1 /* 2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc 3 * 4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c) 5 * Copyright (C) 2006 David Brownell (convert to new framework) 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 /* 14 * The original "cmos clock" chip was an MC146818 chip, now obsolete. 15 * That defined the register interface now provided by all PCs, some 16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets 17 * integrate an MC146818 clone in their southbridge, and boards use 18 * that instead of discrete clones like the DS12887 or M48T86. There 19 * are also clones that connect using the LPC bus. 20 * 21 * That register API is also used directly by various other drivers 22 * (notably for integrated NVRAM), infrastructure (x86 has code to 23 * bypass the RTC framework, directly reading the RTC during boot 24 * and updating minutes/seconds for systems using NTP synch) and 25 * utilities (like userspace 'hwclock', if no /dev node exists). 26 * 27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with 28 * interrupts disabled, holding the global rtc_lock, to exclude those 29 * other drivers and utilities on correctly configured systems. 30 */ 31 #include <linux/kernel.h> 32 #include <linux/module.h> 33 #include <linux/init.h> 34 #include <linux/interrupt.h> 35 #include <linux/spinlock.h> 36 #include <linux/platform_device.h> 37 #include <linux/mod_devicetable.h> 38 #include <linux/log2.h> 39 #include <linux/pm.h> 40 #include <linux/of.h> 41 #include <linux/of_platform.h> 42 43 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */ 44 #include <asm-generic/rtc.h> 45 46 struct cmos_rtc { 47 struct rtc_device *rtc; 48 struct device *dev; 49 int irq; 50 struct resource *iomem; 51 52 void (*wake_on)(struct device *); 53 void (*wake_off)(struct device *); 54 55 u8 enabled_wake; 56 u8 suspend_ctrl; 57 58 /* newer hardware extends the original register set */ 59 u8 day_alrm; 60 u8 mon_alrm; 61 u8 century; 62 }; 63 64 /* both platform and pnp busses use negative numbers for invalid irqs */ 65 #define is_valid_irq(n) ((n) > 0) 66 67 static const char driver_name[] = "rtc_cmos"; 68 69 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear; 70 * always mask it against the irq enable bits in RTC_CONTROL. Bit values 71 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both. 72 */ 73 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF) 74 75 static inline int is_intr(u8 rtc_intr) 76 { 77 if (!(rtc_intr & RTC_IRQF)) 78 return 0; 79 return rtc_intr & RTC_IRQMASK; 80 } 81 82 /*----------------------------------------------------------------*/ 83 84 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because 85 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly 86 * used in a broken "legacy replacement" mode. The breakage includes 87 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for 88 * other (better) use. 89 * 90 * When that broken mode is in use, platform glue provides a partial 91 * emulation of hardware RTC IRQ facilities using HPET #1. We don't 92 * want to use HPET for anything except those IRQs though... 93 */ 94 #ifdef CONFIG_HPET_EMULATE_RTC 95 #include <asm/hpet.h> 96 #else 97 98 static inline int is_hpet_enabled(void) 99 { 100 return 0; 101 } 102 103 static inline int hpet_mask_rtc_irq_bit(unsigned long mask) 104 { 105 return 0; 106 } 107 108 static inline int hpet_set_rtc_irq_bit(unsigned long mask) 109 { 110 return 0; 111 } 112 113 static inline int 114 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec) 115 { 116 return 0; 117 } 118 119 static inline int hpet_set_periodic_freq(unsigned long freq) 120 { 121 return 0; 122 } 123 124 static inline int hpet_rtc_dropped_irq(void) 125 { 126 return 0; 127 } 128 129 static inline int hpet_rtc_timer_init(void) 130 { 131 return 0; 132 } 133 134 extern irq_handler_t hpet_rtc_interrupt; 135 136 static inline int hpet_register_irq_handler(irq_handler_t handler) 137 { 138 return 0; 139 } 140 141 static inline int hpet_unregister_irq_handler(irq_handler_t handler) 142 { 143 return 0; 144 } 145 146 #endif 147 148 /*----------------------------------------------------------------*/ 149 150 #ifdef RTC_PORT 151 152 /* Most newer x86 systems have two register banks, the first used 153 * for RTC and NVRAM and the second only for NVRAM. Caller must 154 * own rtc_lock ... and we won't worry about access during NMI. 155 */ 156 #define can_bank2 true 157 158 static inline unsigned char cmos_read_bank2(unsigned char addr) 159 { 160 outb(addr, RTC_PORT(2)); 161 return inb(RTC_PORT(3)); 162 } 163 164 static inline void cmos_write_bank2(unsigned char val, unsigned char addr) 165 { 166 outb(addr, RTC_PORT(2)); 167 outb(val, RTC_PORT(3)); 168 } 169 170 #else 171 172 #define can_bank2 false 173 174 static inline unsigned char cmos_read_bank2(unsigned char addr) 175 { 176 return 0; 177 } 178 179 static inline void cmos_write_bank2(unsigned char val, unsigned char addr) 180 { 181 } 182 183 #endif 184 185 /*----------------------------------------------------------------*/ 186 187 static int cmos_read_time(struct device *dev, struct rtc_time *t) 188 { 189 /* REVISIT: if the clock has a "century" register, use 190 * that instead of the heuristic in get_rtc_time(). 191 * That'll make Y3K compatility (year > 2070) easy! 192 */ 193 get_rtc_time(t); 194 return 0; 195 } 196 197 static int cmos_set_time(struct device *dev, struct rtc_time *t) 198 { 199 /* REVISIT: set the "century" register if available 200 * 201 * NOTE: this ignores the issue whereby updating the seconds 202 * takes effect exactly 500ms after we write the register. 203 * (Also queueing and other delays before we get this far.) 204 */ 205 return set_rtc_time(t); 206 } 207 208 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t) 209 { 210 struct cmos_rtc *cmos = dev_get_drvdata(dev); 211 unsigned char rtc_control; 212 213 if (!is_valid_irq(cmos->irq)) 214 return -EIO; 215 216 /* Basic alarms only support hour, minute, and seconds fields. 217 * Some also support day and month, for alarms up to a year in 218 * the future. 219 */ 220 t->time.tm_mday = -1; 221 t->time.tm_mon = -1; 222 223 spin_lock_irq(&rtc_lock); 224 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM); 225 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM); 226 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM); 227 228 if (cmos->day_alrm) { 229 /* ignore upper bits on readback per ACPI spec */ 230 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f; 231 if (!t->time.tm_mday) 232 t->time.tm_mday = -1; 233 234 if (cmos->mon_alrm) { 235 t->time.tm_mon = CMOS_READ(cmos->mon_alrm); 236 if (!t->time.tm_mon) 237 t->time.tm_mon = -1; 238 } 239 } 240 241 rtc_control = CMOS_READ(RTC_CONTROL); 242 spin_unlock_irq(&rtc_lock); 243 244 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 245 if (((unsigned)t->time.tm_sec) < 0x60) 246 t->time.tm_sec = bcd2bin(t->time.tm_sec); 247 else 248 t->time.tm_sec = -1; 249 if (((unsigned)t->time.tm_min) < 0x60) 250 t->time.tm_min = bcd2bin(t->time.tm_min); 251 else 252 t->time.tm_min = -1; 253 if (((unsigned)t->time.tm_hour) < 0x24) 254 t->time.tm_hour = bcd2bin(t->time.tm_hour); 255 else 256 t->time.tm_hour = -1; 257 258 if (cmos->day_alrm) { 259 if (((unsigned)t->time.tm_mday) <= 0x31) 260 t->time.tm_mday = bcd2bin(t->time.tm_mday); 261 else 262 t->time.tm_mday = -1; 263 264 if (cmos->mon_alrm) { 265 if (((unsigned)t->time.tm_mon) <= 0x12) 266 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1; 267 else 268 t->time.tm_mon = -1; 269 } 270 } 271 } 272 t->time.tm_year = -1; 273 274 t->enabled = !!(rtc_control & RTC_AIE); 275 t->pending = 0; 276 277 return 0; 278 } 279 280 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control) 281 { 282 unsigned char rtc_intr; 283 284 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS; 285 * allegedly some older rtcs need that to handle irqs properly 286 */ 287 rtc_intr = CMOS_READ(RTC_INTR_FLAGS); 288 289 if (is_hpet_enabled()) 290 return; 291 292 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 293 if (is_intr(rtc_intr)) 294 rtc_update_irq(cmos->rtc, 1, rtc_intr); 295 } 296 297 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask) 298 { 299 unsigned char rtc_control; 300 301 /* flush any pending IRQ status, notably for update irqs, 302 * before we enable new IRQs 303 */ 304 rtc_control = CMOS_READ(RTC_CONTROL); 305 cmos_checkintr(cmos, rtc_control); 306 307 rtc_control |= mask; 308 CMOS_WRITE(rtc_control, RTC_CONTROL); 309 hpet_set_rtc_irq_bit(mask); 310 311 cmos_checkintr(cmos, rtc_control); 312 } 313 314 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask) 315 { 316 unsigned char rtc_control; 317 318 rtc_control = CMOS_READ(RTC_CONTROL); 319 rtc_control &= ~mask; 320 CMOS_WRITE(rtc_control, RTC_CONTROL); 321 hpet_mask_rtc_irq_bit(mask); 322 323 cmos_checkintr(cmos, rtc_control); 324 } 325 326 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t) 327 { 328 struct cmos_rtc *cmos = dev_get_drvdata(dev); 329 unsigned char mon, mday, hrs, min, sec, rtc_control; 330 331 if (!is_valid_irq(cmos->irq)) 332 return -EIO; 333 334 mon = t->time.tm_mon + 1; 335 mday = t->time.tm_mday; 336 hrs = t->time.tm_hour; 337 min = t->time.tm_min; 338 sec = t->time.tm_sec; 339 340 rtc_control = CMOS_READ(RTC_CONTROL); 341 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { 342 /* Writing 0xff means "don't care" or "match all". */ 343 mon = (mon <= 12) ? bin2bcd(mon) : 0xff; 344 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff; 345 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff; 346 min = (min < 60) ? bin2bcd(min) : 0xff; 347 sec = (sec < 60) ? bin2bcd(sec) : 0xff; 348 } 349 350 spin_lock_irq(&rtc_lock); 351 352 /* next rtc irq must not be from previous alarm setting */ 353 cmos_irq_disable(cmos, RTC_AIE); 354 355 /* update alarm */ 356 CMOS_WRITE(hrs, RTC_HOURS_ALARM); 357 CMOS_WRITE(min, RTC_MINUTES_ALARM); 358 CMOS_WRITE(sec, RTC_SECONDS_ALARM); 359 360 /* the system may support an "enhanced" alarm */ 361 if (cmos->day_alrm) { 362 CMOS_WRITE(mday, cmos->day_alrm); 363 if (cmos->mon_alrm) 364 CMOS_WRITE(mon, cmos->mon_alrm); 365 } 366 367 /* FIXME the HPET alarm glue currently ignores day_alrm 368 * and mon_alrm ... 369 */ 370 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec); 371 372 if (t->enabled) 373 cmos_irq_enable(cmos, RTC_AIE); 374 375 spin_unlock_irq(&rtc_lock); 376 377 return 0; 378 } 379 380 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled) 381 { 382 struct cmos_rtc *cmos = dev_get_drvdata(dev); 383 unsigned long flags; 384 385 if (!is_valid_irq(cmos->irq)) 386 return -EINVAL; 387 388 spin_lock_irqsave(&rtc_lock, flags); 389 390 if (enabled) 391 cmos_irq_enable(cmos, RTC_AIE); 392 else 393 cmos_irq_disable(cmos, RTC_AIE); 394 395 spin_unlock_irqrestore(&rtc_lock, flags); 396 return 0; 397 } 398 399 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE) 400 401 static int cmos_procfs(struct device *dev, struct seq_file *seq) 402 { 403 struct cmos_rtc *cmos = dev_get_drvdata(dev); 404 unsigned char rtc_control, valid; 405 406 spin_lock_irq(&rtc_lock); 407 rtc_control = CMOS_READ(RTC_CONTROL); 408 valid = CMOS_READ(RTC_VALID); 409 spin_unlock_irq(&rtc_lock); 410 411 /* NOTE: at least ICH6 reports battery status using a different 412 * (non-RTC) bit; and SQWE is ignored on many current systems. 413 */ 414 return seq_printf(seq, 415 "periodic_IRQ\t: %s\n" 416 "update_IRQ\t: %s\n" 417 "HPET_emulated\t: %s\n" 418 // "square_wave\t: %s\n" 419 "BCD\t\t: %s\n" 420 "DST_enable\t: %s\n" 421 "periodic_freq\t: %d\n" 422 "batt_status\t: %s\n", 423 (rtc_control & RTC_PIE) ? "yes" : "no", 424 (rtc_control & RTC_UIE) ? "yes" : "no", 425 is_hpet_enabled() ? "yes" : "no", 426 // (rtc_control & RTC_SQWE) ? "yes" : "no", 427 (rtc_control & RTC_DM_BINARY) ? "no" : "yes", 428 (rtc_control & RTC_DST_EN) ? "yes" : "no", 429 cmos->rtc->irq_freq, 430 (valid & RTC_VRT) ? "okay" : "dead"); 431 } 432 433 #else 434 #define cmos_procfs NULL 435 #endif 436 437 static const struct rtc_class_ops cmos_rtc_ops = { 438 .read_time = cmos_read_time, 439 .set_time = cmos_set_time, 440 .read_alarm = cmos_read_alarm, 441 .set_alarm = cmos_set_alarm, 442 .proc = cmos_procfs, 443 .alarm_irq_enable = cmos_alarm_irq_enable, 444 }; 445 446 /*----------------------------------------------------------------*/ 447 448 /* 449 * All these chips have at least 64 bytes of address space, shared by 450 * RTC registers and NVRAM. Most of those bytes of NVRAM are used 451 * by boot firmware. Modern chips have 128 or 256 bytes. 452 */ 453 454 #define NVRAM_OFFSET (RTC_REG_D + 1) 455 456 static ssize_t 457 cmos_nvram_read(struct file *filp, struct kobject *kobj, 458 struct bin_attribute *attr, 459 char *buf, loff_t off, size_t count) 460 { 461 int retval; 462 463 if (unlikely(off >= attr->size)) 464 return 0; 465 if (unlikely(off < 0)) 466 return -EINVAL; 467 if ((off + count) > attr->size) 468 count = attr->size - off; 469 470 off += NVRAM_OFFSET; 471 spin_lock_irq(&rtc_lock); 472 for (retval = 0; count; count--, off++, retval++) { 473 if (off < 128) 474 *buf++ = CMOS_READ(off); 475 else if (can_bank2) 476 *buf++ = cmos_read_bank2(off); 477 else 478 break; 479 } 480 spin_unlock_irq(&rtc_lock); 481 482 return retval; 483 } 484 485 static ssize_t 486 cmos_nvram_write(struct file *filp, struct kobject *kobj, 487 struct bin_attribute *attr, 488 char *buf, loff_t off, size_t count) 489 { 490 struct cmos_rtc *cmos; 491 int retval; 492 493 cmos = dev_get_drvdata(container_of(kobj, struct device, kobj)); 494 if (unlikely(off >= attr->size)) 495 return -EFBIG; 496 if (unlikely(off < 0)) 497 return -EINVAL; 498 if ((off + count) > attr->size) 499 count = attr->size - off; 500 501 /* NOTE: on at least PCs and Ataris, the boot firmware uses a 502 * checksum on part of the NVRAM data. That's currently ignored 503 * here. If userspace is smart enough to know what fields of 504 * NVRAM to update, updating checksums is also part of its job. 505 */ 506 off += NVRAM_OFFSET; 507 spin_lock_irq(&rtc_lock); 508 for (retval = 0; count; count--, off++, retval++) { 509 /* don't trash RTC registers */ 510 if (off == cmos->day_alrm 511 || off == cmos->mon_alrm 512 || off == cmos->century) 513 buf++; 514 else if (off < 128) 515 CMOS_WRITE(*buf++, off); 516 else if (can_bank2) 517 cmos_write_bank2(*buf++, off); 518 else 519 break; 520 } 521 spin_unlock_irq(&rtc_lock); 522 523 return retval; 524 } 525 526 static struct bin_attribute nvram = { 527 .attr = { 528 .name = "nvram", 529 .mode = S_IRUGO | S_IWUSR, 530 }, 531 532 .read = cmos_nvram_read, 533 .write = cmos_nvram_write, 534 /* size gets set up later */ 535 }; 536 537 /*----------------------------------------------------------------*/ 538 539 static struct cmos_rtc cmos_rtc; 540 541 static irqreturn_t cmos_interrupt(int irq, void *p) 542 { 543 u8 irqstat; 544 u8 rtc_control; 545 546 spin_lock(&rtc_lock); 547 548 /* When the HPET interrupt handler calls us, the interrupt 549 * status is passed as arg1 instead of the irq number. But 550 * always clear irq status, even when HPET is in the way. 551 * 552 * Note that HPET and RTC are almost certainly out of phase, 553 * giving different IRQ status ... 554 */ 555 irqstat = CMOS_READ(RTC_INTR_FLAGS); 556 rtc_control = CMOS_READ(RTC_CONTROL); 557 if (is_hpet_enabled()) 558 irqstat = (unsigned long)irq & 0xF0; 559 560 /* If we were suspended, RTC_CONTROL may not be accurate since the 561 * bios may have cleared it. 562 */ 563 if (!cmos_rtc.suspend_ctrl) 564 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; 565 else 566 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF; 567 568 /* All Linux RTC alarms should be treated as if they were oneshot. 569 * Similar code may be needed in system wakeup paths, in case the 570 * alarm woke the system. 571 */ 572 if (irqstat & RTC_AIE) { 573 cmos_rtc.suspend_ctrl &= ~RTC_AIE; 574 rtc_control &= ~RTC_AIE; 575 CMOS_WRITE(rtc_control, RTC_CONTROL); 576 hpet_mask_rtc_irq_bit(RTC_AIE); 577 CMOS_READ(RTC_INTR_FLAGS); 578 } 579 spin_unlock(&rtc_lock); 580 581 if (is_intr(irqstat)) { 582 rtc_update_irq(p, 1, irqstat); 583 return IRQ_HANDLED; 584 } else 585 return IRQ_NONE; 586 } 587 588 #ifdef CONFIG_PNP 589 #define INITSECTION 590 591 #else 592 #define INITSECTION __init 593 #endif 594 595 static int INITSECTION 596 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq) 597 { 598 struct cmos_rtc_board_info *info = dev->platform_data; 599 int retval = 0; 600 unsigned char rtc_control; 601 unsigned address_space; 602 603 /* there can be only one ... */ 604 if (cmos_rtc.dev) 605 return -EBUSY; 606 607 if (!ports) 608 return -ENODEV; 609 610 /* Claim I/O ports ASAP, minimizing conflict with legacy driver. 611 * 612 * REVISIT non-x86 systems may instead use memory space resources 613 * (needing ioremap etc), not i/o space resources like this ... 614 */ 615 ports = request_region(ports->start, 616 resource_size(ports), 617 driver_name); 618 if (!ports) { 619 dev_dbg(dev, "i/o registers already in use\n"); 620 return -EBUSY; 621 } 622 623 cmos_rtc.irq = rtc_irq; 624 cmos_rtc.iomem = ports; 625 626 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM 627 * driver did, but don't reject unknown configs. Old hardware 628 * won't address 128 bytes. Newer chips have multiple banks, 629 * though they may not be listed in one I/O resource. 630 */ 631 #if defined(CONFIG_ATARI) 632 address_space = 64; 633 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \ 634 || defined(__sparc__) || defined(__mips__) \ 635 || defined(__powerpc__) 636 address_space = 128; 637 #else 638 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes. 639 address_space = 128; 640 #endif 641 if (can_bank2 && ports->end > (ports->start + 1)) 642 address_space = 256; 643 644 /* For ACPI systems extension info comes from the FADT. On others, 645 * board specific setup provides it as appropriate. Systems where 646 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and 647 * some almost-clones) can provide hooks to make that behave. 648 * 649 * Note that ACPI doesn't preclude putting these registers into 650 * "extended" areas of the chip, including some that we won't yet 651 * expect CMOS_READ and friends to handle. 652 */ 653 if (info) { 654 if (info->rtc_day_alarm && info->rtc_day_alarm < 128) 655 cmos_rtc.day_alrm = info->rtc_day_alarm; 656 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128) 657 cmos_rtc.mon_alrm = info->rtc_mon_alarm; 658 if (info->rtc_century && info->rtc_century < 128) 659 cmos_rtc.century = info->rtc_century; 660 661 if (info->wake_on && info->wake_off) { 662 cmos_rtc.wake_on = info->wake_on; 663 cmos_rtc.wake_off = info->wake_off; 664 } 665 } 666 667 cmos_rtc.dev = dev; 668 dev_set_drvdata(dev, &cmos_rtc); 669 670 cmos_rtc.rtc = rtc_device_register(driver_name, dev, 671 &cmos_rtc_ops, THIS_MODULE); 672 if (IS_ERR(cmos_rtc.rtc)) { 673 retval = PTR_ERR(cmos_rtc.rtc); 674 goto cleanup0; 675 } 676 677 rename_region(ports, dev_name(&cmos_rtc.rtc->dev)); 678 679 spin_lock_irq(&rtc_lock); 680 681 /* force periodic irq to CMOS reset default of 1024Hz; 682 * 683 * REVISIT it's been reported that at least one x86_64 ALI mobo 684 * doesn't use 32KHz here ... for portability we might need to 685 * do something about other clock frequencies. 686 */ 687 cmos_rtc.rtc->irq_freq = 1024; 688 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq); 689 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT); 690 691 /* disable irqs */ 692 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE); 693 694 rtc_control = CMOS_READ(RTC_CONTROL); 695 696 spin_unlock_irq(&rtc_lock); 697 698 /* FIXME: 699 * <asm-generic/rtc.h> doesn't know 12-hour mode either. 700 */ 701 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) { 702 dev_warn(dev, "only 24-hr supported\n"); 703 retval = -ENXIO; 704 goto cleanup1; 705 } 706 707 if (is_valid_irq(rtc_irq)) { 708 irq_handler_t rtc_cmos_int_handler; 709 710 if (is_hpet_enabled()) { 711 int err; 712 713 rtc_cmos_int_handler = hpet_rtc_interrupt; 714 err = hpet_register_irq_handler(cmos_interrupt); 715 if (err != 0) { 716 dev_warn(dev, "hpet_register_irq_handler " 717 " failed in rtc_init()."); 718 goto cleanup1; 719 } 720 } else 721 rtc_cmos_int_handler = cmos_interrupt; 722 723 retval = request_irq(rtc_irq, rtc_cmos_int_handler, 724 0, dev_name(&cmos_rtc.rtc->dev), 725 cmos_rtc.rtc); 726 if (retval < 0) { 727 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq); 728 goto cleanup1; 729 } 730 } 731 hpet_rtc_timer_init(); 732 733 /* export at least the first block of NVRAM */ 734 nvram.size = address_space - NVRAM_OFFSET; 735 retval = sysfs_create_bin_file(&dev->kobj, &nvram); 736 if (retval < 0) { 737 dev_dbg(dev, "can't create nvram file? %d\n", retval); 738 goto cleanup2; 739 } 740 741 dev_info(dev, "%s%s, %zd bytes nvram%s\n", 742 !is_valid_irq(rtc_irq) ? "no alarms" : 743 cmos_rtc.mon_alrm ? "alarms up to one year" : 744 cmos_rtc.day_alrm ? "alarms up to one month" : 745 "alarms up to one day", 746 cmos_rtc.century ? ", y3k" : "", 747 nvram.size, 748 is_hpet_enabled() ? ", hpet irqs" : ""); 749 750 return 0; 751 752 cleanup2: 753 if (is_valid_irq(rtc_irq)) 754 free_irq(rtc_irq, cmos_rtc.rtc); 755 cleanup1: 756 cmos_rtc.dev = NULL; 757 rtc_device_unregister(cmos_rtc.rtc); 758 cleanup0: 759 release_region(ports->start, resource_size(ports)); 760 return retval; 761 } 762 763 static void cmos_do_shutdown(void) 764 { 765 spin_lock_irq(&rtc_lock); 766 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK); 767 spin_unlock_irq(&rtc_lock); 768 } 769 770 static void __exit cmos_do_remove(struct device *dev) 771 { 772 struct cmos_rtc *cmos = dev_get_drvdata(dev); 773 struct resource *ports; 774 775 cmos_do_shutdown(); 776 777 sysfs_remove_bin_file(&dev->kobj, &nvram); 778 779 if (is_valid_irq(cmos->irq)) { 780 free_irq(cmos->irq, cmos->rtc); 781 hpet_unregister_irq_handler(cmos_interrupt); 782 } 783 784 rtc_device_unregister(cmos->rtc); 785 cmos->rtc = NULL; 786 787 ports = cmos->iomem; 788 release_region(ports->start, resource_size(ports)); 789 cmos->iomem = NULL; 790 791 cmos->dev = NULL; 792 dev_set_drvdata(dev, NULL); 793 } 794 795 #ifdef CONFIG_PM 796 797 static int cmos_suspend(struct device *dev) 798 { 799 struct cmos_rtc *cmos = dev_get_drvdata(dev); 800 unsigned char tmp; 801 802 /* only the alarm might be a wakeup event source */ 803 spin_lock_irq(&rtc_lock); 804 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL); 805 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) { 806 unsigned char mask; 807 808 if (device_may_wakeup(dev)) 809 mask = RTC_IRQMASK & ~RTC_AIE; 810 else 811 mask = RTC_IRQMASK; 812 tmp &= ~mask; 813 CMOS_WRITE(tmp, RTC_CONTROL); 814 hpet_mask_rtc_irq_bit(mask); 815 816 cmos_checkintr(cmos, tmp); 817 } 818 spin_unlock_irq(&rtc_lock); 819 820 if (tmp & RTC_AIE) { 821 cmos->enabled_wake = 1; 822 if (cmos->wake_on) 823 cmos->wake_on(dev); 824 else 825 enable_irq_wake(cmos->irq); 826 } 827 828 dev_dbg(dev, "suspend%s, ctrl %02x\n", 829 (tmp & RTC_AIE) ? ", alarm may wake" : "", 830 tmp); 831 832 return 0; 833 } 834 835 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even 836 * after a detour through G3 "mechanical off", although the ACPI spec 837 * says wakeup should only work from G1/S4 "hibernate". To most users, 838 * distinctions between S4 and S5 are pointless. So when the hardware 839 * allows, don't draw that distinction. 840 */ 841 static inline int cmos_poweroff(struct device *dev) 842 { 843 return cmos_suspend(dev); 844 } 845 846 static int cmos_resume(struct device *dev) 847 { 848 struct cmos_rtc *cmos = dev_get_drvdata(dev); 849 unsigned char tmp; 850 851 if (cmos->enabled_wake) { 852 if (cmos->wake_off) 853 cmos->wake_off(dev); 854 else 855 disable_irq_wake(cmos->irq); 856 cmos->enabled_wake = 0; 857 } 858 859 spin_lock_irq(&rtc_lock); 860 tmp = cmos->suspend_ctrl; 861 cmos->suspend_ctrl = 0; 862 /* re-enable any irqs previously active */ 863 if (tmp & RTC_IRQMASK) { 864 unsigned char mask; 865 866 if (device_may_wakeup(dev)) 867 hpet_rtc_timer_init(); 868 869 do { 870 CMOS_WRITE(tmp, RTC_CONTROL); 871 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK); 872 873 mask = CMOS_READ(RTC_INTR_FLAGS); 874 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF; 875 if (!is_hpet_enabled() || !is_intr(mask)) 876 break; 877 878 /* force one-shot behavior if HPET blocked 879 * the wake alarm's irq 880 */ 881 rtc_update_irq(cmos->rtc, 1, mask); 882 tmp &= ~RTC_AIE; 883 hpet_mask_rtc_irq_bit(RTC_AIE); 884 } while (mask & RTC_AIE); 885 } 886 spin_unlock_irq(&rtc_lock); 887 888 dev_dbg(dev, "resume, ctrl %02x\n", tmp); 889 890 return 0; 891 } 892 893 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume); 894 895 #else 896 897 static inline int cmos_poweroff(struct device *dev) 898 { 899 return -ENOSYS; 900 } 901 902 #endif 903 904 /*----------------------------------------------------------------*/ 905 906 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus. 907 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs 908 * probably list them in similar PNPBIOS tables; so PNP is more common. 909 * 910 * We don't use legacy "poke at the hardware" probing. Ancient PCs that 911 * predate even PNPBIOS should set up platform_bus devices. 912 */ 913 914 #ifdef CONFIG_ACPI 915 916 #include <linux/acpi.h> 917 918 static u32 rtc_handler(void *context) 919 { 920 struct device *dev = context; 921 922 pm_wakeup_event(dev, 0); 923 acpi_clear_event(ACPI_EVENT_RTC); 924 acpi_disable_event(ACPI_EVENT_RTC, 0); 925 return ACPI_INTERRUPT_HANDLED; 926 } 927 928 static inline void rtc_wake_setup(struct device *dev) 929 { 930 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev); 931 /* 932 * After the RTC handler is installed, the Fixed_RTC event should 933 * be disabled. Only when the RTC alarm is set will it be enabled. 934 */ 935 acpi_clear_event(ACPI_EVENT_RTC); 936 acpi_disable_event(ACPI_EVENT_RTC, 0); 937 } 938 939 static void rtc_wake_on(struct device *dev) 940 { 941 acpi_clear_event(ACPI_EVENT_RTC); 942 acpi_enable_event(ACPI_EVENT_RTC, 0); 943 } 944 945 static void rtc_wake_off(struct device *dev) 946 { 947 acpi_disable_event(ACPI_EVENT_RTC, 0); 948 } 949 950 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find 951 * its device node and pass extra config data. This helps its driver use 952 * capabilities that the now-obsolete mc146818 didn't have, and informs it 953 * that this board's RTC is wakeup-capable (per ACPI spec). 954 */ 955 static struct cmos_rtc_board_info acpi_rtc_info; 956 957 static void cmos_wake_setup(struct device *dev) 958 { 959 if (acpi_disabled) 960 return; 961 962 rtc_wake_setup(dev); 963 acpi_rtc_info.wake_on = rtc_wake_on; 964 acpi_rtc_info.wake_off = rtc_wake_off; 965 966 /* workaround bug in some ACPI tables */ 967 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) { 968 dev_dbg(dev, "bogus FADT month_alarm (%d)\n", 969 acpi_gbl_FADT.month_alarm); 970 acpi_gbl_FADT.month_alarm = 0; 971 } 972 973 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm; 974 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm; 975 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century; 976 977 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */ 978 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE) 979 dev_info(dev, "RTC can wake from S4\n"); 980 981 dev->platform_data = &acpi_rtc_info; 982 983 /* RTC always wakes from S1/S2/S3, and often S4/STD */ 984 device_init_wakeup(dev, 1); 985 } 986 987 #else 988 989 static void cmos_wake_setup(struct device *dev) 990 { 991 } 992 993 #endif 994 995 #ifdef CONFIG_PNP 996 997 #include <linux/pnp.h> 998 999 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id) 1000 { 1001 cmos_wake_setup(&pnp->dev); 1002 1003 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) 1004 /* Some machines contain a PNP entry for the RTC, but 1005 * don't define the IRQ. It should always be safe to 1006 * hardcode it in these cases 1007 */ 1008 return cmos_do_probe(&pnp->dev, 1009 pnp_get_resource(pnp, IORESOURCE_IO, 0), 8); 1010 else 1011 return cmos_do_probe(&pnp->dev, 1012 pnp_get_resource(pnp, IORESOURCE_IO, 0), 1013 pnp_irq(pnp, 0)); 1014 } 1015 1016 static void __exit cmos_pnp_remove(struct pnp_dev *pnp) 1017 { 1018 cmos_do_remove(&pnp->dev); 1019 } 1020 1021 static void cmos_pnp_shutdown(struct pnp_dev *pnp) 1022 { 1023 if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pnp->dev)) 1024 return; 1025 1026 cmos_do_shutdown(); 1027 } 1028 1029 static const struct pnp_device_id rtc_ids[] = { 1030 { .id = "PNP0b00", }, 1031 { .id = "PNP0b01", }, 1032 { .id = "PNP0b02", }, 1033 { }, 1034 }; 1035 MODULE_DEVICE_TABLE(pnp, rtc_ids); 1036 1037 static struct pnp_driver cmos_pnp_driver = { 1038 .name = (char *) driver_name, 1039 .id_table = rtc_ids, 1040 .probe = cmos_pnp_probe, 1041 .remove = __exit_p(cmos_pnp_remove), 1042 .shutdown = cmos_pnp_shutdown, 1043 1044 /* flag ensures resume() gets called, and stops syslog spam */ 1045 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE, 1046 #ifdef CONFIG_PM_SLEEP 1047 .driver = { 1048 .pm = &cmos_pm_ops, 1049 }, 1050 #endif 1051 }; 1052 1053 #endif /* CONFIG_PNP */ 1054 1055 #ifdef CONFIG_OF 1056 static const struct of_device_id of_cmos_match[] = { 1057 { 1058 .compatible = "motorola,mc146818", 1059 }, 1060 { }, 1061 }; 1062 MODULE_DEVICE_TABLE(of, of_cmos_match); 1063 1064 static __init void cmos_of_init(struct platform_device *pdev) 1065 { 1066 struct device_node *node = pdev->dev.of_node; 1067 struct rtc_time time; 1068 int ret; 1069 const __be32 *val; 1070 1071 if (!node) 1072 return; 1073 1074 val = of_get_property(node, "ctrl-reg", NULL); 1075 if (val) 1076 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL); 1077 1078 val = of_get_property(node, "freq-reg", NULL); 1079 if (val) 1080 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT); 1081 1082 get_rtc_time(&time); 1083 ret = rtc_valid_tm(&time); 1084 if (ret) { 1085 struct rtc_time def_time = { 1086 .tm_year = 1, 1087 .tm_mday = 1, 1088 }; 1089 set_rtc_time(&def_time); 1090 } 1091 } 1092 #else 1093 static inline void cmos_of_init(struct platform_device *pdev) {} 1094 #endif 1095 /*----------------------------------------------------------------*/ 1096 1097 /* Platform setup should have set up an RTC device, when PNP is 1098 * unavailable ... this could happen even on (older) PCs. 1099 */ 1100 1101 static int __init cmos_platform_probe(struct platform_device *pdev) 1102 { 1103 cmos_of_init(pdev); 1104 cmos_wake_setup(&pdev->dev); 1105 return cmos_do_probe(&pdev->dev, 1106 platform_get_resource(pdev, IORESOURCE_IO, 0), 1107 platform_get_irq(pdev, 0)); 1108 } 1109 1110 static int __exit cmos_platform_remove(struct platform_device *pdev) 1111 { 1112 cmos_do_remove(&pdev->dev); 1113 return 0; 1114 } 1115 1116 static void cmos_platform_shutdown(struct platform_device *pdev) 1117 { 1118 if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pdev->dev)) 1119 return; 1120 1121 cmos_do_shutdown(); 1122 } 1123 1124 /* work with hotplug and coldplug */ 1125 MODULE_ALIAS("platform:rtc_cmos"); 1126 1127 static struct platform_driver cmos_platform_driver = { 1128 .remove = __exit_p(cmos_platform_remove), 1129 .shutdown = cmos_platform_shutdown, 1130 .driver = { 1131 .name = (char *) driver_name, 1132 #ifdef CONFIG_PM 1133 .pm = &cmos_pm_ops, 1134 #endif 1135 .of_match_table = of_match_ptr(of_cmos_match), 1136 } 1137 }; 1138 1139 #ifdef CONFIG_PNP 1140 static bool pnp_driver_registered; 1141 #endif 1142 static bool platform_driver_registered; 1143 1144 static int __init cmos_init(void) 1145 { 1146 int retval = 0; 1147 1148 #ifdef CONFIG_PNP 1149 retval = pnp_register_driver(&cmos_pnp_driver); 1150 if (retval == 0) 1151 pnp_driver_registered = true; 1152 #endif 1153 1154 if (!cmos_rtc.dev) { 1155 retval = platform_driver_probe(&cmos_platform_driver, 1156 cmos_platform_probe); 1157 if (retval == 0) 1158 platform_driver_registered = true; 1159 } 1160 1161 if (retval == 0) 1162 return 0; 1163 1164 #ifdef CONFIG_PNP 1165 if (pnp_driver_registered) 1166 pnp_unregister_driver(&cmos_pnp_driver); 1167 #endif 1168 return retval; 1169 } 1170 module_init(cmos_init); 1171 1172 static void __exit cmos_exit(void) 1173 { 1174 #ifdef CONFIG_PNP 1175 if (pnp_driver_registered) 1176 pnp_unregister_driver(&cmos_pnp_driver); 1177 #endif 1178 if (platform_driver_registered) 1179 platform_driver_unregister(&cmos_platform_driver); 1180 } 1181 module_exit(cmos_exit); 1182 1183 1184 MODULE_AUTHOR("David Brownell"); 1185 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs"); 1186 MODULE_LICENSE("GPL"); 1187