INTERRUPT_HANDLED;
1095 }
1096 
1097 static inline void rtc_wake_setup(struct device *dev)
1098 {
1099 	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1100 	/*
1101 	 * After the RTC handler is installed, the Fixed_RTC event should
1102 	 * be disabled. Only when the RTC alarm is set will it be enabled.
1103 	 */
1104 	acpi_clear_event(ACPI_EVENT_RTC);
1105 	acpi_disable_event(ACPI_EVENT_RTC, 0);
1106 }
1107 
1108 static void rtc_wake_on(struct device *dev)
1109 {
1110 	acpi_clear_event(ACPI_EVENT_RTC);
1111 	acpi_enable_event(ACPI_EVENT_RTC, 0);
1112 }
1113 
1114 static void rtc_wake_off(struct device *dev)
1115 {
1116 	acpi_disable_event(ACPI_EVENT_RTC, 0);
1117 }
1118 
1119 /* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1120  * its device node and pass extra config data.  This helps its driver use
1121  * capabilities that the now-obsolete mc146818 didn't have, and informs it
1122  * that this board's RTC is wakeup-capable (per ACPI spec).
1123  */
1124 static struct cmos_rtc_board_info acpi_rtc_info;
1125 
1126 static void cmos_wake_setup(struct device *dev)
1127 {
1128 	if (acpi_disabled)
1129 		return;
1130 
1131 	rtc_wake_setup(dev);
1132 	acpi_rtc_info.wake_on = rtc_wake_on;
1133 	acpi_rtc_info.wake_off = rtc_wake_off;
1134 
1135 	/* workaround bug in some ACPI tables */
1136 	if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1137 		dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1138 			acpi_gbl_FADT.month_alarm);
1139 		acpi_gbl_FADT.month_alarm = 0;
1140 	}
1141 
1142 	acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1143 	acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1144 	acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1145 
1146 	/* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1147 	if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1148 		dev_info(dev, "RTC can wake from S4\n");
1149 
1150 	dev->platform_data = &acpi_rtc_info;
1151 
1152 	/* RTC always wakes from S1/S2/S3, and often S4/STD */
1153 	device_init_wakeup(dev, 1);
1154 }
1155 
1156 static void cmos_check_acpi_rtc_status(struct device *dev,
1157 				       unsigned char *rtc_control)
1158 {
1159 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
1160 	acpi_event_status rtc_status;
1161 	acpi_status status;
1162 
1163 	if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1164 		return;
1165 
1166 	status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1167 	if (ACPI_FAILURE(status)) {
1168 		dev_err(dev, "Could not get RTC status\n");
1169 	} else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1170 		unsigned char mask;
1171 		*rtc_control &= ~RTC_AIE;
1172 		CMOS_WRITE(*rtc_control, RTC_CONTROL);
1173 		mask = CMOS_READ(RTC_INTR_FLAGS);
1174 		rtc_update_irq(cmos->rtc, 1, mask);
1175 	}
1176 }
1177 
1178 #else
1179 
1180 static void cmos_wake_setup(struct device *dev)
1181 {
1182 }
1183 
1184 static void cmos_check_acpi_rtc_status(struct device *dev,
1185 				       unsigned char *rtc_control)
1186 {
1187 }
1188 
1189 #endif
1190 
1191 #ifdef	CONFIG_PNP
1192 
1193 #include <linux/pnp.h>
1194 
1195 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1196 {
1197 	cmos_wake_setup(&pnp->dev);
1198 
1199 	if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1200 		unsigned int irq = 0;
1201 #ifdef CONFIG_X86
1202 		/* Some machines contain a PNP entry for the RTC, but
1203 		 * don't define the IRQ. It should always be safe to
1204 		 * hardcode it on systems with a legacy PIC.
1205 		 */
1206 		if (nr_legacy_irqs())
1207 			irq = 8;
1208 #endif
1209 		return cmos_do_probe(&pnp->dev,
1210 				pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1211 	} else {
1212 		return cmos_do_probe(&pnp->dev,
1213 				pnp_get_resource(pnp, IORESOURCE_IO, 0),
1214 				pnp_irq(pnp, 0));
1215 	}
1216 }
1217 
1218 static void cmos_pnp_remove(struct pnp_dev *pnp)
1219 {
1220 	cmos_do_remove(&pnp->dev);
1221 }
1222 
1223 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1224 {
1225 	struct device *dev = &pnp->dev;
1226 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1227 
1228 	if (system_state == SYSTEM_POWER_OFF) {
1229 		int retval = cmos_poweroff(dev);
1230 
1231 		if (cmos_aie_poweroff(dev) < 0 && !retval)
1232 			return;
1233 	}
1234 
1235 	cmos_do_shutdown(cmos->irq);
1236 }
1237 
1238 static const struct pnp_device_id rtc_ids[] = {
1239 	{ .id = "PNP0b00", },
1240 	{ .id = "PNP0b01", },
1241 	{ .id = "PNP0b02", },
1242 	{ },
1243 };
1244 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1245 
1246 static struct pnp_driver cmos_pnp_driver = {
1247 	.name		= (char *) driver_name,
1248 	.id_table	= rtc_ids,
1249 	.probe		= cmos_pnp_probe,
1250 	.remove		= cmos_pnp_remove,
1251 	.shutdown	= cmos_pnp_shutdown,
1252 
1253 	/* flag ensures resume() gets called, and stops syslog spam */
1254 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1255 	.driver		= {
1256 			.pm = &cmos_pm_ops,
1257 	},
1258 };
1259 
1260 #endif	/* CONFIG_PNP */
1261 
1262 #ifdef CONFIG_OF
1263 static const struct of_device_id of_cmos_match[] = {
1264 	{
1265 		.compatible = "motorola,mc146818",
1266 	},
1267 	{ },
1268 };
1269 MODULE_DEVICE_TABLE(of, of_cmos_match);
1270 
1271 static __init void cmos_of_init(struct platform_device *pdev)
1272 {
1273 	struct device_node *node = pdev->dev.of_node;
1274 	struct rtc_time time;
1275 	int ret;
1276 	const __be32 *val;
1277 
1278 	if (!node)
1279 		return;
1280 
1281 	val = of_get_property(node, "ctrl-reg", NULL);
1282 	if (val)
1283 		CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1284 
1285 	val = of_get_property(node, "freq-reg", NULL);
1286 	if (val)
1287 		CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1288 
1289 	cmos_read_time(&pdev->dev, &time);
1290 	ret = rtc_valid_tm(&time);
1291 	if (ret) {
1292 		struct rtc_time def_time = {
1293 			.tm_year = 1,
1294 			.tm_mday = 1,
1295 		};
1296 		cmos_set_time(&pdev->dev, &def_time);
1297 	}
1298 }
1299 #else
1300 static inline void cmos_of_init(struct platform_device *pdev) {}
1301 #endif
1302 /*----------------------------------------------------------------*/
1303 
1304 /* Platform setup should have set up an RTC device, when PNP is
1305  * unavailable ... this could happen even on (older) PCs.
1306  */
1307 
1308 static int __init cmos_platform_probe(struct platform_device *pdev)
1309 {
1310 	struct resource *resource;
1311 	int irq;
1312 
1313 	cmos_of_init(pdev);
1314 	cmos_wake_setup(&pdev->dev);
1315 
1316 	if (RTC_IOMAPPED)
1317 		resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1318 	else
1319 		resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1320 	irq = platform_get_irq(pdev, 0);
1321 	if (irq < 0)
1322 		irq = -1;
1323 
1324 	return cmos_do_probe(&pdev->dev, resource, irq);
1325 }
1326 
1327 static int cmos_platform_remove(struct platform_device *pdev)
1328 {
1329 	cmos_do_remove(&pdev->dev);
1330 	return 0;
1331 }
1332 
1333 static void cmos_platform_shutdown(struct platform_device *pdev)
1334 {
1335 	struct device *dev = &pdev->dev;
1336 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1337 
1338 	if (system_state == SYSTEM_POWER_OFF) {
1339 		int retval = cmos_poweroff(dev);
1340 
1341 		if (cmos_aie_poweroff(dev) < 0 && !retval)
1342 			return;
1343 	}
1344 
1345 	cmos_do_shutdown(cmos->irq);
1346 }
1347 
1348 /* work with hotplug and coldplug */
1349 MODULE_ALIAS("platform:rtc_cmos");
1350 
1351 static struct platform_driver cmos_platform_driver = {
1352 	.remove		= cmos_platform_remove,
1353 	.shutdown	= cmos_platform_shutdown,
1354 	.driver = {
1355 		.name		= driver_name,
1356 		.pm		= &cmos_pm_ops,
1357 		.of_match_table = of_match_ptr(of_cmos_match),
1358 	}
1359 };
1360 
1361 #ifdef CONFIG_PNP
1362 static bool pnp_driver_registered;
1363 #endif
1364 static bool platform_driver_registered;
1365 
1366 static int __init cmos_init(void)
1367 {
1368 	int retval = 0;
1369 
1370 #ifdef	CONFIG_PNP
1371 	retval = pnp_register_driver(&cmos_pnp_driver);
1372 	if (retval == 0)
1373 		pnp_driver_registered = true;
1374 #endif
1375 
1376 	if (!cmos_rtc.dev) {
1377 		retval = platform_driver_probe(&cmos_platform_driver,
1378 					       cmos_platform_probe);
1379 		if (retval == 0)
1380 			platform_driver_registered = true;
1381 	}
1382 
1383 	if (retval == 0)
1384 		return 0;
1385 
1386 #ifdef	CONFIG_PNP
1387 	if (pnp_driver_registered)
1388 		pnp_unregister_driver(&cmos_pnp_driver);
1389 #endif
1390 	return retval;
1391 }
1392 module_init(cmos_init);
1393 
1394 static void __exit cmos_exit(void)
1395 {
1396 #ifdef	CONFIG_PNP
1397 	if (pnp_driver_registered)
1398 		pnp_unregister_driver(&cmos_pnp_driver);
1399 #endif
1400 	if (platform_driver_registered)
1401 		platform_driver_unregister(&cmos_platform_driver);
1402 }
1403 module_exit(cmos_exit);
1404 
1405 
1406 MODULE_AUTHOR("David Brownell");
1407 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1408 MODULE_LICENSE("GPL");
1409