xref: /openbmc/linux/drivers/rtc/rtc-cmos.c (revision 3a0d89d3)
1 /*
2  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
3  *
4  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5  * Copyright (C) 2006 David Brownell (convert to new framework)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  */
12 
13 /*
14  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15  * That defined the register interface now provided by all PCs, some
16  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
17  * integrate an MC146818 clone in their southbridge, and boards use
18  * that instead of discrete clones like the DS12887 or M48T86.  There
19  * are also clones that connect using the LPC bus.
20  *
21  * That register API is also used directly by various other drivers
22  * (notably for integrated NVRAM), infrastructure (x86 has code to
23  * bypass the RTC framework, directly reading the RTC during boot
24  * and updating minutes/seconds for systems using NTP synch) and
25  * utilities (like userspace 'hwclock', if no /dev node exists).
26  *
27  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28  * interrupts disabled, holding the global rtc_lock, to exclude those
29  * other drivers and utilities on correctly configured systems.
30  */
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/interrupt.h>
35 #include <linux/spinlock.h>
36 #include <linux/platform_device.h>
37 #include <linux/log2.h>
38 #include <linux/pm.h>
39 #include <linux/of.h>
40 #include <linux/of_platform.h>
41 #include <linux/dmi.h>
42 
43 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
44 #include <asm-generic/rtc.h>
45 
46 struct cmos_rtc {
47 	struct rtc_device	*rtc;
48 	struct device		*dev;
49 	int			irq;
50 	struct resource		*iomem;
51 
52 	void			(*wake_on)(struct device *);
53 	void			(*wake_off)(struct device *);
54 
55 	u8			enabled_wake;
56 	u8			suspend_ctrl;
57 
58 	/* newer hardware extends the original register set */
59 	u8			day_alrm;
60 	u8			mon_alrm;
61 	u8			century;
62 };
63 
64 /* both platform and pnp busses use negative numbers for invalid irqs */
65 #define is_valid_irq(n)		((n) > 0)
66 
67 static const char driver_name[] = "rtc_cmos";
68 
69 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
70  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
71  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
72  */
73 #define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
74 
75 static inline int is_intr(u8 rtc_intr)
76 {
77 	if (!(rtc_intr & RTC_IRQF))
78 		return 0;
79 	return rtc_intr & RTC_IRQMASK;
80 }
81 
82 /*----------------------------------------------------------------*/
83 
84 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
85  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
86  * used in a broken "legacy replacement" mode.  The breakage includes
87  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
88  * other (better) use.
89  *
90  * When that broken mode is in use, platform glue provides a partial
91  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
92  * want to use HPET for anything except those IRQs though...
93  */
94 #ifdef CONFIG_HPET_EMULATE_RTC
95 #include <asm/hpet.h>
96 #else
97 
98 static inline int is_hpet_enabled(void)
99 {
100 	return 0;
101 }
102 
103 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
104 {
105 	return 0;
106 }
107 
108 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
109 {
110 	return 0;
111 }
112 
113 static inline int
114 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
115 {
116 	return 0;
117 }
118 
119 static inline int hpet_set_periodic_freq(unsigned long freq)
120 {
121 	return 0;
122 }
123 
124 static inline int hpet_rtc_dropped_irq(void)
125 {
126 	return 0;
127 }
128 
129 static inline int hpet_rtc_timer_init(void)
130 {
131 	return 0;
132 }
133 
134 extern irq_handler_t hpet_rtc_interrupt;
135 
136 static inline int hpet_register_irq_handler(irq_handler_t handler)
137 {
138 	return 0;
139 }
140 
141 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
142 {
143 	return 0;
144 }
145 
146 #endif
147 
148 /*----------------------------------------------------------------*/
149 
150 #ifdef RTC_PORT
151 
152 /* Most newer x86 systems have two register banks, the first used
153  * for RTC and NVRAM and the second only for NVRAM.  Caller must
154  * own rtc_lock ... and we won't worry about access during NMI.
155  */
156 #define can_bank2	true
157 
158 static inline unsigned char cmos_read_bank2(unsigned char addr)
159 {
160 	outb(addr, RTC_PORT(2));
161 	return inb(RTC_PORT(3));
162 }
163 
164 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
165 {
166 	outb(addr, RTC_PORT(2));
167 	outb(val, RTC_PORT(3));
168 }
169 
170 #else
171 
172 #define can_bank2	false
173 
174 static inline unsigned char cmos_read_bank2(unsigned char addr)
175 {
176 	return 0;
177 }
178 
179 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
180 {
181 }
182 
183 #endif
184 
185 /*----------------------------------------------------------------*/
186 
187 static int cmos_read_time(struct device *dev, struct rtc_time *t)
188 {
189 	/* REVISIT:  if the clock has a "century" register, use
190 	 * that instead of the heuristic in get_rtc_time().
191 	 * That'll make Y3K compatility (year > 2070) easy!
192 	 */
193 	get_rtc_time(t);
194 	return 0;
195 }
196 
197 static int cmos_set_time(struct device *dev, struct rtc_time *t)
198 {
199 	/* REVISIT:  set the "century" register if available
200 	 *
201 	 * NOTE: this ignores the issue whereby updating the seconds
202 	 * takes effect exactly 500ms after we write the register.
203 	 * (Also queueing and other delays before we get this far.)
204 	 */
205 	return set_rtc_time(t);
206 }
207 
208 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
209 {
210 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
211 	unsigned char	rtc_control;
212 
213 	if (!is_valid_irq(cmos->irq))
214 		return -EIO;
215 
216 	/* Basic alarms only support hour, minute, and seconds fields.
217 	 * Some also support day and month, for alarms up to a year in
218 	 * the future.
219 	 */
220 	t->time.tm_mday = -1;
221 	t->time.tm_mon = -1;
222 
223 	spin_lock_irq(&rtc_lock);
224 	t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
225 	t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
226 	t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
227 
228 	if (cmos->day_alrm) {
229 		/* ignore upper bits on readback per ACPI spec */
230 		t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
231 		if (!t->time.tm_mday)
232 			t->time.tm_mday = -1;
233 
234 		if (cmos->mon_alrm) {
235 			t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
236 			if (!t->time.tm_mon)
237 				t->time.tm_mon = -1;
238 		}
239 	}
240 
241 	rtc_control = CMOS_READ(RTC_CONTROL);
242 	spin_unlock_irq(&rtc_lock);
243 
244 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
245 		if (((unsigned)t->time.tm_sec) < 0x60)
246 			t->time.tm_sec = bcd2bin(t->time.tm_sec);
247 		else
248 			t->time.tm_sec = -1;
249 		if (((unsigned)t->time.tm_min) < 0x60)
250 			t->time.tm_min = bcd2bin(t->time.tm_min);
251 		else
252 			t->time.tm_min = -1;
253 		if (((unsigned)t->time.tm_hour) < 0x24)
254 			t->time.tm_hour = bcd2bin(t->time.tm_hour);
255 		else
256 			t->time.tm_hour = -1;
257 
258 		if (cmos->day_alrm) {
259 			if (((unsigned)t->time.tm_mday) <= 0x31)
260 				t->time.tm_mday = bcd2bin(t->time.tm_mday);
261 			else
262 				t->time.tm_mday = -1;
263 
264 			if (cmos->mon_alrm) {
265 				if (((unsigned)t->time.tm_mon) <= 0x12)
266 					t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
267 				else
268 					t->time.tm_mon = -1;
269 			}
270 		}
271 	}
272 	t->time.tm_year = -1;
273 
274 	t->enabled = !!(rtc_control & RTC_AIE);
275 	t->pending = 0;
276 
277 	return 0;
278 }
279 
280 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
281 {
282 	unsigned char	rtc_intr;
283 
284 	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
285 	 * allegedly some older rtcs need that to handle irqs properly
286 	 */
287 	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
288 
289 	if (is_hpet_enabled())
290 		return;
291 
292 	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
293 	if (is_intr(rtc_intr))
294 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
295 }
296 
297 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
298 {
299 	unsigned char	rtc_control;
300 
301 	/* flush any pending IRQ status, notably for update irqs,
302 	 * before we enable new IRQs
303 	 */
304 	rtc_control = CMOS_READ(RTC_CONTROL);
305 	cmos_checkintr(cmos, rtc_control);
306 
307 	rtc_control |= mask;
308 	CMOS_WRITE(rtc_control, RTC_CONTROL);
309 	hpet_set_rtc_irq_bit(mask);
310 
311 	cmos_checkintr(cmos, rtc_control);
312 }
313 
314 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
315 {
316 	unsigned char	rtc_control;
317 
318 	rtc_control = CMOS_READ(RTC_CONTROL);
319 	rtc_control &= ~mask;
320 	CMOS_WRITE(rtc_control, RTC_CONTROL);
321 	hpet_mask_rtc_irq_bit(mask);
322 
323 	cmos_checkintr(cmos, rtc_control);
324 }
325 
326 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
327 {
328 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
329 	unsigned char mon, mday, hrs, min, sec, rtc_control;
330 
331 	if (!is_valid_irq(cmos->irq))
332 		return -EIO;
333 
334 	mon = t->time.tm_mon + 1;
335 	mday = t->time.tm_mday;
336 	hrs = t->time.tm_hour;
337 	min = t->time.tm_min;
338 	sec = t->time.tm_sec;
339 
340 	rtc_control = CMOS_READ(RTC_CONTROL);
341 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
342 		/* Writing 0xff means "don't care" or "match all".  */
343 		mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
344 		mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
345 		hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
346 		min = (min < 60) ? bin2bcd(min) : 0xff;
347 		sec = (sec < 60) ? bin2bcd(sec) : 0xff;
348 	}
349 
350 	spin_lock_irq(&rtc_lock);
351 
352 	/* next rtc irq must not be from previous alarm setting */
353 	cmos_irq_disable(cmos, RTC_AIE);
354 
355 	/* update alarm */
356 	CMOS_WRITE(hrs, RTC_HOURS_ALARM);
357 	CMOS_WRITE(min, RTC_MINUTES_ALARM);
358 	CMOS_WRITE(sec, RTC_SECONDS_ALARM);
359 
360 	/* the system may support an "enhanced" alarm */
361 	if (cmos->day_alrm) {
362 		CMOS_WRITE(mday, cmos->day_alrm);
363 		if (cmos->mon_alrm)
364 			CMOS_WRITE(mon, cmos->mon_alrm);
365 	}
366 
367 	/* FIXME the HPET alarm glue currently ignores day_alrm
368 	 * and mon_alrm ...
369 	 */
370 	hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
371 
372 	if (t->enabled)
373 		cmos_irq_enable(cmos, RTC_AIE);
374 
375 	spin_unlock_irq(&rtc_lock);
376 
377 	return 0;
378 }
379 
380 /*
381  * Do not disable RTC alarm on shutdown - workaround for b0rked BIOSes.
382  */
383 static bool alarm_disable_quirk;
384 
385 static int __init set_alarm_disable_quirk(const struct dmi_system_id *id)
386 {
387 	alarm_disable_quirk = true;
388 	pr_info("rtc-cmos: BIOS has alarm-disable quirk. ");
389 	pr_info("RTC alarms disabled\n");
390 	return 0;
391 }
392 
393 static const struct dmi_system_id rtc_quirks[] __initconst = {
394 	/* https://bugzilla.novell.com/show_bug.cgi?id=805740 */
395 	{
396 		.callback = set_alarm_disable_quirk,
397 		.ident    = "IBM Truman",
398 		.matches  = {
399 			DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
400 			DMI_MATCH(DMI_PRODUCT_NAME, "4852570"),
401 		},
402 	},
403 	/* https://bugzilla.novell.com/show_bug.cgi?id=812592 */
404 	{
405 		.callback = set_alarm_disable_quirk,
406 		.ident    = "Gigabyte GA-990XA-UD3",
407 		.matches  = {
408 			DMI_MATCH(DMI_SYS_VENDOR,
409 					"Gigabyte Technology Co., Ltd."),
410 			DMI_MATCH(DMI_PRODUCT_NAME, "GA-990XA-UD3"),
411 		},
412 	},
413 	/* http://permalink.gmane.org/gmane.linux.kernel/1604474 */
414 	{
415 		.callback = set_alarm_disable_quirk,
416 		.ident    = "Toshiba Satellite L300",
417 		.matches  = {
418 			DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
419 			DMI_MATCH(DMI_PRODUCT_NAME, "Satellite L300"),
420 		},
421 	},
422 	{}
423 };
424 
425 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
426 {
427 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
428 	unsigned long	flags;
429 
430 	if (!is_valid_irq(cmos->irq))
431 		return -EINVAL;
432 
433 	if (alarm_disable_quirk)
434 		return 0;
435 
436 	spin_lock_irqsave(&rtc_lock, flags);
437 
438 	if (enabled)
439 		cmos_irq_enable(cmos, RTC_AIE);
440 	else
441 		cmos_irq_disable(cmos, RTC_AIE);
442 
443 	spin_unlock_irqrestore(&rtc_lock, flags);
444 	return 0;
445 }
446 
447 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
448 
449 static int cmos_procfs(struct device *dev, struct seq_file *seq)
450 {
451 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
452 	unsigned char	rtc_control, valid;
453 
454 	spin_lock_irq(&rtc_lock);
455 	rtc_control = CMOS_READ(RTC_CONTROL);
456 	valid = CMOS_READ(RTC_VALID);
457 	spin_unlock_irq(&rtc_lock);
458 
459 	/* NOTE:  at least ICH6 reports battery status using a different
460 	 * (non-RTC) bit; and SQWE is ignored on many current systems.
461 	 */
462 	return seq_printf(seq,
463 			"periodic_IRQ\t: %s\n"
464 			"update_IRQ\t: %s\n"
465 			"HPET_emulated\t: %s\n"
466 			// "square_wave\t: %s\n"
467 			"BCD\t\t: %s\n"
468 			"DST_enable\t: %s\n"
469 			"periodic_freq\t: %d\n"
470 			"batt_status\t: %s\n",
471 			(rtc_control & RTC_PIE) ? "yes" : "no",
472 			(rtc_control & RTC_UIE) ? "yes" : "no",
473 			is_hpet_enabled() ? "yes" : "no",
474 			// (rtc_control & RTC_SQWE) ? "yes" : "no",
475 			(rtc_control & RTC_DM_BINARY) ? "no" : "yes",
476 			(rtc_control & RTC_DST_EN) ? "yes" : "no",
477 			cmos->rtc->irq_freq,
478 			(valid & RTC_VRT) ? "okay" : "dead");
479 }
480 
481 #else
482 #define	cmos_procfs	NULL
483 #endif
484 
485 static const struct rtc_class_ops cmos_rtc_ops = {
486 	.read_time		= cmos_read_time,
487 	.set_time		= cmos_set_time,
488 	.read_alarm		= cmos_read_alarm,
489 	.set_alarm		= cmos_set_alarm,
490 	.proc			= cmos_procfs,
491 	.alarm_irq_enable	= cmos_alarm_irq_enable,
492 };
493 
494 /*----------------------------------------------------------------*/
495 
496 /*
497  * All these chips have at least 64 bytes of address space, shared by
498  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
499  * by boot firmware.  Modern chips have 128 or 256 bytes.
500  */
501 
502 #define NVRAM_OFFSET	(RTC_REG_D + 1)
503 
504 static ssize_t
505 cmos_nvram_read(struct file *filp, struct kobject *kobj,
506 		struct bin_attribute *attr,
507 		char *buf, loff_t off, size_t count)
508 {
509 	int	retval;
510 
511 	if (unlikely(off >= attr->size))
512 		return 0;
513 	if (unlikely(off < 0))
514 		return -EINVAL;
515 	if ((off + count) > attr->size)
516 		count = attr->size - off;
517 
518 	off += NVRAM_OFFSET;
519 	spin_lock_irq(&rtc_lock);
520 	for (retval = 0; count; count--, off++, retval++) {
521 		if (off < 128)
522 			*buf++ = CMOS_READ(off);
523 		else if (can_bank2)
524 			*buf++ = cmos_read_bank2(off);
525 		else
526 			break;
527 	}
528 	spin_unlock_irq(&rtc_lock);
529 
530 	return retval;
531 }
532 
533 static ssize_t
534 cmos_nvram_write(struct file *filp, struct kobject *kobj,
535 		struct bin_attribute *attr,
536 		char *buf, loff_t off, size_t count)
537 {
538 	struct cmos_rtc	*cmos;
539 	int		retval;
540 
541 	cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
542 	if (unlikely(off >= attr->size))
543 		return -EFBIG;
544 	if (unlikely(off < 0))
545 		return -EINVAL;
546 	if ((off + count) > attr->size)
547 		count = attr->size - off;
548 
549 	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
550 	 * checksum on part of the NVRAM data.  That's currently ignored
551 	 * here.  If userspace is smart enough to know what fields of
552 	 * NVRAM to update, updating checksums is also part of its job.
553 	 */
554 	off += NVRAM_OFFSET;
555 	spin_lock_irq(&rtc_lock);
556 	for (retval = 0; count; count--, off++, retval++) {
557 		/* don't trash RTC registers */
558 		if (off == cmos->day_alrm
559 				|| off == cmos->mon_alrm
560 				|| off == cmos->century)
561 			buf++;
562 		else if (off < 128)
563 			CMOS_WRITE(*buf++, off);
564 		else if (can_bank2)
565 			cmos_write_bank2(*buf++, off);
566 		else
567 			break;
568 	}
569 	spin_unlock_irq(&rtc_lock);
570 
571 	return retval;
572 }
573 
574 static struct bin_attribute nvram = {
575 	.attr = {
576 		.name	= "nvram",
577 		.mode	= S_IRUGO | S_IWUSR,
578 	},
579 
580 	.read	= cmos_nvram_read,
581 	.write	= cmos_nvram_write,
582 	/* size gets set up later */
583 };
584 
585 /*----------------------------------------------------------------*/
586 
587 static struct cmos_rtc	cmos_rtc;
588 
589 static irqreturn_t cmos_interrupt(int irq, void *p)
590 {
591 	u8		irqstat;
592 	u8		rtc_control;
593 
594 	spin_lock(&rtc_lock);
595 
596 	/* When the HPET interrupt handler calls us, the interrupt
597 	 * status is passed as arg1 instead of the irq number.  But
598 	 * always clear irq status, even when HPET is in the way.
599 	 *
600 	 * Note that HPET and RTC are almost certainly out of phase,
601 	 * giving different IRQ status ...
602 	 */
603 	irqstat = CMOS_READ(RTC_INTR_FLAGS);
604 	rtc_control = CMOS_READ(RTC_CONTROL);
605 	if (is_hpet_enabled())
606 		irqstat = (unsigned long)irq & 0xF0;
607 
608 	/* If we were suspended, RTC_CONTROL may not be accurate since the
609 	 * bios may have cleared it.
610 	 */
611 	if (!cmos_rtc.suspend_ctrl)
612 		irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
613 	else
614 		irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
615 
616 	/* All Linux RTC alarms should be treated as if they were oneshot.
617 	 * Similar code may be needed in system wakeup paths, in case the
618 	 * alarm woke the system.
619 	 */
620 	if (irqstat & RTC_AIE) {
621 		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
622 		rtc_control &= ~RTC_AIE;
623 		CMOS_WRITE(rtc_control, RTC_CONTROL);
624 		hpet_mask_rtc_irq_bit(RTC_AIE);
625 		CMOS_READ(RTC_INTR_FLAGS);
626 	}
627 	spin_unlock(&rtc_lock);
628 
629 	if (is_intr(irqstat)) {
630 		rtc_update_irq(p, 1, irqstat);
631 		return IRQ_HANDLED;
632 	} else
633 		return IRQ_NONE;
634 }
635 
636 #ifdef	CONFIG_PNP
637 #define	INITSECTION
638 
639 #else
640 #define	INITSECTION	__init
641 #endif
642 
643 static int INITSECTION
644 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
645 {
646 	struct cmos_rtc_board_info	*info = dev_get_platdata(dev);
647 	int				retval = 0;
648 	unsigned char			rtc_control;
649 	unsigned			address_space;
650 
651 	/* there can be only one ... */
652 	if (cmos_rtc.dev)
653 		return -EBUSY;
654 
655 	if (!ports)
656 		return -ENODEV;
657 
658 	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
659 	 *
660 	 * REVISIT non-x86 systems may instead use memory space resources
661 	 * (needing ioremap etc), not i/o space resources like this ...
662 	 */
663 	ports = request_region(ports->start,
664 			resource_size(ports),
665 			driver_name);
666 	if (!ports) {
667 		dev_dbg(dev, "i/o registers already in use\n");
668 		return -EBUSY;
669 	}
670 
671 	cmos_rtc.irq = rtc_irq;
672 	cmos_rtc.iomem = ports;
673 
674 	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
675 	 * driver did, but don't reject unknown configs.   Old hardware
676 	 * won't address 128 bytes.  Newer chips have multiple banks,
677 	 * though they may not be listed in one I/O resource.
678 	 */
679 #if	defined(CONFIG_ATARI)
680 	address_space = 64;
681 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
682 			|| defined(__sparc__) || defined(__mips__) \
683 			|| defined(__powerpc__)
684 	address_space = 128;
685 #else
686 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
687 	address_space = 128;
688 #endif
689 	if (can_bank2 && ports->end > (ports->start + 1))
690 		address_space = 256;
691 
692 	/* For ACPI systems extension info comes from the FADT.  On others,
693 	 * board specific setup provides it as appropriate.  Systems where
694 	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
695 	 * some almost-clones) can provide hooks to make that behave.
696 	 *
697 	 * Note that ACPI doesn't preclude putting these registers into
698 	 * "extended" areas of the chip, including some that we won't yet
699 	 * expect CMOS_READ and friends to handle.
700 	 */
701 	if (info) {
702 		if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
703 			cmos_rtc.day_alrm = info->rtc_day_alarm;
704 		if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
705 			cmos_rtc.mon_alrm = info->rtc_mon_alarm;
706 		if (info->rtc_century && info->rtc_century < 128)
707 			cmos_rtc.century = info->rtc_century;
708 
709 		if (info->wake_on && info->wake_off) {
710 			cmos_rtc.wake_on = info->wake_on;
711 			cmos_rtc.wake_off = info->wake_off;
712 		}
713 	}
714 
715 	cmos_rtc.dev = dev;
716 	dev_set_drvdata(dev, &cmos_rtc);
717 
718 	cmos_rtc.rtc = rtc_device_register(driver_name, dev,
719 				&cmos_rtc_ops, THIS_MODULE);
720 	if (IS_ERR(cmos_rtc.rtc)) {
721 		retval = PTR_ERR(cmos_rtc.rtc);
722 		goto cleanup0;
723 	}
724 
725 	rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
726 
727 	spin_lock_irq(&rtc_lock);
728 
729 	/* force periodic irq to CMOS reset default of 1024Hz;
730 	 *
731 	 * REVISIT it's been reported that at least one x86_64 ALI mobo
732 	 * doesn't use 32KHz here ... for portability we might need to
733 	 * do something about other clock frequencies.
734 	 */
735 	cmos_rtc.rtc->irq_freq = 1024;
736 	hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
737 	CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
738 
739 	/* disable irqs */
740 	cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
741 
742 	rtc_control = CMOS_READ(RTC_CONTROL);
743 
744 	spin_unlock_irq(&rtc_lock);
745 
746 	/* FIXME:
747 	 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
748 	 */
749 	if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
750 		dev_warn(dev, "only 24-hr supported\n");
751 		retval = -ENXIO;
752 		goto cleanup1;
753 	}
754 
755 	if (is_valid_irq(rtc_irq)) {
756 		irq_handler_t rtc_cmos_int_handler;
757 
758 		if (is_hpet_enabled()) {
759 			rtc_cmos_int_handler = hpet_rtc_interrupt;
760 			retval = hpet_register_irq_handler(cmos_interrupt);
761 			if (retval) {
762 				dev_warn(dev, "hpet_register_irq_handler "
763 						" failed in rtc_init().");
764 				goto cleanup1;
765 			}
766 		} else
767 			rtc_cmos_int_handler = cmos_interrupt;
768 
769 		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
770 				0, dev_name(&cmos_rtc.rtc->dev),
771 				cmos_rtc.rtc);
772 		if (retval < 0) {
773 			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
774 			goto cleanup1;
775 		}
776 	}
777 	hpet_rtc_timer_init();
778 
779 	/* export at least the first block of NVRAM */
780 	nvram.size = address_space - NVRAM_OFFSET;
781 	retval = sysfs_create_bin_file(&dev->kobj, &nvram);
782 	if (retval < 0) {
783 		dev_dbg(dev, "can't create nvram file? %d\n", retval);
784 		goto cleanup2;
785 	}
786 
787 	dev_info(dev, "%s%s, %zd bytes nvram%s\n",
788 		!is_valid_irq(rtc_irq) ? "no alarms" :
789 			cmos_rtc.mon_alrm ? "alarms up to one year" :
790 			cmos_rtc.day_alrm ? "alarms up to one month" :
791 			"alarms up to one day",
792 		cmos_rtc.century ? ", y3k" : "",
793 		nvram.size,
794 		is_hpet_enabled() ? ", hpet irqs" : "");
795 
796 	return 0;
797 
798 cleanup2:
799 	if (is_valid_irq(rtc_irq))
800 		free_irq(rtc_irq, cmos_rtc.rtc);
801 cleanup1:
802 	cmos_rtc.dev = NULL;
803 	rtc_device_unregister(cmos_rtc.rtc);
804 cleanup0:
805 	release_region(ports->start, resource_size(ports));
806 	return retval;
807 }
808 
809 static void cmos_do_shutdown(void)
810 {
811 	spin_lock_irq(&rtc_lock);
812 	cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
813 	spin_unlock_irq(&rtc_lock);
814 }
815 
816 static void __exit cmos_do_remove(struct device *dev)
817 {
818 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
819 	struct resource *ports;
820 
821 	cmos_do_shutdown();
822 
823 	sysfs_remove_bin_file(&dev->kobj, &nvram);
824 
825 	if (is_valid_irq(cmos->irq)) {
826 		free_irq(cmos->irq, cmos->rtc);
827 		hpet_unregister_irq_handler(cmos_interrupt);
828 	}
829 
830 	rtc_device_unregister(cmos->rtc);
831 	cmos->rtc = NULL;
832 
833 	ports = cmos->iomem;
834 	release_region(ports->start, resource_size(ports));
835 	cmos->iomem = NULL;
836 
837 	cmos->dev = NULL;
838 }
839 
840 #ifdef	CONFIG_PM_SLEEP
841 
842 static int cmos_suspend(struct device *dev)
843 {
844 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
845 	unsigned char	tmp;
846 
847 	/* only the alarm might be a wakeup event source */
848 	spin_lock_irq(&rtc_lock);
849 	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
850 	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
851 		unsigned char	mask;
852 
853 		if (device_may_wakeup(dev))
854 			mask = RTC_IRQMASK & ~RTC_AIE;
855 		else
856 			mask = RTC_IRQMASK;
857 		tmp &= ~mask;
858 		CMOS_WRITE(tmp, RTC_CONTROL);
859 		hpet_mask_rtc_irq_bit(mask);
860 
861 		cmos_checkintr(cmos, tmp);
862 	}
863 	spin_unlock_irq(&rtc_lock);
864 
865 	if (tmp & RTC_AIE) {
866 		cmos->enabled_wake = 1;
867 		if (cmos->wake_on)
868 			cmos->wake_on(dev);
869 		else
870 			enable_irq_wake(cmos->irq);
871 	}
872 
873 	dev_dbg(dev, "suspend%s, ctrl %02x\n",
874 			(tmp & RTC_AIE) ? ", alarm may wake" : "",
875 			tmp);
876 
877 	return 0;
878 }
879 
880 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
881  * after a detour through G3 "mechanical off", although the ACPI spec
882  * says wakeup should only work from G1/S4 "hibernate".  To most users,
883  * distinctions between S4 and S5 are pointless.  So when the hardware
884  * allows, don't draw that distinction.
885  */
886 static inline int cmos_poweroff(struct device *dev)
887 {
888 	return cmos_suspend(dev);
889 }
890 
891 static int cmos_resume(struct device *dev)
892 {
893 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
894 	unsigned char tmp;
895 
896 	if (cmos->enabled_wake) {
897 		if (cmos->wake_off)
898 			cmos->wake_off(dev);
899 		else
900 			disable_irq_wake(cmos->irq);
901 		cmos->enabled_wake = 0;
902 	}
903 
904 	spin_lock_irq(&rtc_lock);
905 	tmp = cmos->suspend_ctrl;
906 	cmos->suspend_ctrl = 0;
907 	/* re-enable any irqs previously active */
908 	if (tmp & RTC_IRQMASK) {
909 		unsigned char	mask;
910 
911 		if (device_may_wakeup(dev))
912 			hpet_rtc_timer_init();
913 
914 		do {
915 			CMOS_WRITE(tmp, RTC_CONTROL);
916 			hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
917 
918 			mask = CMOS_READ(RTC_INTR_FLAGS);
919 			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
920 			if (!is_hpet_enabled() || !is_intr(mask))
921 				break;
922 
923 			/* force one-shot behavior if HPET blocked
924 			 * the wake alarm's irq
925 			 */
926 			rtc_update_irq(cmos->rtc, 1, mask);
927 			tmp &= ~RTC_AIE;
928 			hpet_mask_rtc_irq_bit(RTC_AIE);
929 		} while (mask & RTC_AIE);
930 	}
931 	spin_unlock_irq(&rtc_lock);
932 
933 	dev_dbg(dev, "resume, ctrl %02x\n", tmp);
934 
935 	return 0;
936 }
937 
938 #else
939 
940 static inline int cmos_poweroff(struct device *dev)
941 {
942 	return -ENOSYS;
943 }
944 
945 #endif
946 
947 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
948 
949 /*----------------------------------------------------------------*/
950 
951 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
952  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
953  * probably list them in similar PNPBIOS tables; so PNP is more common.
954  *
955  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
956  * predate even PNPBIOS should set up platform_bus devices.
957  */
958 
959 #ifdef	CONFIG_ACPI
960 
961 #include <linux/acpi.h>
962 
963 static u32 rtc_handler(void *context)
964 {
965 	struct device *dev = context;
966 
967 	pm_wakeup_event(dev, 0);
968 	acpi_clear_event(ACPI_EVENT_RTC);
969 	acpi_disable_event(ACPI_EVENT_RTC, 0);
970 	return ACPI_INTERRUPT_HANDLED;
971 }
972 
973 static inline void rtc_wake_setup(struct device *dev)
974 {
975 	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
976 	/*
977 	 * After the RTC handler is installed, the Fixed_RTC event should
978 	 * be disabled. Only when the RTC alarm is set will it be enabled.
979 	 */
980 	acpi_clear_event(ACPI_EVENT_RTC);
981 	acpi_disable_event(ACPI_EVENT_RTC, 0);
982 }
983 
984 static void rtc_wake_on(struct device *dev)
985 {
986 	acpi_clear_event(ACPI_EVENT_RTC);
987 	acpi_enable_event(ACPI_EVENT_RTC, 0);
988 }
989 
990 static void rtc_wake_off(struct device *dev)
991 {
992 	acpi_disable_event(ACPI_EVENT_RTC, 0);
993 }
994 
995 /* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
996  * its device node and pass extra config data.  This helps its driver use
997  * capabilities that the now-obsolete mc146818 didn't have, and informs it
998  * that this board's RTC is wakeup-capable (per ACPI spec).
999  */
1000 static struct cmos_rtc_board_info acpi_rtc_info;
1001 
1002 static void cmos_wake_setup(struct device *dev)
1003 {
1004 	if (acpi_disabled)
1005 		return;
1006 
1007 	rtc_wake_setup(dev);
1008 	acpi_rtc_info.wake_on = rtc_wake_on;
1009 	acpi_rtc_info.wake_off = rtc_wake_off;
1010 
1011 	/* workaround bug in some ACPI tables */
1012 	if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1013 		dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1014 			acpi_gbl_FADT.month_alarm);
1015 		acpi_gbl_FADT.month_alarm = 0;
1016 	}
1017 
1018 	acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1019 	acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1020 	acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1021 
1022 	/* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1023 	if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1024 		dev_info(dev, "RTC can wake from S4\n");
1025 
1026 	dev->platform_data = &acpi_rtc_info;
1027 
1028 	/* RTC always wakes from S1/S2/S3, and often S4/STD */
1029 	device_init_wakeup(dev, 1);
1030 }
1031 
1032 #else
1033 
1034 static void cmos_wake_setup(struct device *dev)
1035 {
1036 }
1037 
1038 #endif
1039 
1040 #ifdef	CONFIG_PNP
1041 
1042 #include <linux/pnp.h>
1043 
1044 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1045 {
1046 	cmos_wake_setup(&pnp->dev);
1047 
1048 	if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0))
1049 		/* Some machines contain a PNP entry for the RTC, but
1050 		 * don't define the IRQ. It should always be safe to
1051 		 * hardcode it in these cases
1052 		 */
1053 		return cmos_do_probe(&pnp->dev,
1054 				pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
1055 	else
1056 		return cmos_do_probe(&pnp->dev,
1057 				pnp_get_resource(pnp, IORESOURCE_IO, 0),
1058 				pnp_irq(pnp, 0));
1059 }
1060 
1061 static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
1062 {
1063 	cmos_do_remove(&pnp->dev);
1064 }
1065 
1066 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1067 {
1068 	if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pnp->dev))
1069 		return;
1070 
1071 	cmos_do_shutdown();
1072 }
1073 
1074 static const struct pnp_device_id rtc_ids[] = {
1075 	{ .id = "PNP0b00", },
1076 	{ .id = "PNP0b01", },
1077 	{ .id = "PNP0b02", },
1078 	{ },
1079 };
1080 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1081 
1082 static struct pnp_driver cmos_pnp_driver = {
1083 	.name		= (char *) driver_name,
1084 	.id_table	= rtc_ids,
1085 	.probe		= cmos_pnp_probe,
1086 	.remove		= __exit_p(cmos_pnp_remove),
1087 	.shutdown	= cmos_pnp_shutdown,
1088 
1089 	/* flag ensures resume() gets called, and stops syslog spam */
1090 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1091 	.driver		= {
1092 			.pm = &cmos_pm_ops,
1093 	},
1094 };
1095 
1096 #endif	/* CONFIG_PNP */
1097 
1098 #ifdef CONFIG_OF
1099 static const struct of_device_id of_cmos_match[] = {
1100 	{
1101 		.compatible = "motorola,mc146818",
1102 	},
1103 	{ },
1104 };
1105 MODULE_DEVICE_TABLE(of, of_cmos_match);
1106 
1107 static __init void cmos_of_init(struct platform_device *pdev)
1108 {
1109 	struct device_node *node = pdev->dev.of_node;
1110 	struct rtc_time time;
1111 	int ret;
1112 	const __be32 *val;
1113 
1114 	if (!node)
1115 		return;
1116 
1117 	val = of_get_property(node, "ctrl-reg", NULL);
1118 	if (val)
1119 		CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1120 
1121 	val = of_get_property(node, "freq-reg", NULL);
1122 	if (val)
1123 		CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1124 
1125 	get_rtc_time(&time);
1126 	ret = rtc_valid_tm(&time);
1127 	if (ret) {
1128 		struct rtc_time def_time = {
1129 			.tm_year = 1,
1130 			.tm_mday = 1,
1131 		};
1132 		set_rtc_time(&def_time);
1133 	}
1134 }
1135 #else
1136 static inline void cmos_of_init(struct platform_device *pdev) {}
1137 #endif
1138 /*----------------------------------------------------------------*/
1139 
1140 /* Platform setup should have set up an RTC device, when PNP is
1141  * unavailable ... this could happen even on (older) PCs.
1142  */
1143 
1144 static int __init cmos_platform_probe(struct platform_device *pdev)
1145 {
1146 	cmos_of_init(pdev);
1147 	cmos_wake_setup(&pdev->dev);
1148 	return cmos_do_probe(&pdev->dev,
1149 			platform_get_resource(pdev, IORESOURCE_IO, 0),
1150 			platform_get_irq(pdev, 0));
1151 }
1152 
1153 static int __exit cmos_platform_remove(struct platform_device *pdev)
1154 {
1155 	cmos_do_remove(&pdev->dev);
1156 	return 0;
1157 }
1158 
1159 static void cmos_platform_shutdown(struct platform_device *pdev)
1160 {
1161 	if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pdev->dev))
1162 		return;
1163 
1164 	cmos_do_shutdown();
1165 }
1166 
1167 /* work with hotplug and coldplug */
1168 MODULE_ALIAS("platform:rtc_cmos");
1169 
1170 static struct platform_driver cmos_platform_driver = {
1171 	.remove		= __exit_p(cmos_platform_remove),
1172 	.shutdown	= cmos_platform_shutdown,
1173 	.driver = {
1174 		.name		= driver_name,
1175 #ifdef CONFIG_PM
1176 		.pm		= &cmos_pm_ops,
1177 #endif
1178 		.of_match_table = of_match_ptr(of_cmos_match),
1179 	}
1180 };
1181 
1182 #ifdef CONFIG_PNP
1183 static bool pnp_driver_registered;
1184 #endif
1185 static bool platform_driver_registered;
1186 
1187 static int __init cmos_init(void)
1188 {
1189 	int retval = 0;
1190 
1191 #ifdef	CONFIG_PNP
1192 	retval = pnp_register_driver(&cmos_pnp_driver);
1193 	if (retval == 0)
1194 		pnp_driver_registered = true;
1195 #endif
1196 
1197 	if (!cmos_rtc.dev) {
1198 		retval = platform_driver_probe(&cmos_platform_driver,
1199 					       cmos_platform_probe);
1200 		if (retval == 0)
1201 			platform_driver_registered = true;
1202 	}
1203 
1204 	dmi_check_system(rtc_quirks);
1205 
1206 	if (retval == 0)
1207 		return 0;
1208 
1209 #ifdef	CONFIG_PNP
1210 	if (pnp_driver_registered)
1211 		pnp_unregister_driver(&cmos_pnp_driver);
1212 #endif
1213 	return retval;
1214 }
1215 module_init(cmos_init);
1216 
1217 static void __exit cmos_exit(void)
1218 {
1219 #ifdef	CONFIG_PNP
1220 	if (pnp_driver_registered)
1221 		pnp_unregister_driver(&cmos_pnp_driver);
1222 #endif
1223 	if (platform_driver_registered)
1224 		platform_driver_unregister(&cmos_platform_driver);
1225 }
1226 module_exit(cmos_exit);
1227 
1228 
1229 MODULE_AUTHOR("David Brownell");
1230 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1231 MODULE_LICENSE("GPL");
1232