xref: /openbmc/linux/drivers/rtc/rtc-cmos.c (revision 5bd8e16d)
1 /*
2  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
3  *
4  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5  * Copyright (C) 2006 David Brownell (convert to new framework)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  */
12 
13 /*
14  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15  * That defined the register interface now provided by all PCs, some
16  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
17  * integrate an MC146818 clone in their southbridge, and boards use
18  * that instead of discrete clones like the DS12887 or M48T86.  There
19  * are also clones that connect using the LPC bus.
20  *
21  * That register API is also used directly by various other drivers
22  * (notably for integrated NVRAM), infrastructure (x86 has code to
23  * bypass the RTC framework, directly reading the RTC during boot
24  * and updating minutes/seconds for systems using NTP synch) and
25  * utilities (like userspace 'hwclock', if no /dev node exists).
26  *
27  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28  * interrupts disabled, holding the global rtc_lock, to exclude those
29  * other drivers and utilities on correctly configured systems.
30  */
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/interrupt.h>
35 #include <linux/spinlock.h>
36 #include <linux/platform_device.h>
37 #include <linux/mod_devicetable.h>
38 #include <linux/log2.h>
39 #include <linux/pm.h>
40 #include <linux/of.h>
41 #include <linux/of_platform.h>
42 
43 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
44 #include <asm-generic/rtc.h>
45 
46 struct cmos_rtc {
47 	struct rtc_device	*rtc;
48 	struct device		*dev;
49 	int			irq;
50 	struct resource		*iomem;
51 
52 	void			(*wake_on)(struct device *);
53 	void			(*wake_off)(struct device *);
54 
55 	u8			enabled_wake;
56 	u8			suspend_ctrl;
57 
58 	/* newer hardware extends the original register set */
59 	u8			day_alrm;
60 	u8			mon_alrm;
61 	u8			century;
62 };
63 
64 /* both platform and pnp busses use negative numbers for invalid irqs */
65 #define is_valid_irq(n)		((n) > 0)
66 
67 static const char driver_name[] = "rtc_cmos";
68 
69 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
70  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
71  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
72  */
73 #define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
74 
75 static inline int is_intr(u8 rtc_intr)
76 {
77 	if (!(rtc_intr & RTC_IRQF))
78 		return 0;
79 	return rtc_intr & RTC_IRQMASK;
80 }
81 
82 /*----------------------------------------------------------------*/
83 
84 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
85  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
86  * used in a broken "legacy replacement" mode.  The breakage includes
87  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
88  * other (better) use.
89  *
90  * When that broken mode is in use, platform glue provides a partial
91  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
92  * want to use HPET for anything except those IRQs though...
93  */
94 #ifdef CONFIG_HPET_EMULATE_RTC
95 #include <asm/hpet.h>
96 #else
97 
98 static inline int is_hpet_enabled(void)
99 {
100 	return 0;
101 }
102 
103 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
104 {
105 	return 0;
106 }
107 
108 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
109 {
110 	return 0;
111 }
112 
113 static inline int
114 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
115 {
116 	return 0;
117 }
118 
119 static inline int hpet_set_periodic_freq(unsigned long freq)
120 {
121 	return 0;
122 }
123 
124 static inline int hpet_rtc_dropped_irq(void)
125 {
126 	return 0;
127 }
128 
129 static inline int hpet_rtc_timer_init(void)
130 {
131 	return 0;
132 }
133 
134 extern irq_handler_t hpet_rtc_interrupt;
135 
136 static inline int hpet_register_irq_handler(irq_handler_t handler)
137 {
138 	return 0;
139 }
140 
141 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
142 {
143 	return 0;
144 }
145 
146 #endif
147 
148 /*----------------------------------------------------------------*/
149 
150 #ifdef RTC_PORT
151 
152 /* Most newer x86 systems have two register banks, the first used
153  * for RTC and NVRAM and the second only for NVRAM.  Caller must
154  * own rtc_lock ... and we won't worry about access during NMI.
155  */
156 #define can_bank2	true
157 
158 static inline unsigned char cmos_read_bank2(unsigned char addr)
159 {
160 	outb(addr, RTC_PORT(2));
161 	return inb(RTC_PORT(3));
162 }
163 
164 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
165 {
166 	outb(addr, RTC_PORT(2));
167 	outb(val, RTC_PORT(3));
168 }
169 
170 #else
171 
172 #define can_bank2	false
173 
174 static inline unsigned char cmos_read_bank2(unsigned char addr)
175 {
176 	return 0;
177 }
178 
179 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
180 {
181 }
182 
183 #endif
184 
185 /*----------------------------------------------------------------*/
186 
187 static int cmos_read_time(struct device *dev, struct rtc_time *t)
188 {
189 	/* REVISIT:  if the clock has a "century" register, use
190 	 * that instead of the heuristic in get_rtc_time().
191 	 * That'll make Y3K compatility (year > 2070) easy!
192 	 */
193 	get_rtc_time(t);
194 	return 0;
195 }
196 
197 static int cmos_set_time(struct device *dev, struct rtc_time *t)
198 {
199 	/* REVISIT:  set the "century" register if available
200 	 *
201 	 * NOTE: this ignores the issue whereby updating the seconds
202 	 * takes effect exactly 500ms after we write the register.
203 	 * (Also queueing and other delays before we get this far.)
204 	 */
205 	return set_rtc_time(t);
206 }
207 
208 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
209 {
210 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
211 	unsigned char	rtc_control;
212 
213 	if (!is_valid_irq(cmos->irq))
214 		return -EIO;
215 
216 	/* Basic alarms only support hour, minute, and seconds fields.
217 	 * Some also support day and month, for alarms up to a year in
218 	 * the future.
219 	 */
220 	t->time.tm_mday = -1;
221 	t->time.tm_mon = -1;
222 
223 	spin_lock_irq(&rtc_lock);
224 	t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
225 	t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
226 	t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
227 
228 	if (cmos->day_alrm) {
229 		/* ignore upper bits on readback per ACPI spec */
230 		t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
231 		if (!t->time.tm_mday)
232 			t->time.tm_mday = -1;
233 
234 		if (cmos->mon_alrm) {
235 			t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
236 			if (!t->time.tm_mon)
237 				t->time.tm_mon = -1;
238 		}
239 	}
240 
241 	rtc_control = CMOS_READ(RTC_CONTROL);
242 	spin_unlock_irq(&rtc_lock);
243 
244 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
245 		if (((unsigned)t->time.tm_sec) < 0x60)
246 			t->time.tm_sec = bcd2bin(t->time.tm_sec);
247 		else
248 			t->time.tm_sec = -1;
249 		if (((unsigned)t->time.tm_min) < 0x60)
250 			t->time.tm_min = bcd2bin(t->time.tm_min);
251 		else
252 			t->time.tm_min = -1;
253 		if (((unsigned)t->time.tm_hour) < 0x24)
254 			t->time.tm_hour = bcd2bin(t->time.tm_hour);
255 		else
256 			t->time.tm_hour = -1;
257 
258 		if (cmos->day_alrm) {
259 			if (((unsigned)t->time.tm_mday) <= 0x31)
260 				t->time.tm_mday = bcd2bin(t->time.tm_mday);
261 			else
262 				t->time.tm_mday = -1;
263 
264 			if (cmos->mon_alrm) {
265 				if (((unsigned)t->time.tm_mon) <= 0x12)
266 					t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
267 				else
268 					t->time.tm_mon = -1;
269 			}
270 		}
271 	}
272 	t->time.tm_year = -1;
273 
274 	t->enabled = !!(rtc_control & RTC_AIE);
275 	t->pending = 0;
276 
277 	return 0;
278 }
279 
280 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
281 {
282 	unsigned char	rtc_intr;
283 
284 	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
285 	 * allegedly some older rtcs need that to handle irqs properly
286 	 */
287 	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
288 
289 	if (is_hpet_enabled())
290 		return;
291 
292 	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
293 	if (is_intr(rtc_intr))
294 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
295 }
296 
297 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
298 {
299 	unsigned char	rtc_control;
300 
301 	/* flush any pending IRQ status, notably for update irqs,
302 	 * before we enable new IRQs
303 	 */
304 	rtc_control = CMOS_READ(RTC_CONTROL);
305 	cmos_checkintr(cmos, rtc_control);
306 
307 	rtc_control |= mask;
308 	CMOS_WRITE(rtc_control, RTC_CONTROL);
309 	hpet_set_rtc_irq_bit(mask);
310 
311 	cmos_checkintr(cmos, rtc_control);
312 }
313 
314 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
315 {
316 	unsigned char	rtc_control;
317 
318 	rtc_control = CMOS_READ(RTC_CONTROL);
319 	rtc_control &= ~mask;
320 	CMOS_WRITE(rtc_control, RTC_CONTROL);
321 	hpet_mask_rtc_irq_bit(mask);
322 
323 	cmos_checkintr(cmos, rtc_control);
324 }
325 
326 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
327 {
328 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
329 	unsigned char mon, mday, hrs, min, sec, rtc_control;
330 
331 	if (!is_valid_irq(cmos->irq))
332 		return -EIO;
333 
334 	mon = t->time.tm_mon + 1;
335 	mday = t->time.tm_mday;
336 	hrs = t->time.tm_hour;
337 	min = t->time.tm_min;
338 	sec = t->time.tm_sec;
339 
340 	rtc_control = CMOS_READ(RTC_CONTROL);
341 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
342 		/* Writing 0xff means "don't care" or "match all".  */
343 		mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
344 		mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
345 		hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
346 		min = (min < 60) ? bin2bcd(min) : 0xff;
347 		sec = (sec < 60) ? bin2bcd(sec) : 0xff;
348 	}
349 
350 	spin_lock_irq(&rtc_lock);
351 
352 	/* next rtc irq must not be from previous alarm setting */
353 	cmos_irq_disable(cmos, RTC_AIE);
354 
355 	/* update alarm */
356 	CMOS_WRITE(hrs, RTC_HOURS_ALARM);
357 	CMOS_WRITE(min, RTC_MINUTES_ALARM);
358 	CMOS_WRITE(sec, RTC_SECONDS_ALARM);
359 
360 	/* the system may support an "enhanced" alarm */
361 	if (cmos->day_alrm) {
362 		CMOS_WRITE(mday, cmos->day_alrm);
363 		if (cmos->mon_alrm)
364 			CMOS_WRITE(mon, cmos->mon_alrm);
365 	}
366 
367 	/* FIXME the HPET alarm glue currently ignores day_alrm
368 	 * and mon_alrm ...
369 	 */
370 	hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
371 
372 	if (t->enabled)
373 		cmos_irq_enable(cmos, RTC_AIE);
374 
375 	spin_unlock_irq(&rtc_lock);
376 
377 	return 0;
378 }
379 
380 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
381 {
382 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
383 	unsigned long	flags;
384 
385 	if (!is_valid_irq(cmos->irq))
386 		return -EINVAL;
387 
388 	spin_lock_irqsave(&rtc_lock, flags);
389 
390 	if (enabled)
391 		cmos_irq_enable(cmos, RTC_AIE);
392 	else
393 		cmos_irq_disable(cmos, RTC_AIE);
394 
395 	spin_unlock_irqrestore(&rtc_lock, flags);
396 	return 0;
397 }
398 
399 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
400 
401 static int cmos_procfs(struct device *dev, struct seq_file *seq)
402 {
403 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
404 	unsigned char	rtc_control, valid;
405 
406 	spin_lock_irq(&rtc_lock);
407 	rtc_control = CMOS_READ(RTC_CONTROL);
408 	valid = CMOS_READ(RTC_VALID);
409 	spin_unlock_irq(&rtc_lock);
410 
411 	/* NOTE:  at least ICH6 reports battery status using a different
412 	 * (non-RTC) bit; and SQWE is ignored on many current systems.
413 	 */
414 	return seq_printf(seq,
415 			"periodic_IRQ\t: %s\n"
416 			"update_IRQ\t: %s\n"
417 			"HPET_emulated\t: %s\n"
418 			// "square_wave\t: %s\n"
419 			"BCD\t\t: %s\n"
420 			"DST_enable\t: %s\n"
421 			"periodic_freq\t: %d\n"
422 			"batt_status\t: %s\n",
423 			(rtc_control & RTC_PIE) ? "yes" : "no",
424 			(rtc_control & RTC_UIE) ? "yes" : "no",
425 			is_hpet_enabled() ? "yes" : "no",
426 			// (rtc_control & RTC_SQWE) ? "yes" : "no",
427 			(rtc_control & RTC_DM_BINARY) ? "no" : "yes",
428 			(rtc_control & RTC_DST_EN) ? "yes" : "no",
429 			cmos->rtc->irq_freq,
430 			(valid & RTC_VRT) ? "okay" : "dead");
431 }
432 
433 #else
434 #define	cmos_procfs	NULL
435 #endif
436 
437 static const struct rtc_class_ops cmos_rtc_ops = {
438 	.read_time		= cmos_read_time,
439 	.set_time		= cmos_set_time,
440 	.read_alarm		= cmos_read_alarm,
441 	.set_alarm		= cmos_set_alarm,
442 	.proc			= cmos_procfs,
443 	.alarm_irq_enable	= cmos_alarm_irq_enable,
444 };
445 
446 /*----------------------------------------------------------------*/
447 
448 /*
449  * All these chips have at least 64 bytes of address space, shared by
450  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
451  * by boot firmware.  Modern chips have 128 or 256 bytes.
452  */
453 
454 #define NVRAM_OFFSET	(RTC_REG_D + 1)
455 
456 static ssize_t
457 cmos_nvram_read(struct file *filp, struct kobject *kobj,
458 		struct bin_attribute *attr,
459 		char *buf, loff_t off, size_t count)
460 {
461 	int	retval;
462 
463 	if (unlikely(off >= attr->size))
464 		return 0;
465 	if (unlikely(off < 0))
466 		return -EINVAL;
467 	if ((off + count) > attr->size)
468 		count = attr->size - off;
469 
470 	off += NVRAM_OFFSET;
471 	spin_lock_irq(&rtc_lock);
472 	for (retval = 0; count; count--, off++, retval++) {
473 		if (off < 128)
474 			*buf++ = CMOS_READ(off);
475 		else if (can_bank2)
476 			*buf++ = cmos_read_bank2(off);
477 		else
478 			break;
479 	}
480 	spin_unlock_irq(&rtc_lock);
481 
482 	return retval;
483 }
484 
485 static ssize_t
486 cmos_nvram_write(struct file *filp, struct kobject *kobj,
487 		struct bin_attribute *attr,
488 		char *buf, loff_t off, size_t count)
489 {
490 	struct cmos_rtc	*cmos;
491 	int		retval;
492 
493 	cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
494 	if (unlikely(off >= attr->size))
495 		return -EFBIG;
496 	if (unlikely(off < 0))
497 		return -EINVAL;
498 	if ((off + count) > attr->size)
499 		count = attr->size - off;
500 
501 	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
502 	 * checksum on part of the NVRAM data.  That's currently ignored
503 	 * here.  If userspace is smart enough to know what fields of
504 	 * NVRAM to update, updating checksums is also part of its job.
505 	 */
506 	off += NVRAM_OFFSET;
507 	spin_lock_irq(&rtc_lock);
508 	for (retval = 0; count; count--, off++, retval++) {
509 		/* don't trash RTC registers */
510 		if (off == cmos->day_alrm
511 				|| off == cmos->mon_alrm
512 				|| off == cmos->century)
513 			buf++;
514 		else if (off < 128)
515 			CMOS_WRITE(*buf++, off);
516 		else if (can_bank2)
517 			cmos_write_bank2(*buf++, off);
518 		else
519 			break;
520 	}
521 	spin_unlock_irq(&rtc_lock);
522 
523 	return retval;
524 }
525 
526 static struct bin_attribute nvram = {
527 	.attr = {
528 		.name	= "nvram",
529 		.mode	= S_IRUGO | S_IWUSR,
530 	},
531 
532 	.read	= cmos_nvram_read,
533 	.write	= cmos_nvram_write,
534 	/* size gets set up later */
535 };
536 
537 /*----------------------------------------------------------------*/
538 
539 static struct cmos_rtc	cmos_rtc;
540 
541 static irqreturn_t cmos_interrupt(int irq, void *p)
542 {
543 	u8		irqstat;
544 	u8		rtc_control;
545 
546 	spin_lock(&rtc_lock);
547 
548 	/* When the HPET interrupt handler calls us, the interrupt
549 	 * status is passed as arg1 instead of the irq number.  But
550 	 * always clear irq status, even when HPET is in the way.
551 	 *
552 	 * Note that HPET and RTC are almost certainly out of phase,
553 	 * giving different IRQ status ...
554 	 */
555 	irqstat = CMOS_READ(RTC_INTR_FLAGS);
556 	rtc_control = CMOS_READ(RTC_CONTROL);
557 	if (is_hpet_enabled())
558 		irqstat = (unsigned long)irq & 0xF0;
559 
560 	/* If we were suspended, RTC_CONTROL may not be accurate since the
561 	 * bios may have cleared it.
562 	 */
563 	if (!cmos_rtc.suspend_ctrl)
564 		irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
565 	else
566 		irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
567 
568 	/* All Linux RTC alarms should be treated as if they were oneshot.
569 	 * Similar code may be needed in system wakeup paths, in case the
570 	 * alarm woke the system.
571 	 */
572 	if (irqstat & RTC_AIE) {
573 		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
574 		rtc_control &= ~RTC_AIE;
575 		CMOS_WRITE(rtc_control, RTC_CONTROL);
576 		hpet_mask_rtc_irq_bit(RTC_AIE);
577 		CMOS_READ(RTC_INTR_FLAGS);
578 	}
579 	spin_unlock(&rtc_lock);
580 
581 	if (is_intr(irqstat)) {
582 		rtc_update_irq(p, 1, irqstat);
583 		return IRQ_HANDLED;
584 	} else
585 		return IRQ_NONE;
586 }
587 
588 #ifdef	CONFIG_PNP
589 #define	INITSECTION
590 
591 #else
592 #define	INITSECTION	__init
593 #endif
594 
595 static int INITSECTION
596 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
597 {
598 	struct cmos_rtc_board_info	*info = dev->platform_data;
599 	int				retval = 0;
600 	unsigned char			rtc_control;
601 	unsigned			address_space;
602 
603 	/* there can be only one ... */
604 	if (cmos_rtc.dev)
605 		return -EBUSY;
606 
607 	if (!ports)
608 		return -ENODEV;
609 
610 	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
611 	 *
612 	 * REVISIT non-x86 systems may instead use memory space resources
613 	 * (needing ioremap etc), not i/o space resources like this ...
614 	 */
615 	ports = request_region(ports->start,
616 			resource_size(ports),
617 			driver_name);
618 	if (!ports) {
619 		dev_dbg(dev, "i/o registers already in use\n");
620 		return -EBUSY;
621 	}
622 
623 	cmos_rtc.irq = rtc_irq;
624 	cmos_rtc.iomem = ports;
625 
626 	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
627 	 * driver did, but don't reject unknown configs.   Old hardware
628 	 * won't address 128 bytes.  Newer chips have multiple banks,
629 	 * though they may not be listed in one I/O resource.
630 	 */
631 #if	defined(CONFIG_ATARI)
632 	address_space = 64;
633 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
634 			|| defined(__sparc__) || defined(__mips__) \
635 			|| defined(__powerpc__)
636 	address_space = 128;
637 #else
638 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
639 	address_space = 128;
640 #endif
641 	if (can_bank2 && ports->end > (ports->start + 1))
642 		address_space = 256;
643 
644 	/* For ACPI systems extension info comes from the FADT.  On others,
645 	 * board specific setup provides it as appropriate.  Systems where
646 	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
647 	 * some almost-clones) can provide hooks to make that behave.
648 	 *
649 	 * Note that ACPI doesn't preclude putting these registers into
650 	 * "extended" areas of the chip, including some that we won't yet
651 	 * expect CMOS_READ and friends to handle.
652 	 */
653 	if (info) {
654 		if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
655 			cmos_rtc.day_alrm = info->rtc_day_alarm;
656 		if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
657 			cmos_rtc.mon_alrm = info->rtc_mon_alarm;
658 		if (info->rtc_century && info->rtc_century < 128)
659 			cmos_rtc.century = info->rtc_century;
660 
661 		if (info->wake_on && info->wake_off) {
662 			cmos_rtc.wake_on = info->wake_on;
663 			cmos_rtc.wake_off = info->wake_off;
664 		}
665 	}
666 
667 	cmos_rtc.dev = dev;
668 	dev_set_drvdata(dev, &cmos_rtc);
669 
670 	cmos_rtc.rtc = rtc_device_register(driver_name, dev,
671 				&cmos_rtc_ops, THIS_MODULE);
672 	if (IS_ERR(cmos_rtc.rtc)) {
673 		retval = PTR_ERR(cmos_rtc.rtc);
674 		goto cleanup0;
675 	}
676 
677 	rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
678 
679 	spin_lock_irq(&rtc_lock);
680 
681 	/* force periodic irq to CMOS reset default of 1024Hz;
682 	 *
683 	 * REVISIT it's been reported that at least one x86_64 ALI mobo
684 	 * doesn't use 32KHz here ... for portability we might need to
685 	 * do something about other clock frequencies.
686 	 */
687 	cmos_rtc.rtc->irq_freq = 1024;
688 	hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
689 	CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
690 
691 	/* disable irqs */
692 	cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
693 
694 	rtc_control = CMOS_READ(RTC_CONTROL);
695 
696 	spin_unlock_irq(&rtc_lock);
697 
698 	/* FIXME:
699 	 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
700 	 */
701 	if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
702 		dev_warn(dev, "only 24-hr supported\n");
703 		retval = -ENXIO;
704 		goto cleanup1;
705 	}
706 
707 	if (is_valid_irq(rtc_irq)) {
708 		irq_handler_t rtc_cmos_int_handler;
709 
710 		if (is_hpet_enabled()) {
711 			int err;
712 
713 			rtc_cmos_int_handler = hpet_rtc_interrupt;
714 			err = hpet_register_irq_handler(cmos_interrupt);
715 			if (err != 0) {
716 				dev_warn(dev, "hpet_register_irq_handler "
717 						" failed in rtc_init().");
718 				goto cleanup1;
719 			}
720 		} else
721 			rtc_cmos_int_handler = cmos_interrupt;
722 
723 		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
724 				0, dev_name(&cmos_rtc.rtc->dev),
725 				cmos_rtc.rtc);
726 		if (retval < 0) {
727 			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
728 			goto cleanup1;
729 		}
730 	}
731 	hpet_rtc_timer_init();
732 
733 	/* export at least the first block of NVRAM */
734 	nvram.size = address_space - NVRAM_OFFSET;
735 	retval = sysfs_create_bin_file(&dev->kobj, &nvram);
736 	if (retval < 0) {
737 		dev_dbg(dev, "can't create nvram file? %d\n", retval);
738 		goto cleanup2;
739 	}
740 
741 	dev_info(dev, "%s%s, %zd bytes nvram%s\n",
742 		!is_valid_irq(rtc_irq) ? "no alarms" :
743 			cmos_rtc.mon_alrm ? "alarms up to one year" :
744 			cmos_rtc.day_alrm ? "alarms up to one month" :
745 			"alarms up to one day",
746 		cmos_rtc.century ? ", y3k" : "",
747 		nvram.size,
748 		is_hpet_enabled() ? ", hpet irqs" : "");
749 
750 	return 0;
751 
752 cleanup2:
753 	if (is_valid_irq(rtc_irq))
754 		free_irq(rtc_irq, cmos_rtc.rtc);
755 cleanup1:
756 	cmos_rtc.dev = NULL;
757 	rtc_device_unregister(cmos_rtc.rtc);
758 cleanup0:
759 	release_region(ports->start, resource_size(ports));
760 	return retval;
761 }
762 
763 static void cmos_do_shutdown(void)
764 {
765 	spin_lock_irq(&rtc_lock);
766 	cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
767 	spin_unlock_irq(&rtc_lock);
768 }
769 
770 static void __exit cmos_do_remove(struct device *dev)
771 {
772 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
773 	struct resource *ports;
774 
775 	cmos_do_shutdown();
776 
777 	sysfs_remove_bin_file(&dev->kobj, &nvram);
778 
779 	if (is_valid_irq(cmos->irq)) {
780 		free_irq(cmos->irq, cmos->rtc);
781 		hpet_unregister_irq_handler(cmos_interrupt);
782 	}
783 
784 	rtc_device_unregister(cmos->rtc);
785 	cmos->rtc = NULL;
786 
787 	ports = cmos->iomem;
788 	release_region(ports->start, resource_size(ports));
789 	cmos->iomem = NULL;
790 
791 	cmos->dev = NULL;
792 	dev_set_drvdata(dev, NULL);
793 }
794 
795 #ifdef	CONFIG_PM
796 
797 static int cmos_suspend(struct device *dev)
798 {
799 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
800 	unsigned char	tmp;
801 
802 	/* only the alarm might be a wakeup event source */
803 	spin_lock_irq(&rtc_lock);
804 	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
805 	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
806 		unsigned char	mask;
807 
808 		if (device_may_wakeup(dev))
809 			mask = RTC_IRQMASK & ~RTC_AIE;
810 		else
811 			mask = RTC_IRQMASK;
812 		tmp &= ~mask;
813 		CMOS_WRITE(tmp, RTC_CONTROL);
814 		hpet_mask_rtc_irq_bit(mask);
815 
816 		cmos_checkintr(cmos, tmp);
817 	}
818 	spin_unlock_irq(&rtc_lock);
819 
820 	if (tmp & RTC_AIE) {
821 		cmos->enabled_wake = 1;
822 		if (cmos->wake_on)
823 			cmos->wake_on(dev);
824 		else
825 			enable_irq_wake(cmos->irq);
826 	}
827 
828 	dev_dbg(dev, "suspend%s, ctrl %02x\n",
829 			(tmp & RTC_AIE) ? ", alarm may wake" : "",
830 			tmp);
831 
832 	return 0;
833 }
834 
835 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
836  * after a detour through G3 "mechanical off", although the ACPI spec
837  * says wakeup should only work from G1/S4 "hibernate".  To most users,
838  * distinctions between S4 and S5 are pointless.  So when the hardware
839  * allows, don't draw that distinction.
840  */
841 static inline int cmos_poweroff(struct device *dev)
842 {
843 	return cmos_suspend(dev);
844 }
845 
846 static int cmos_resume(struct device *dev)
847 {
848 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
849 	unsigned char tmp;
850 
851 	if (cmos->enabled_wake) {
852 		if (cmos->wake_off)
853 			cmos->wake_off(dev);
854 		else
855 			disable_irq_wake(cmos->irq);
856 		cmos->enabled_wake = 0;
857 	}
858 
859 	spin_lock_irq(&rtc_lock);
860 	tmp = cmos->suspend_ctrl;
861 	cmos->suspend_ctrl = 0;
862 	/* re-enable any irqs previously active */
863 	if (tmp & RTC_IRQMASK) {
864 		unsigned char	mask;
865 
866 		if (device_may_wakeup(dev))
867 			hpet_rtc_timer_init();
868 
869 		do {
870 			CMOS_WRITE(tmp, RTC_CONTROL);
871 			hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
872 
873 			mask = CMOS_READ(RTC_INTR_FLAGS);
874 			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
875 			if (!is_hpet_enabled() || !is_intr(mask))
876 				break;
877 
878 			/* force one-shot behavior if HPET blocked
879 			 * the wake alarm's irq
880 			 */
881 			rtc_update_irq(cmos->rtc, 1, mask);
882 			tmp &= ~RTC_AIE;
883 			hpet_mask_rtc_irq_bit(RTC_AIE);
884 		} while (mask & RTC_AIE);
885 	}
886 	spin_unlock_irq(&rtc_lock);
887 
888 	dev_dbg(dev, "resume, ctrl %02x\n", tmp);
889 
890 	return 0;
891 }
892 
893 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
894 
895 #else
896 
897 static inline int cmos_poweroff(struct device *dev)
898 {
899 	return -ENOSYS;
900 }
901 
902 #endif
903 
904 /*----------------------------------------------------------------*/
905 
906 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
907  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
908  * probably list them in similar PNPBIOS tables; so PNP is more common.
909  *
910  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
911  * predate even PNPBIOS should set up platform_bus devices.
912  */
913 
914 #ifdef	CONFIG_ACPI
915 
916 #include <linux/acpi.h>
917 
918 static u32 rtc_handler(void *context)
919 {
920 	struct device *dev = context;
921 
922 	pm_wakeup_event(dev, 0);
923 	acpi_clear_event(ACPI_EVENT_RTC);
924 	acpi_disable_event(ACPI_EVENT_RTC, 0);
925 	return ACPI_INTERRUPT_HANDLED;
926 }
927 
928 static inline void rtc_wake_setup(struct device *dev)
929 {
930 	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
931 	/*
932 	 * After the RTC handler is installed, the Fixed_RTC event should
933 	 * be disabled. Only when the RTC alarm is set will it be enabled.
934 	 */
935 	acpi_clear_event(ACPI_EVENT_RTC);
936 	acpi_disable_event(ACPI_EVENT_RTC, 0);
937 }
938 
939 static void rtc_wake_on(struct device *dev)
940 {
941 	acpi_clear_event(ACPI_EVENT_RTC);
942 	acpi_enable_event(ACPI_EVENT_RTC, 0);
943 }
944 
945 static void rtc_wake_off(struct device *dev)
946 {
947 	acpi_disable_event(ACPI_EVENT_RTC, 0);
948 }
949 
950 /* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
951  * its device node and pass extra config data.  This helps its driver use
952  * capabilities that the now-obsolete mc146818 didn't have, and informs it
953  * that this board's RTC is wakeup-capable (per ACPI spec).
954  */
955 static struct cmos_rtc_board_info acpi_rtc_info;
956 
957 static void cmos_wake_setup(struct device *dev)
958 {
959 	if (acpi_disabled)
960 		return;
961 
962 	rtc_wake_setup(dev);
963 	acpi_rtc_info.wake_on = rtc_wake_on;
964 	acpi_rtc_info.wake_off = rtc_wake_off;
965 
966 	/* workaround bug in some ACPI tables */
967 	if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
968 		dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
969 			acpi_gbl_FADT.month_alarm);
970 		acpi_gbl_FADT.month_alarm = 0;
971 	}
972 
973 	acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
974 	acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
975 	acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
976 
977 	/* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
978 	if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
979 		dev_info(dev, "RTC can wake from S4\n");
980 
981 	dev->platform_data = &acpi_rtc_info;
982 
983 	/* RTC always wakes from S1/S2/S3, and often S4/STD */
984 	device_init_wakeup(dev, 1);
985 }
986 
987 #else
988 
989 static void cmos_wake_setup(struct device *dev)
990 {
991 }
992 
993 #endif
994 
995 #ifdef	CONFIG_PNP
996 
997 #include <linux/pnp.h>
998 
999 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1000 {
1001 	cmos_wake_setup(&pnp->dev);
1002 
1003 	if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0))
1004 		/* Some machines contain a PNP entry for the RTC, but
1005 		 * don't define the IRQ. It should always be safe to
1006 		 * hardcode it in these cases
1007 		 */
1008 		return cmos_do_probe(&pnp->dev,
1009 				pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
1010 	else
1011 		return cmos_do_probe(&pnp->dev,
1012 				pnp_get_resource(pnp, IORESOURCE_IO, 0),
1013 				pnp_irq(pnp, 0));
1014 }
1015 
1016 static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
1017 {
1018 	cmos_do_remove(&pnp->dev);
1019 }
1020 
1021 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1022 {
1023 	if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pnp->dev))
1024 		return;
1025 
1026 	cmos_do_shutdown();
1027 }
1028 
1029 static const struct pnp_device_id rtc_ids[] = {
1030 	{ .id = "PNP0b00", },
1031 	{ .id = "PNP0b01", },
1032 	{ .id = "PNP0b02", },
1033 	{ },
1034 };
1035 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1036 
1037 static struct pnp_driver cmos_pnp_driver = {
1038 	.name		= (char *) driver_name,
1039 	.id_table	= rtc_ids,
1040 	.probe		= cmos_pnp_probe,
1041 	.remove		= __exit_p(cmos_pnp_remove),
1042 	.shutdown	= cmos_pnp_shutdown,
1043 
1044 	/* flag ensures resume() gets called, and stops syslog spam */
1045 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1046 #ifdef CONFIG_PM_SLEEP
1047 	.driver		= {
1048 			.pm = &cmos_pm_ops,
1049 	},
1050 #endif
1051 };
1052 
1053 #endif	/* CONFIG_PNP */
1054 
1055 #ifdef CONFIG_OF
1056 static const struct of_device_id of_cmos_match[] = {
1057 	{
1058 		.compatible = "motorola,mc146818",
1059 	},
1060 	{ },
1061 };
1062 MODULE_DEVICE_TABLE(of, of_cmos_match);
1063 
1064 static __init void cmos_of_init(struct platform_device *pdev)
1065 {
1066 	struct device_node *node = pdev->dev.of_node;
1067 	struct rtc_time time;
1068 	int ret;
1069 	const __be32 *val;
1070 
1071 	if (!node)
1072 		return;
1073 
1074 	val = of_get_property(node, "ctrl-reg", NULL);
1075 	if (val)
1076 		CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1077 
1078 	val = of_get_property(node, "freq-reg", NULL);
1079 	if (val)
1080 		CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1081 
1082 	get_rtc_time(&time);
1083 	ret = rtc_valid_tm(&time);
1084 	if (ret) {
1085 		struct rtc_time def_time = {
1086 			.tm_year = 1,
1087 			.tm_mday = 1,
1088 		};
1089 		set_rtc_time(&def_time);
1090 	}
1091 }
1092 #else
1093 static inline void cmos_of_init(struct platform_device *pdev) {}
1094 #endif
1095 /*----------------------------------------------------------------*/
1096 
1097 /* Platform setup should have set up an RTC device, when PNP is
1098  * unavailable ... this could happen even on (older) PCs.
1099  */
1100 
1101 static int __init cmos_platform_probe(struct platform_device *pdev)
1102 {
1103 	cmos_of_init(pdev);
1104 	cmos_wake_setup(&pdev->dev);
1105 	return cmos_do_probe(&pdev->dev,
1106 			platform_get_resource(pdev, IORESOURCE_IO, 0),
1107 			platform_get_irq(pdev, 0));
1108 }
1109 
1110 static int __exit cmos_platform_remove(struct platform_device *pdev)
1111 {
1112 	cmos_do_remove(&pdev->dev);
1113 	return 0;
1114 }
1115 
1116 static void cmos_platform_shutdown(struct platform_device *pdev)
1117 {
1118 	if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pdev->dev))
1119 		return;
1120 
1121 	cmos_do_shutdown();
1122 }
1123 
1124 /* work with hotplug and coldplug */
1125 MODULE_ALIAS("platform:rtc_cmos");
1126 
1127 static struct platform_driver cmos_platform_driver = {
1128 	.remove		= __exit_p(cmos_platform_remove),
1129 	.shutdown	= cmos_platform_shutdown,
1130 	.driver = {
1131 		.name		= (char *) driver_name,
1132 #ifdef CONFIG_PM
1133 		.pm		= &cmos_pm_ops,
1134 #endif
1135 		.of_match_table = of_match_ptr(of_cmos_match),
1136 	}
1137 };
1138 
1139 #ifdef CONFIG_PNP
1140 static bool pnp_driver_registered;
1141 #endif
1142 static bool platform_driver_registered;
1143 
1144 static int __init cmos_init(void)
1145 {
1146 	int retval = 0;
1147 
1148 #ifdef	CONFIG_PNP
1149 	retval = pnp_register_driver(&cmos_pnp_driver);
1150 	if (retval == 0)
1151 		pnp_driver_registered = true;
1152 #endif
1153 
1154 	if (!cmos_rtc.dev) {
1155 		retval = platform_driver_probe(&cmos_platform_driver,
1156 					       cmos_platform_probe);
1157 		if (retval == 0)
1158 			platform_driver_registered = true;
1159 	}
1160 
1161 	if (retval == 0)
1162 		return 0;
1163 
1164 #ifdef	CONFIG_PNP
1165 	if (pnp_driver_registered)
1166 		pnp_unregister_driver(&cmos_pnp_driver);
1167 #endif
1168 	return retval;
1169 }
1170 module_init(cmos_init);
1171 
1172 static void __exit cmos_exit(void)
1173 {
1174 #ifdef	CONFIG_PNP
1175 	if (pnp_driver_registered)
1176 		pnp_unregister_driver(&cmos_pnp_driver);
1177 #endif
1178 	if (platform_driver_registered)
1179 		platform_driver_unregister(&cmos_platform_driver);
1180 }
1181 module_exit(cmos_exit);
1182 
1183 
1184 MODULE_AUTHOR("David Brownell");
1185 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1186 MODULE_LICENSE("GPL");
1187