xref: /openbmc/linux/drivers/rtc/rtc-cmos.c (revision 384740dc)
1 /*
2  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
3  *
4  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5  * Copyright (C) 2006 David Brownell (convert to new framework)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  */
12 
13 /*
14  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15  * That defined the register interface now provided by all PCs, some
16  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
17  * integrate an MC146818 clone in their southbridge, and boards use
18  * that instead of discrete clones like the DS12887 or M48T86.  There
19  * are also clones that connect using the LPC bus.
20  *
21  * That register API is also used directly by various other drivers
22  * (notably for integrated NVRAM), infrastructure (x86 has code to
23  * bypass the RTC framework, directly reading the RTC during boot
24  * and updating minutes/seconds for systems using NTP synch) and
25  * utilities (like userspace 'hwclock', if no /dev node exists).
26  *
27  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28  * interrupts disabled, holding the global rtc_lock, to exclude those
29  * other drivers and utilities on correctly configured systems.
30  */
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/interrupt.h>
35 #include <linux/spinlock.h>
36 #include <linux/platform_device.h>
37 #include <linux/mod_devicetable.h>
38 
39 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
40 #include <asm-generic/rtc.h>
41 
42 struct cmos_rtc {
43 	struct rtc_device	*rtc;
44 	struct device		*dev;
45 	int			irq;
46 	struct resource		*iomem;
47 
48 	void			(*wake_on)(struct device *);
49 	void			(*wake_off)(struct device *);
50 
51 	u8			enabled_wake;
52 	u8			suspend_ctrl;
53 
54 	/* newer hardware extends the original register set */
55 	u8			day_alrm;
56 	u8			mon_alrm;
57 	u8			century;
58 };
59 
60 /* both platform and pnp busses use negative numbers for invalid irqs */
61 #define is_valid_irq(n)		((n) >= 0)
62 
63 static const char driver_name[] = "rtc_cmos";
64 
65 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
66  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
67  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
68  */
69 #define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
70 
71 static inline int is_intr(u8 rtc_intr)
72 {
73 	if (!(rtc_intr & RTC_IRQF))
74 		return 0;
75 	return rtc_intr & RTC_IRQMASK;
76 }
77 
78 /*----------------------------------------------------------------*/
79 
80 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
81  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
82  * used in a broken "legacy replacement" mode.  The breakage includes
83  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
84  * other (better) use.
85  *
86  * When that broken mode is in use, platform glue provides a partial
87  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
88  * want to use HPET for anything except those IRQs though...
89  */
90 #ifdef CONFIG_HPET_EMULATE_RTC
91 #include <asm/hpet.h>
92 #else
93 
94 static inline int is_hpet_enabled(void)
95 {
96 	return 0;
97 }
98 
99 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
100 {
101 	return 0;
102 }
103 
104 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
105 {
106 	return 0;
107 }
108 
109 static inline int
110 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
111 {
112 	return 0;
113 }
114 
115 static inline int hpet_set_periodic_freq(unsigned long freq)
116 {
117 	return 0;
118 }
119 
120 static inline int hpet_rtc_dropped_irq(void)
121 {
122 	return 0;
123 }
124 
125 static inline int hpet_rtc_timer_init(void)
126 {
127 	return 0;
128 }
129 
130 extern irq_handler_t hpet_rtc_interrupt;
131 
132 static inline int hpet_register_irq_handler(irq_handler_t handler)
133 {
134 	return 0;
135 }
136 
137 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
138 {
139 	return 0;
140 }
141 
142 #endif
143 
144 /*----------------------------------------------------------------*/
145 
146 static int cmos_read_time(struct device *dev, struct rtc_time *t)
147 {
148 	/* REVISIT:  if the clock has a "century" register, use
149 	 * that instead of the heuristic in get_rtc_time().
150 	 * That'll make Y3K compatility (year > 2070) easy!
151 	 */
152 	get_rtc_time(t);
153 	return 0;
154 }
155 
156 static int cmos_set_time(struct device *dev, struct rtc_time *t)
157 {
158 	/* REVISIT:  set the "century" register if available
159 	 *
160 	 * NOTE: this ignores the issue whereby updating the seconds
161 	 * takes effect exactly 500ms after we write the register.
162 	 * (Also queueing and other delays before we get this far.)
163 	 */
164 	return set_rtc_time(t);
165 }
166 
167 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
168 {
169 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
170 	unsigned char	rtc_control;
171 
172 	if (!is_valid_irq(cmos->irq))
173 		return -EIO;
174 
175 	/* Basic alarms only support hour, minute, and seconds fields.
176 	 * Some also support day and month, for alarms up to a year in
177 	 * the future.
178 	 */
179 	t->time.tm_mday = -1;
180 	t->time.tm_mon = -1;
181 
182 	spin_lock_irq(&rtc_lock);
183 	t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
184 	t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
185 	t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
186 
187 	if (cmos->day_alrm) {
188 		/* ignore upper bits on readback per ACPI spec */
189 		t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
190 		if (!t->time.tm_mday)
191 			t->time.tm_mday = -1;
192 
193 		if (cmos->mon_alrm) {
194 			t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
195 			if (!t->time.tm_mon)
196 				t->time.tm_mon = -1;
197 		}
198 	}
199 
200 	rtc_control = CMOS_READ(RTC_CONTROL);
201 	spin_unlock_irq(&rtc_lock);
202 
203 	/* REVISIT this assumes PC style usage:  always BCD */
204 
205 	if (((unsigned)t->time.tm_sec) < 0x60)
206 		t->time.tm_sec = BCD2BIN(t->time.tm_sec);
207 	else
208 		t->time.tm_sec = -1;
209 	if (((unsigned)t->time.tm_min) < 0x60)
210 		t->time.tm_min = BCD2BIN(t->time.tm_min);
211 	else
212 		t->time.tm_min = -1;
213 	if (((unsigned)t->time.tm_hour) < 0x24)
214 		t->time.tm_hour = BCD2BIN(t->time.tm_hour);
215 	else
216 		t->time.tm_hour = -1;
217 
218 	if (cmos->day_alrm) {
219 		if (((unsigned)t->time.tm_mday) <= 0x31)
220 			t->time.tm_mday = BCD2BIN(t->time.tm_mday);
221 		else
222 			t->time.tm_mday = -1;
223 		if (cmos->mon_alrm) {
224 			if (((unsigned)t->time.tm_mon) <= 0x12)
225 				t->time.tm_mon = BCD2BIN(t->time.tm_mon) - 1;
226 			else
227 				t->time.tm_mon = -1;
228 		}
229 	}
230 	t->time.tm_year = -1;
231 
232 	t->enabled = !!(rtc_control & RTC_AIE);
233 	t->pending = 0;
234 
235 	return 0;
236 }
237 
238 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
239 {
240 	unsigned char	rtc_intr;
241 
242 	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
243 	 * allegedly some older rtcs need that to handle irqs properly
244 	 */
245 	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
246 
247 	if (is_hpet_enabled())
248 		return;
249 
250 	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
251 	if (is_intr(rtc_intr))
252 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
253 }
254 
255 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
256 {
257 	unsigned char	rtc_control;
258 
259 	/* flush any pending IRQ status, notably for update irqs,
260 	 * before we enable new IRQs
261 	 */
262 	rtc_control = CMOS_READ(RTC_CONTROL);
263 	cmos_checkintr(cmos, rtc_control);
264 
265 	rtc_control |= mask;
266 	CMOS_WRITE(rtc_control, RTC_CONTROL);
267 	hpet_set_rtc_irq_bit(mask);
268 
269 	cmos_checkintr(cmos, rtc_control);
270 }
271 
272 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
273 {
274 	unsigned char	rtc_control;
275 
276 	rtc_control = CMOS_READ(RTC_CONTROL);
277 	rtc_control &= ~mask;
278 	CMOS_WRITE(rtc_control, RTC_CONTROL);
279 	hpet_mask_rtc_irq_bit(mask);
280 
281 	cmos_checkintr(cmos, rtc_control);
282 }
283 
284 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
285 {
286 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
287 	unsigned char	mon, mday, hrs, min, sec;
288 
289 	if (!is_valid_irq(cmos->irq))
290 		return -EIO;
291 
292 	/* REVISIT this assumes PC style usage:  always BCD */
293 
294 	/* Writing 0xff means "don't care" or "match all".  */
295 
296 	mon = t->time.tm_mon + 1;
297 	mon = (mon <= 12) ? BIN2BCD(mon) : 0xff;
298 
299 	mday = t->time.tm_mday;
300 	mday = (mday >= 1 && mday <= 31) ? BIN2BCD(mday) : 0xff;
301 
302 	hrs = t->time.tm_hour;
303 	hrs = (hrs < 24) ? BIN2BCD(hrs) : 0xff;
304 
305 	min = t->time.tm_min;
306 	min = (min < 60) ? BIN2BCD(min) : 0xff;
307 
308 	sec = t->time.tm_sec;
309 	sec = (sec < 60) ? BIN2BCD(sec) : 0xff;
310 
311 	spin_lock_irq(&rtc_lock);
312 
313 	/* next rtc irq must not be from previous alarm setting */
314 	cmos_irq_disable(cmos, RTC_AIE);
315 
316 	/* update alarm */
317 	CMOS_WRITE(hrs, RTC_HOURS_ALARM);
318 	CMOS_WRITE(min, RTC_MINUTES_ALARM);
319 	CMOS_WRITE(sec, RTC_SECONDS_ALARM);
320 
321 	/* the system may support an "enhanced" alarm */
322 	if (cmos->day_alrm) {
323 		CMOS_WRITE(mday, cmos->day_alrm);
324 		if (cmos->mon_alrm)
325 			CMOS_WRITE(mon, cmos->mon_alrm);
326 	}
327 
328 	/* FIXME the HPET alarm glue currently ignores day_alrm
329 	 * and mon_alrm ...
330 	 */
331 	hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
332 
333 	if (t->enabled)
334 		cmos_irq_enable(cmos, RTC_AIE);
335 
336 	spin_unlock_irq(&rtc_lock);
337 
338 	return 0;
339 }
340 
341 static int cmos_irq_set_freq(struct device *dev, int freq)
342 {
343 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
344 	int		f;
345 	unsigned long	flags;
346 
347 	if (!is_valid_irq(cmos->irq))
348 		return -ENXIO;
349 
350 	/* 0 = no irqs; 1 = 2^15 Hz ... 15 = 2^0 Hz */
351 	f = ffs(freq);
352 	if (f-- > 16)
353 		return -EINVAL;
354 	f = 16 - f;
355 
356 	spin_lock_irqsave(&rtc_lock, flags);
357 	hpet_set_periodic_freq(freq);
358 	CMOS_WRITE(RTC_REF_CLCK_32KHZ | f, RTC_FREQ_SELECT);
359 	spin_unlock_irqrestore(&rtc_lock, flags);
360 
361 	return 0;
362 }
363 
364 static int cmos_irq_set_state(struct device *dev, int enabled)
365 {
366 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
367 	unsigned long	flags;
368 
369 	if (!is_valid_irq(cmos->irq))
370 		return -ENXIO;
371 
372 	spin_lock_irqsave(&rtc_lock, flags);
373 
374 	if (enabled)
375 		cmos_irq_enable(cmos, RTC_PIE);
376 	else
377 		cmos_irq_disable(cmos, RTC_PIE);
378 
379 	spin_unlock_irqrestore(&rtc_lock, flags);
380 	return 0;
381 }
382 
383 #if defined(CONFIG_RTC_INTF_DEV) || defined(CONFIG_RTC_INTF_DEV_MODULE)
384 
385 static int
386 cmos_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
387 {
388 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
389 	unsigned long	flags;
390 
391 	switch (cmd) {
392 	case RTC_AIE_OFF:
393 	case RTC_AIE_ON:
394 	case RTC_UIE_OFF:
395 	case RTC_UIE_ON:
396 		if (!is_valid_irq(cmos->irq))
397 			return -EINVAL;
398 		break;
399 	/* PIE ON/OFF is handled by cmos_irq_set_state() */
400 	default:
401 		return -ENOIOCTLCMD;
402 	}
403 
404 	spin_lock_irqsave(&rtc_lock, flags);
405 	switch (cmd) {
406 	case RTC_AIE_OFF:	/* alarm off */
407 		cmos_irq_disable(cmos, RTC_AIE);
408 		break;
409 	case RTC_AIE_ON:	/* alarm on */
410 		cmos_irq_enable(cmos, RTC_AIE);
411 		break;
412 	case RTC_UIE_OFF:	/* update off */
413 		cmos_irq_disable(cmos, RTC_UIE);
414 		break;
415 	case RTC_UIE_ON:	/* update on */
416 		cmos_irq_enable(cmos, RTC_UIE);
417 		break;
418 	}
419 	spin_unlock_irqrestore(&rtc_lock, flags);
420 	return 0;
421 }
422 
423 #else
424 #define	cmos_rtc_ioctl	NULL
425 #endif
426 
427 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
428 
429 static int cmos_procfs(struct device *dev, struct seq_file *seq)
430 {
431 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
432 	unsigned char	rtc_control, valid;
433 
434 	spin_lock_irq(&rtc_lock);
435 	rtc_control = CMOS_READ(RTC_CONTROL);
436 	valid = CMOS_READ(RTC_VALID);
437 	spin_unlock_irq(&rtc_lock);
438 
439 	/* NOTE:  at least ICH6 reports battery status using a different
440 	 * (non-RTC) bit; and SQWE is ignored on many current systems.
441 	 */
442 	return seq_printf(seq,
443 			"periodic_IRQ\t: %s\n"
444 			"update_IRQ\t: %s\n"
445 			"HPET_emulated\t: %s\n"
446 			// "square_wave\t: %s\n"
447 			// "BCD\t\t: %s\n"
448 			"DST_enable\t: %s\n"
449 			"periodic_freq\t: %d\n"
450 			"batt_status\t: %s\n",
451 			(rtc_control & RTC_PIE) ? "yes" : "no",
452 			(rtc_control & RTC_UIE) ? "yes" : "no",
453 			is_hpet_enabled() ? "yes" : "no",
454 			// (rtc_control & RTC_SQWE) ? "yes" : "no",
455 			// (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
456 			(rtc_control & RTC_DST_EN) ? "yes" : "no",
457 			cmos->rtc->irq_freq,
458 			(valid & RTC_VRT) ? "okay" : "dead");
459 }
460 
461 #else
462 #define	cmos_procfs	NULL
463 #endif
464 
465 static const struct rtc_class_ops cmos_rtc_ops = {
466 	.ioctl		= cmos_rtc_ioctl,
467 	.read_time	= cmos_read_time,
468 	.set_time	= cmos_set_time,
469 	.read_alarm	= cmos_read_alarm,
470 	.set_alarm	= cmos_set_alarm,
471 	.proc		= cmos_procfs,
472 	.irq_set_freq	= cmos_irq_set_freq,
473 	.irq_set_state	= cmos_irq_set_state,
474 };
475 
476 /*----------------------------------------------------------------*/
477 
478 /*
479  * All these chips have at least 64 bytes of address space, shared by
480  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
481  * by boot firmware.  Modern chips have 128 or 256 bytes.
482  */
483 
484 #define NVRAM_OFFSET	(RTC_REG_D + 1)
485 
486 static ssize_t
487 cmos_nvram_read(struct kobject *kobj, struct bin_attribute *attr,
488 		char *buf, loff_t off, size_t count)
489 {
490 	int	retval;
491 
492 	if (unlikely(off >= attr->size))
493 		return 0;
494 	if ((off + count) > attr->size)
495 		count = attr->size - off;
496 
497 	spin_lock_irq(&rtc_lock);
498 	for (retval = 0, off += NVRAM_OFFSET; count--; retval++, off++)
499 		*buf++ = CMOS_READ(off);
500 	spin_unlock_irq(&rtc_lock);
501 
502 	return retval;
503 }
504 
505 static ssize_t
506 cmos_nvram_write(struct kobject *kobj, struct bin_attribute *attr,
507 		char *buf, loff_t off, size_t count)
508 {
509 	struct cmos_rtc	*cmos;
510 	int		retval;
511 
512 	cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
513 	if (unlikely(off >= attr->size))
514 		return -EFBIG;
515 	if ((off + count) > attr->size)
516 		count = attr->size - off;
517 
518 	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
519 	 * checksum on part of the NVRAM data.  That's currently ignored
520 	 * here.  If userspace is smart enough to know what fields of
521 	 * NVRAM to update, updating checksums is also part of its job.
522 	 */
523 	spin_lock_irq(&rtc_lock);
524 	for (retval = 0, off += NVRAM_OFFSET; count--; retval++, off++) {
525 		/* don't trash RTC registers */
526 		if (off == cmos->day_alrm
527 				|| off == cmos->mon_alrm
528 				|| off == cmos->century)
529 			buf++;
530 		else
531 			CMOS_WRITE(*buf++, off);
532 	}
533 	spin_unlock_irq(&rtc_lock);
534 
535 	return retval;
536 }
537 
538 static struct bin_attribute nvram = {
539 	.attr = {
540 		.name	= "nvram",
541 		.mode	= S_IRUGO | S_IWUSR,
542 		.owner	= THIS_MODULE,
543 	},
544 
545 	.read	= cmos_nvram_read,
546 	.write	= cmos_nvram_write,
547 	/* size gets set up later */
548 };
549 
550 /*----------------------------------------------------------------*/
551 
552 static struct cmos_rtc	cmos_rtc;
553 
554 static irqreturn_t cmos_interrupt(int irq, void *p)
555 {
556 	u8		irqstat;
557 	u8		rtc_control;
558 
559 	spin_lock(&rtc_lock);
560 
561 	/* When the HPET interrupt handler calls us, the interrupt
562 	 * status is passed as arg1 instead of the irq number.  But
563 	 * always clear irq status, even when HPET is in the way.
564 	 *
565 	 * Note that HPET and RTC are almost certainly out of phase,
566 	 * giving different IRQ status ...
567 	 */
568 	irqstat = CMOS_READ(RTC_INTR_FLAGS);
569 	rtc_control = CMOS_READ(RTC_CONTROL);
570 	if (is_hpet_enabled())
571 		irqstat = (unsigned long)irq & 0xF0;
572 	irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
573 
574 	/* All Linux RTC alarms should be treated as if they were oneshot.
575 	 * Similar code may be needed in system wakeup paths, in case the
576 	 * alarm woke the system.
577 	 */
578 	if (irqstat & RTC_AIE) {
579 		rtc_control &= ~RTC_AIE;
580 		CMOS_WRITE(rtc_control, RTC_CONTROL);
581 		hpet_mask_rtc_irq_bit(RTC_AIE);
582 
583 		CMOS_READ(RTC_INTR_FLAGS);
584 	}
585 	spin_unlock(&rtc_lock);
586 
587 	if (is_intr(irqstat)) {
588 		rtc_update_irq(p, 1, irqstat);
589 		return IRQ_HANDLED;
590 	} else
591 		return IRQ_NONE;
592 }
593 
594 #ifdef	CONFIG_PNP
595 #define	INITSECTION
596 
597 #else
598 #define	INITSECTION	__init
599 #endif
600 
601 static int INITSECTION
602 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
603 {
604 	struct cmos_rtc_board_info	*info = dev->platform_data;
605 	int				retval = 0;
606 	unsigned char			rtc_control;
607 	unsigned			address_space;
608 
609 	/* there can be only one ... */
610 	if (cmos_rtc.dev)
611 		return -EBUSY;
612 
613 	if (!ports)
614 		return -ENODEV;
615 
616 	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
617 	 *
618 	 * REVISIT non-x86 systems may instead use memory space resources
619 	 * (needing ioremap etc), not i/o space resources like this ...
620 	 */
621 	ports = request_region(ports->start,
622 			ports->end + 1 - ports->start,
623 			driver_name);
624 	if (!ports) {
625 		dev_dbg(dev, "i/o registers already in use\n");
626 		return -EBUSY;
627 	}
628 
629 	cmos_rtc.irq = rtc_irq;
630 	cmos_rtc.iomem = ports;
631 
632 	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
633 	 * driver did, but don't reject unknown configs.   Old hardware
634 	 * won't address 128 bytes, and for now we ignore the way newer
635 	 * chips can address 256 bytes (using two more i/o ports).
636 	 */
637 #if	defined(CONFIG_ATARI)
638 	address_space = 64;
639 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__)
640 	address_space = 128;
641 #else
642 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
643 	address_space = 128;
644 #endif
645 
646 	/* For ACPI systems extension info comes from the FADT.  On others,
647 	 * board specific setup provides it as appropriate.  Systems where
648 	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
649 	 * some almost-clones) can provide hooks to make that behave.
650 	 *
651 	 * Note that ACPI doesn't preclude putting these registers into
652 	 * "extended" areas of the chip, including some that we won't yet
653 	 * expect CMOS_READ and friends to handle.
654 	 */
655 	if (info) {
656 		if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
657 			cmos_rtc.day_alrm = info->rtc_day_alarm;
658 		if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
659 			cmos_rtc.mon_alrm = info->rtc_mon_alarm;
660 		if (info->rtc_century && info->rtc_century < 128)
661 			cmos_rtc.century = info->rtc_century;
662 
663 		if (info->wake_on && info->wake_off) {
664 			cmos_rtc.wake_on = info->wake_on;
665 			cmos_rtc.wake_off = info->wake_off;
666 		}
667 	}
668 
669 	cmos_rtc.rtc = rtc_device_register(driver_name, dev,
670 				&cmos_rtc_ops, THIS_MODULE);
671 	if (IS_ERR(cmos_rtc.rtc)) {
672 		retval = PTR_ERR(cmos_rtc.rtc);
673 		goto cleanup0;
674 	}
675 
676 	cmos_rtc.dev = dev;
677 	dev_set_drvdata(dev, &cmos_rtc);
678 	rename_region(ports, cmos_rtc.rtc->dev.bus_id);
679 
680 	spin_lock_irq(&rtc_lock);
681 
682 	/* force periodic irq to CMOS reset default of 1024Hz;
683 	 *
684 	 * REVISIT it's been reported that at least one x86_64 ALI mobo
685 	 * doesn't use 32KHz here ... for portability we might need to
686 	 * do something about other clock frequencies.
687 	 */
688 	cmos_rtc.rtc->irq_freq = 1024;
689 	hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
690 	CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
691 
692 	/* disable irqs */
693 	cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
694 
695 	rtc_control = CMOS_READ(RTC_CONTROL);
696 
697 	spin_unlock_irq(&rtc_lock);
698 
699 	/* FIXME teach the alarm code how to handle binary mode;
700 	 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
701 	 */
702 	if (!(rtc_control & RTC_24H) || (rtc_control & (RTC_DM_BINARY))) {
703 		dev_dbg(dev, "only 24-hr BCD mode supported\n");
704 		retval = -ENXIO;
705 		goto cleanup1;
706 	}
707 
708 	if (is_valid_irq(rtc_irq)) {
709 		irq_handler_t rtc_cmos_int_handler;
710 
711 		if (is_hpet_enabled()) {
712 			int err;
713 
714 			rtc_cmos_int_handler = hpet_rtc_interrupt;
715 			err = hpet_register_irq_handler(cmos_interrupt);
716 			if (err != 0) {
717 				printk(KERN_WARNING "hpet_register_irq_handler "
718 						" failed in rtc_init().");
719 				goto cleanup1;
720 			}
721 		} else
722 			rtc_cmos_int_handler = cmos_interrupt;
723 
724 		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
725 				IRQF_DISABLED, cmos_rtc.rtc->dev.bus_id,
726 				cmos_rtc.rtc);
727 		if (retval < 0) {
728 			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
729 			goto cleanup1;
730 		}
731 	}
732 	hpet_rtc_timer_init();
733 
734 	/* export at least the first block of NVRAM */
735 	nvram.size = address_space - NVRAM_OFFSET;
736 	retval = sysfs_create_bin_file(&dev->kobj, &nvram);
737 	if (retval < 0) {
738 		dev_dbg(dev, "can't create nvram file? %d\n", retval);
739 		goto cleanup2;
740 	}
741 
742 	pr_info("%s: alarms up to one %s%s%s\n",
743 			cmos_rtc.rtc->dev.bus_id,
744 			is_valid_irq(rtc_irq)
745 				?  (cmos_rtc.mon_alrm
746 					? "year"
747 					: (cmos_rtc.day_alrm
748 						? "month" : "day"))
749 				: "no",
750 			cmos_rtc.century ? ", y3k" : "",
751 			is_hpet_enabled() ? ", hpet irqs" : "");
752 
753 	return 0;
754 
755 cleanup2:
756 	if (is_valid_irq(rtc_irq))
757 		free_irq(rtc_irq, cmos_rtc.rtc);
758 cleanup1:
759 	cmos_rtc.dev = NULL;
760 	rtc_device_unregister(cmos_rtc.rtc);
761 cleanup0:
762 	release_region(ports->start, ports->end + 1 - ports->start);
763 	return retval;
764 }
765 
766 static void cmos_do_shutdown(void)
767 {
768 	spin_lock_irq(&rtc_lock);
769 	cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
770 	spin_unlock_irq(&rtc_lock);
771 }
772 
773 static void __exit cmos_do_remove(struct device *dev)
774 {
775 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
776 	struct resource *ports;
777 
778 	cmos_do_shutdown();
779 
780 	sysfs_remove_bin_file(&dev->kobj, &nvram);
781 
782 	if (is_valid_irq(cmos->irq)) {
783 		free_irq(cmos->irq, cmos->rtc);
784 		hpet_unregister_irq_handler(cmos_interrupt);
785 	}
786 
787 	rtc_device_unregister(cmos->rtc);
788 	cmos->rtc = NULL;
789 
790 	ports = cmos->iomem;
791 	release_region(ports->start, ports->end + 1 - ports->start);
792 	cmos->iomem = NULL;
793 
794 	cmos->dev = NULL;
795 	dev_set_drvdata(dev, NULL);
796 }
797 
798 #ifdef	CONFIG_PM
799 
800 static int cmos_suspend(struct device *dev, pm_message_t mesg)
801 {
802 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
803 	unsigned char	tmp;
804 
805 	/* only the alarm might be a wakeup event source */
806 	spin_lock_irq(&rtc_lock);
807 	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
808 	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
809 		unsigned char	mask;
810 
811 		if (device_may_wakeup(dev))
812 			mask = RTC_IRQMASK & ~RTC_AIE;
813 		else
814 			mask = RTC_IRQMASK;
815 		tmp &= ~mask;
816 		CMOS_WRITE(tmp, RTC_CONTROL);
817 		hpet_mask_rtc_irq_bit(mask);
818 
819 		cmos_checkintr(cmos, tmp);
820 	}
821 	spin_unlock_irq(&rtc_lock);
822 
823 	if (tmp & RTC_AIE) {
824 		cmos->enabled_wake = 1;
825 		if (cmos->wake_on)
826 			cmos->wake_on(dev);
827 		else
828 			enable_irq_wake(cmos->irq);
829 	}
830 
831 	pr_debug("%s: suspend%s, ctrl %02x\n",
832 			cmos_rtc.rtc->dev.bus_id,
833 			(tmp & RTC_AIE) ? ", alarm may wake" : "",
834 			tmp);
835 
836 	return 0;
837 }
838 
839 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
840  * after a detour through G3 "mechanical off", although the ACPI spec
841  * says wakeup should only work from G1/S4 "hibernate".  To most users,
842  * distinctions between S4 and S5 are pointless.  So when the hardware
843  * allows, don't draw that distinction.
844  */
845 static inline int cmos_poweroff(struct device *dev)
846 {
847 	return cmos_suspend(dev, PMSG_HIBERNATE);
848 }
849 
850 static int cmos_resume(struct device *dev)
851 {
852 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
853 	unsigned char	tmp = cmos->suspend_ctrl;
854 
855 	/* re-enable any irqs previously active */
856 	if (tmp & RTC_IRQMASK) {
857 		unsigned char	mask;
858 
859 		if (cmos->enabled_wake) {
860 			if (cmos->wake_off)
861 				cmos->wake_off(dev);
862 			else
863 				disable_irq_wake(cmos->irq);
864 			cmos->enabled_wake = 0;
865 		}
866 
867 		spin_lock_irq(&rtc_lock);
868 		do {
869 			CMOS_WRITE(tmp, RTC_CONTROL);
870 			hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
871 
872 			mask = CMOS_READ(RTC_INTR_FLAGS);
873 			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
874 			if (!is_hpet_enabled() || !is_intr(mask))
875 				break;
876 
877 			/* force one-shot behavior if HPET blocked
878 			 * the wake alarm's irq
879 			 */
880 			rtc_update_irq(cmos->rtc, 1, mask);
881 			tmp &= ~RTC_AIE;
882 			hpet_mask_rtc_irq_bit(RTC_AIE);
883 		} while (mask & RTC_AIE);
884 		spin_unlock_irq(&rtc_lock);
885 	}
886 
887 	pr_debug("%s: resume, ctrl %02x\n",
888 			cmos_rtc.rtc->dev.bus_id,
889 			tmp);
890 
891 	return 0;
892 }
893 
894 #else
895 #define	cmos_suspend	NULL
896 #define	cmos_resume	NULL
897 
898 static inline int cmos_poweroff(struct device *dev)
899 {
900 	return -ENOSYS;
901 }
902 
903 #endif
904 
905 /*----------------------------------------------------------------*/
906 
907 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
908  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
909  * probably list them in similar PNPBIOS tables; so PNP is more common.
910  *
911  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
912  * predate even PNPBIOS should set up platform_bus devices.
913  */
914 
915 #ifdef	CONFIG_PNP
916 
917 #include <linux/pnp.h>
918 
919 static int __devinit
920 cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
921 {
922 	if (pnp_port_start(pnp,0) == 0x70 && !pnp_irq_valid(pnp,0))
923 		/* Some machines contain a PNP entry for the RTC, but
924 		 * don't define the IRQ. It should always be safe to
925 		 * hardcode it in these cases
926 		 */
927 		return cmos_do_probe(&pnp->dev,
928 				pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
929 	else
930 		return cmos_do_probe(&pnp->dev,
931 				pnp_get_resource(pnp, IORESOURCE_IO, 0),
932 				pnp_irq(pnp, 0));
933 }
934 
935 static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
936 {
937 	cmos_do_remove(&pnp->dev);
938 }
939 
940 #ifdef	CONFIG_PM
941 
942 static int cmos_pnp_suspend(struct pnp_dev *pnp, pm_message_t mesg)
943 {
944 	return cmos_suspend(&pnp->dev, mesg);
945 }
946 
947 static int cmos_pnp_resume(struct pnp_dev *pnp)
948 {
949 	return cmos_resume(&pnp->dev);
950 }
951 
952 #else
953 #define	cmos_pnp_suspend	NULL
954 #define	cmos_pnp_resume		NULL
955 #endif
956 
957 static void cmos_pnp_shutdown(struct device *pdev)
958 {
959 	if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(pdev))
960 		return;
961 
962 	cmos_do_shutdown();
963 }
964 
965 static const struct pnp_device_id rtc_ids[] = {
966 	{ .id = "PNP0b00", },
967 	{ .id = "PNP0b01", },
968 	{ .id = "PNP0b02", },
969 	{ },
970 };
971 MODULE_DEVICE_TABLE(pnp, rtc_ids);
972 
973 static struct pnp_driver cmos_pnp_driver = {
974 	.name		= (char *) driver_name,
975 	.id_table	= rtc_ids,
976 	.probe		= cmos_pnp_probe,
977 	.remove		= __exit_p(cmos_pnp_remove),
978 
979 	/* flag ensures resume() gets called, and stops syslog spam */
980 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
981 	.suspend	= cmos_pnp_suspend,
982 	.resume		= cmos_pnp_resume,
983 	.driver		= {
984 		.name	  = (char *)driver_name,
985 		.shutdown = cmos_pnp_shutdown,
986 	}
987 };
988 
989 #endif	/* CONFIG_PNP */
990 
991 /*----------------------------------------------------------------*/
992 
993 /* Platform setup should have set up an RTC device, when PNP is
994  * unavailable ... this could happen even on (older) PCs.
995  */
996 
997 static int __init cmos_platform_probe(struct platform_device *pdev)
998 {
999 	return cmos_do_probe(&pdev->dev,
1000 			platform_get_resource(pdev, IORESOURCE_IO, 0),
1001 			platform_get_irq(pdev, 0));
1002 }
1003 
1004 static int __exit cmos_platform_remove(struct platform_device *pdev)
1005 {
1006 	cmos_do_remove(&pdev->dev);
1007 	return 0;
1008 }
1009 
1010 static void cmos_platform_shutdown(struct platform_device *pdev)
1011 {
1012 	if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pdev->dev))
1013 		return;
1014 
1015 	cmos_do_shutdown();
1016 }
1017 
1018 /* work with hotplug and coldplug */
1019 MODULE_ALIAS("platform:rtc_cmos");
1020 
1021 static struct platform_driver cmos_platform_driver = {
1022 	.remove		= __exit_p(cmos_platform_remove),
1023 	.shutdown	= cmos_platform_shutdown,
1024 	.driver = {
1025 		.name		= (char *) driver_name,
1026 		.suspend	= cmos_suspend,
1027 		.resume		= cmos_resume,
1028 	}
1029 };
1030 
1031 static int __init cmos_init(void)
1032 {
1033 #ifdef	CONFIG_PNP
1034 	if (pnp_platform_devices)
1035 		return pnp_register_driver(&cmos_pnp_driver);
1036 	else
1037 		return platform_driver_probe(&cmos_platform_driver,
1038 			cmos_platform_probe);
1039 #else
1040 	return platform_driver_probe(&cmos_platform_driver,
1041 			cmos_platform_probe);
1042 #endif /* CONFIG_PNP */
1043 }
1044 module_init(cmos_init);
1045 
1046 static void __exit cmos_exit(void)
1047 {
1048 #ifdef	CONFIG_PNP
1049 	if (pnp_platform_devices)
1050 		pnp_unregister_driver(&cmos_pnp_driver);
1051 	else
1052 		platform_driver_unregister(&cmos_platform_driver);
1053 #else
1054 	platform_driver_unregister(&cmos_platform_driver);
1055 #endif /* CONFIG_PNP */
1056 }
1057 module_exit(cmos_exit);
1058 
1059 
1060 MODULE_AUTHOR("David Brownell");
1061 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1062 MODULE_LICENSE("GPL");
1063