xref: /openbmc/linux/drivers/rtc/rtc-cmos.c (revision 22246614)
1 /*
2  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
3  *
4  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5  * Copyright (C) 2006 David Brownell (convert to new framework)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  */
12 
13 /*
14  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15  * That defined the register interface now provided by all PCs, some
16  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
17  * integrate an MC146818 clone in their southbridge, and boards use
18  * that instead of discrete clones like the DS12887 or M48T86.  There
19  * are also clones that connect using the LPC bus.
20  *
21  * That register API is also used directly by various other drivers
22  * (notably for integrated NVRAM), infrastructure (x86 has code to
23  * bypass the RTC framework, directly reading the RTC during boot
24  * and updating minutes/seconds for systems using NTP synch) and
25  * utilities (like userspace 'hwclock', if no /dev node exists).
26  *
27  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28  * interrupts disabled, holding the global rtc_lock, to exclude those
29  * other drivers and utilities on correctly configured systems.
30  */
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/interrupt.h>
35 #include <linux/spinlock.h>
36 #include <linux/platform_device.h>
37 #include <linux/mod_devicetable.h>
38 
39 #ifdef CONFIG_HPET_EMULATE_RTC
40 #include <asm/hpet.h>
41 #endif
42 
43 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
44 #include <asm-generic/rtc.h>
45 
46 #ifndef CONFIG_HPET_EMULATE_RTC
47 #define is_hpet_enabled()			0
48 #define hpet_set_alarm_time(hrs, min, sec) 	do { } while (0)
49 #define hpet_set_periodic_freq(arg) 		0
50 #define hpet_mask_rtc_irq_bit(arg) 		do { } while (0)
51 #define hpet_set_rtc_irq_bit(arg) 		do { } while (0)
52 #define hpet_rtc_timer_init() 			do { } while (0)
53 #define hpet_register_irq_handler(h) 		0
54 #define hpet_unregister_irq_handler(h)		do { } while (0)
55 extern irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id);
56 #endif
57 
58 struct cmos_rtc {
59 	struct rtc_device	*rtc;
60 	struct device		*dev;
61 	int			irq;
62 	struct resource		*iomem;
63 
64 	void			(*wake_on)(struct device *);
65 	void			(*wake_off)(struct device *);
66 
67 	u8			enabled_wake;
68 	u8			suspend_ctrl;
69 
70 	/* newer hardware extends the original register set */
71 	u8			day_alrm;
72 	u8			mon_alrm;
73 	u8			century;
74 };
75 
76 /* both platform and pnp busses use negative numbers for invalid irqs */
77 #define is_valid_irq(n)		((n) >= 0)
78 
79 static const char driver_name[] = "rtc_cmos";
80 
81 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
82  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
83  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
84  */
85 #define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
86 
87 static inline int is_intr(u8 rtc_intr)
88 {
89 	if (!(rtc_intr & RTC_IRQF))
90 		return 0;
91 	return rtc_intr & RTC_IRQMASK;
92 }
93 
94 /*----------------------------------------------------------------*/
95 
96 static int cmos_read_time(struct device *dev, struct rtc_time *t)
97 {
98 	/* REVISIT:  if the clock has a "century" register, use
99 	 * that instead of the heuristic in get_rtc_time().
100 	 * That'll make Y3K compatility (year > 2070) easy!
101 	 */
102 	get_rtc_time(t);
103 	return 0;
104 }
105 
106 static int cmos_set_time(struct device *dev, struct rtc_time *t)
107 {
108 	/* REVISIT:  set the "century" register if available
109 	 *
110 	 * NOTE: this ignores the issue whereby updating the seconds
111 	 * takes effect exactly 500ms after we write the register.
112 	 * (Also queueing and other delays before we get this far.)
113 	 */
114 	return set_rtc_time(t);
115 }
116 
117 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
118 {
119 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
120 	unsigned char	rtc_control;
121 
122 	if (!is_valid_irq(cmos->irq))
123 		return -EIO;
124 
125 	/* Basic alarms only support hour, minute, and seconds fields.
126 	 * Some also support day and month, for alarms up to a year in
127 	 * the future.
128 	 */
129 	t->time.tm_mday = -1;
130 	t->time.tm_mon = -1;
131 
132 	spin_lock_irq(&rtc_lock);
133 	t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
134 	t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
135 	t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
136 
137 	if (cmos->day_alrm) {
138 		/* ignore upper bits on readback per ACPI spec */
139 		t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
140 		if (!t->time.tm_mday)
141 			t->time.tm_mday = -1;
142 
143 		if (cmos->mon_alrm) {
144 			t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
145 			if (!t->time.tm_mon)
146 				t->time.tm_mon = -1;
147 		}
148 	}
149 
150 	rtc_control = CMOS_READ(RTC_CONTROL);
151 	spin_unlock_irq(&rtc_lock);
152 
153 	/* REVISIT this assumes PC style usage:  always BCD */
154 
155 	if (((unsigned)t->time.tm_sec) < 0x60)
156 		t->time.tm_sec = BCD2BIN(t->time.tm_sec);
157 	else
158 		t->time.tm_sec = -1;
159 	if (((unsigned)t->time.tm_min) < 0x60)
160 		t->time.tm_min = BCD2BIN(t->time.tm_min);
161 	else
162 		t->time.tm_min = -1;
163 	if (((unsigned)t->time.tm_hour) < 0x24)
164 		t->time.tm_hour = BCD2BIN(t->time.tm_hour);
165 	else
166 		t->time.tm_hour = -1;
167 
168 	if (cmos->day_alrm) {
169 		if (((unsigned)t->time.tm_mday) <= 0x31)
170 			t->time.tm_mday = BCD2BIN(t->time.tm_mday);
171 		else
172 			t->time.tm_mday = -1;
173 		if (cmos->mon_alrm) {
174 			if (((unsigned)t->time.tm_mon) <= 0x12)
175 				t->time.tm_mon = BCD2BIN(t->time.tm_mon) - 1;
176 			else
177 				t->time.tm_mon = -1;
178 		}
179 	}
180 	t->time.tm_year = -1;
181 
182 	t->enabled = !!(rtc_control & RTC_AIE);
183 	t->pending = 0;
184 
185 	return 0;
186 }
187 
188 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
189 {
190 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
191 	unsigned char	mon, mday, hrs, min, sec;
192 	unsigned char	rtc_control, rtc_intr;
193 
194 	if (!is_valid_irq(cmos->irq))
195 		return -EIO;
196 
197 	/* REVISIT this assumes PC style usage:  always BCD */
198 
199 	/* Writing 0xff means "don't care" or "match all".  */
200 
201 	mon = t->time.tm_mon + 1;
202 	mon = (mon <= 12) ? BIN2BCD(mon) : 0xff;
203 
204 	mday = t->time.tm_mday;
205 	mday = (mday >= 1 && mday <= 31) ? BIN2BCD(mday) : 0xff;
206 
207 	hrs = t->time.tm_hour;
208 	hrs = (hrs < 24) ? BIN2BCD(hrs) : 0xff;
209 
210 	min = t->time.tm_min;
211 	min = (min < 60) ? BIN2BCD(min) : 0xff;
212 
213 	sec = t->time.tm_sec;
214 	sec = (sec < 60) ? BIN2BCD(sec) : 0xff;
215 
216 	hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
217 	spin_lock_irq(&rtc_lock);
218 
219 	/* next rtc irq must not be from previous alarm setting */
220 	rtc_control = CMOS_READ(RTC_CONTROL);
221 	rtc_control &= ~RTC_AIE;
222 	CMOS_WRITE(rtc_control, RTC_CONTROL);
223 	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
224 	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
225 	if (is_intr(rtc_intr))
226 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
227 
228 	/* update alarm */
229 	CMOS_WRITE(hrs, RTC_HOURS_ALARM);
230 	CMOS_WRITE(min, RTC_MINUTES_ALARM);
231 	CMOS_WRITE(sec, RTC_SECONDS_ALARM);
232 
233 	/* the system may support an "enhanced" alarm */
234 	if (cmos->day_alrm) {
235 		CMOS_WRITE(mday, cmos->day_alrm);
236 		if (cmos->mon_alrm)
237 			CMOS_WRITE(mon, cmos->mon_alrm);
238 	}
239 
240 	if (t->enabled) {
241 		rtc_control |= RTC_AIE;
242 		CMOS_WRITE(rtc_control, RTC_CONTROL);
243 		rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
244 		rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
245 		if (is_intr(rtc_intr))
246 			rtc_update_irq(cmos->rtc, 1, rtc_intr);
247 	}
248 
249 	spin_unlock_irq(&rtc_lock);
250 
251 	return 0;
252 }
253 
254 static int cmos_irq_set_freq(struct device *dev, int freq)
255 {
256 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
257 	int		f;
258 	unsigned long	flags;
259 
260 	if (!is_valid_irq(cmos->irq))
261 		return -ENXIO;
262 
263 	/* 0 = no irqs; 1 = 2^15 Hz ... 15 = 2^0 Hz */
264 	f = ffs(freq);
265 	if (f-- > 16)
266 		return -EINVAL;
267 	f = 16 - f;
268 
269 	spin_lock_irqsave(&rtc_lock, flags);
270 	if (!hpet_set_periodic_freq(freq))
271 		CMOS_WRITE(RTC_REF_CLCK_32KHZ | f, RTC_FREQ_SELECT);
272 	spin_unlock_irqrestore(&rtc_lock, flags);
273 
274 	return 0;
275 }
276 
277 static int cmos_irq_set_state(struct device *dev, int enabled)
278 {
279 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
280 	unsigned char	rtc_control, rtc_intr;
281 	unsigned long	flags;
282 
283 	if (!is_valid_irq(cmos->irq))
284 		return -ENXIO;
285 
286 	spin_lock_irqsave(&rtc_lock, flags);
287 	rtc_control = CMOS_READ(RTC_CONTROL);
288 
289 	if (enabled)
290 		rtc_control |= RTC_PIE;
291 	else
292 		rtc_control &= ~RTC_PIE;
293 
294 	CMOS_WRITE(rtc_control, RTC_CONTROL);
295 
296 	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
297 	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
298 	if (is_intr(rtc_intr))
299 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
300 
301 	spin_unlock_irqrestore(&rtc_lock, flags);
302 	return 0;
303 }
304 
305 #if defined(CONFIG_RTC_INTF_DEV) || defined(CONFIG_RTC_INTF_DEV_MODULE)
306 
307 static int
308 cmos_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
309 {
310 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
311 	unsigned char	rtc_control, rtc_intr;
312 	unsigned long	flags;
313 
314 	switch (cmd) {
315 	case RTC_AIE_OFF:
316 	case RTC_AIE_ON:
317 	case RTC_UIE_OFF:
318 	case RTC_UIE_ON:
319 	case RTC_PIE_OFF:
320 	case RTC_PIE_ON:
321 		if (!is_valid_irq(cmos->irq))
322 			return -EINVAL;
323 		break;
324 	default:
325 		return -ENOIOCTLCMD;
326 	}
327 
328 	spin_lock_irqsave(&rtc_lock, flags);
329 	rtc_control = CMOS_READ(RTC_CONTROL);
330 	switch (cmd) {
331 	case RTC_AIE_OFF:	/* alarm off */
332 		rtc_control &= ~RTC_AIE;
333 		hpet_mask_rtc_irq_bit(RTC_AIE);
334 		break;
335 	case RTC_AIE_ON:	/* alarm on */
336 		rtc_control |= RTC_AIE;
337 		hpet_set_rtc_irq_bit(RTC_AIE);
338 		break;
339 	case RTC_UIE_OFF:	/* update off */
340 		rtc_control &= ~RTC_UIE;
341 		hpet_mask_rtc_irq_bit(RTC_UIE);
342 		break;
343 	case RTC_UIE_ON:	/* update on */
344 		rtc_control |= RTC_UIE;
345 		hpet_set_rtc_irq_bit(RTC_UIE);
346 		break;
347 	case RTC_PIE_OFF:	/* periodic off */
348 		rtc_control &= ~RTC_PIE;
349 		hpet_mask_rtc_irq_bit(RTC_PIE);
350 		break;
351 	case RTC_PIE_ON:	/* periodic on */
352 		rtc_control |= RTC_PIE;
353 		hpet_set_rtc_irq_bit(RTC_PIE);
354 		break;
355 	}
356 	if (!is_hpet_enabled())
357 		CMOS_WRITE(rtc_control, RTC_CONTROL);
358 
359 	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
360 	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
361 	if (is_intr(rtc_intr))
362 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
363 
364 	spin_unlock_irqrestore(&rtc_lock, flags);
365 	return 0;
366 }
367 
368 #else
369 #define	cmos_rtc_ioctl	NULL
370 #endif
371 
372 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
373 
374 static int cmos_procfs(struct device *dev, struct seq_file *seq)
375 {
376 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
377 	unsigned char	rtc_control, valid;
378 
379 	spin_lock_irq(&rtc_lock);
380 	rtc_control = CMOS_READ(RTC_CONTROL);
381 	valid = CMOS_READ(RTC_VALID);
382 	spin_unlock_irq(&rtc_lock);
383 
384 	/* NOTE:  at least ICH6 reports battery status using a different
385 	 * (non-RTC) bit; and SQWE is ignored on many current systems.
386 	 */
387 	return seq_printf(seq,
388 			"periodic_IRQ\t: %s\n"
389 			"update_IRQ\t: %s\n"
390 			"HPET_emulated\t: %s\n"
391 			// "square_wave\t: %s\n"
392 			// "BCD\t\t: %s\n"
393 			"DST_enable\t: %s\n"
394 			"periodic_freq\t: %d\n"
395 			"batt_status\t: %s\n",
396 			(rtc_control & RTC_PIE) ? "yes" : "no",
397 			(rtc_control & RTC_UIE) ? "yes" : "no",
398 			is_hpet_enabled() ? "yes" : "no",
399 			// (rtc_control & RTC_SQWE) ? "yes" : "no",
400 			// (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
401 			(rtc_control & RTC_DST_EN) ? "yes" : "no",
402 			cmos->rtc->irq_freq,
403 			(valid & RTC_VRT) ? "okay" : "dead");
404 }
405 
406 #else
407 #define	cmos_procfs	NULL
408 #endif
409 
410 static const struct rtc_class_ops cmos_rtc_ops = {
411 	.ioctl		= cmos_rtc_ioctl,
412 	.read_time	= cmos_read_time,
413 	.set_time	= cmos_set_time,
414 	.read_alarm	= cmos_read_alarm,
415 	.set_alarm	= cmos_set_alarm,
416 	.proc		= cmos_procfs,
417 	.irq_set_freq	= cmos_irq_set_freq,
418 	.irq_set_state	= cmos_irq_set_state,
419 };
420 
421 /*----------------------------------------------------------------*/
422 
423 /*
424  * All these chips have at least 64 bytes of address space, shared by
425  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
426  * by boot firmware.  Modern chips have 128 or 256 bytes.
427  */
428 
429 #define NVRAM_OFFSET	(RTC_REG_D + 1)
430 
431 static ssize_t
432 cmos_nvram_read(struct kobject *kobj, struct bin_attribute *attr,
433 		char *buf, loff_t off, size_t count)
434 {
435 	int	retval;
436 
437 	if (unlikely(off >= attr->size))
438 		return 0;
439 	if ((off + count) > attr->size)
440 		count = attr->size - off;
441 
442 	spin_lock_irq(&rtc_lock);
443 	for (retval = 0, off += NVRAM_OFFSET; count--; retval++, off++)
444 		*buf++ = CMOS_READ(off);
445 	spin_unlock_irq(&rtc_lock);
446 
447 	return retval;
448 }
449 
450 static ssize_t
451 cmos_nvram_write(struct kobject *kobj, struct bin_attribute *attr,
452 		char *buf, loff_t off, size_t count)
453 {
454 	struct cmos_rtc	*cmos;
455 	int		retval;
456 
457 	cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
458 	if (unlikely(off >= attr->size))
459 		return -EFBIG;
460 	if ((off + count) > attr->size)
461 		count = attr->size - off;
462 
463 	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
464 	 * checksum on part of the NVRAM data.  That's currently ignored
465 	 * here.  If userspace is smart enough to know what fields of
466 	 * NVRAM to update, updating checksums is also part of its job.
467 	 */
468 	spin_lock_irq(&rtc_lock);
469 	for (retval = 0, off += NVRAM_OFFSET; count--; retval++, off++) {
470 		/* don't trash RTC registers */
471 		if (off == cmos->day_alrm
472 				|| off == cmos->mon_alrm
473 				|| off == cmos->century)
474 			buf++;
475 		else
476 			CMOS_WRITE(*buf++, off);
477 	}
478 	spin_unlock_irq(&rtc_lock);
479 
480 	return retval;
481 }
482 
483 static struct bin_attribute nvram = {
484 	.attr = {
485 		.name	= "nvram",
486 		.mode	= S_IRUGO | S_IWUSR,
487 		.owner	= THIS_MODULE,
488 	},
489 
490 	.read	= cmos_nvram_read,
491 	.write	= cmos_nvram_write,
492 	/* size gets set up later */
493 };
494 
495 /*----------------------------------------------------------------*/
496 
497 static struct cmos_rtc	cmos_rtc;
498 
499 static irqreturn_t cmos_interrupt(int irq, void *p)
500 {
501 	u8		irqstat;
502 	u8		rtc_control;
503 
504 	spin_lock(&rtc_lock);
505 	/*
506 	 * In this case it is HPET RTC interrupt handler
507 	 * calling us, with the interrupt information
508 	 * passed as arg1, instead of irq.
509 	 */
510 	if (is_hpet_enabled())
511 		irqstat = (unsigned long)irq & 0xF0;
512 	else {
513 		irqstat = CMOS_READ(RTC_INTR_FLAGS);
514 		rtc_control = CMOS_READ(RTC_CONTROL);
515 		irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
516 	}
517 
518 	/* All Linux RTC alarms should be treated as if they were oneshot.
519 	 * Similar code may be needed in system wakeup paths, in case the
520 	 * alarm woke the system.
521 	 */
522 	if (irqstat & RTC_AIE) {
523 		rtc_control = CMOS_READ(RTC_CONTROL);
524 		rtc_control &= ~RTC_AIE;
525 		CMOS_WRITE(rtc_control, RTC_CONTROL);
526 		CMOS_READ(RTC_INTR_FLAGS);
527 	}
528 	spin_unlock(&rtc_lock);
529 
530 	if (is_intr(irqstat)) {
531 		rtc_update_irq(p, 1, irqstat);
532 		return IRQ_HANDLED;
533 	} else
534 		return IRQ_NONE;
535 }
536 
537 #ifdef	CONFIG_PNP
538 #define	INITSECTION
539 
540 #else
541 #define	INITSECTION	__init
542 #endif
543 
544 static int INITSECTION
545 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
546 {
547 	struct cmos_rtc_board_info	*info = dev->platform_data;
548 	int				retval = 0;
549 	unsigned char			rtc_control;
550 	unsigned			address_space;
551 
552 	/* there can be only one ... */
553 	if (cmos_rtc.dev)
554 		return -EBUSY;
555 
556 	if (!ports)
557 		return -ENODEV;
558 
559 	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
560 	 *
561 	 * REVISIT non-x86 systems may instead use memory space resources
562 	 * (needing ioremap etc), not i/o space resources like this ...
563 	 */
564 	ports = request_region(ports->start,
565 			ports->end + 1 - ports->start,
566 			driver_name);
567 	if (!ports) {
568 		dev_dbg(dev, "i/o registers already in use\n");
569 		return -EBUSY;
570 	}
571 
572 	cmos_rtc.irq = rtc_irq;
573 	cmos_rtc.iomem = ports;
574 
575 	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
576 	 * driver did, but don't reject unknown configs.   Old hardware
577 	 * won't address 128 bytes, and for now we ignore the way newer
578 	 * chips can address 256 bytes (using two more i/o ports).
579 	 */
580 #if	defined(CONFIG_ATARI)
581 	address_space = 64;
582 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__)
583 	address_space = 128;
584 #else
585 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
586 	address_space = 128;
587 #endif
588 
589 	/* For ACPI systems extension info comes from the FADT.  On others,
590 	 * board specific setup provides it as appropriate.  Systems where
591 	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
592 	 * some almost-clones) can provide hooks to make that behave.
593 	 *
594 	 * Note that ACPI doesn't preclude putting these registers into
595 	 * "extended" areas of the chip, including some that we won't yet
596 	 * expect CMOS_READ and friends to handle.
597 	 */
598 	if (info) {
599 		if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
600 			cmos_rtc.day_alrm = info->rtc_day_alarm;
601 		if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
602 			cmos_rtc.mon_alrm = info->rtc_mon_alarm;
603 		if (info->rtc_century && info->rtc_century < 128)
604 			cmos_rtc.century = info->rtc_century;
605 
606 		if (info->wake_on && info->wake_off) {
607 			cmos_rtc.wake_on = info->wake_on;
608 			cmos_rtc.wake_off = info->wake_off;
609 		}
610 	}
611 
612 	cmos_rtc.rtc = rtc_device_register(driver_name, dev,
613 				&cmos_rtc_ops, THIS_MODULE);
614 	if (IS_ERR(cmos_rtc.rtc)) {
615 		retval = PTR_ERR(cmos_rtc.rtc);
616 		goto cleanup0;
617 	}
618 
619 	cmos_rtc.dev = dev;
620 	dev_set_drvdata(dev, &cmos_rtc);
621 	rename_region(ports, cmos_rtc.rtc->dev.bus_id);
622 
623 	spin_lock_irq(&rtc_lock);
624 
625 	/* force periodic irq to CMOS reset default of 1024Hz;
626 	 *
627 	 * REVISIT it's been reported that at least one x86_64 ALI mobo
628 	 * doesn't use 32KHz here ... for portability we might need to
629 	 * do something about other clock frequencies.
630 	 */
631 	cmos_rtc.rtc->irq_freq = 1024;
632 	if (!hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq))
633 		CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
634 
635 	/* disable irqs.
636 	 *
637 	 * NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
638 	 * allegedly some older rtcs need that to handle irqs properly
639 	 */
640 	rtc_control = CMOS_READ(RTC_CONTROL);
641 	rtc_control &= ~(RTC_PIE | RTC_AIE | RTC_UIE);
642 	CMOS_WRITE(rtc_control, RTC_CONTROL);
643 	CMOS_READ(RTC_INTR_FLAGS);
644 
645 	spin_unlock_irq(&rtc_lock);
646 
647 	/* FIXME teach the alarm code how to handle binary mode;
648 	 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
649 	 */
650 	if (!(rtc_control & RTC_24H) || (rtc_control & (RTC_DM_BINARY))) {
651 		dev_dbg(dev, "only 24-hr BCD mode supported\n");
652 		retval = -ENXIO;
653 		goto cleanup1;
654 	}
655 
656 	if (is_valid_irq(rtc_irq)) {
657 		irq_handler_t rtc_cmos_int_handler;
658 
659 		if (is_hpet_enabled()) {
660 			int err;
661 
662 			rtc_cmos_int_handler = hpet_rtc_interrupt;
663 			err = hpet_register_irq_handler(cmos_interrupt);
664 			if (err != 0) {
665 				printk(KERN_WARNING "hpet_register_irq_handler "
666 						" failed in rtc_init().");
667 				goto cleanup1;
668 			}
669 		} else
670 			rtc_cmos_int_handler = cmos_interrupt;
671 
672 		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
673 				IRQF_DISABLED, cmos_rtc.rtc->dev.bus_id,
674 				cmos_rtc.rtc);
675 		if (retval < 0) {
676 			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
677 			goto cleanup1;
678 		}
679 	}
680 	hpet_rtc_timer_init();
681 
682 	/* export at least the first block of NVRAM */
683 	nvram.size = address_space - NVRAM_OFFSET;
684 	retval = sysfs_create_bin_file(&dev->kobj, &nvram);
685 	if (retval < 0) {
686 		dev_dbg(dev, "can't create nvram file? %d\n", retval);
687 		goto cleanup2;
688 	}
689 
690 	pr_info("%s: alarms up to one %s%s\n",
691 			cmos_rtc.rtc->dev.bus_id,
692 			is_valid_irq(rtc_irq)
693 				?  (cmos_rtc.mon_alrm
694 					? "year"
695 					: (cmos_rtc.day_alrm
696 						? "month" : "day"))
697 				: "no",
698 			cmos_rtc.century ? ", y3k" : ""
699 			);
700 
701 	return 0;
702 
703 cleanup2:
704 	if (is_valid_irq(rtc_irq))
705 		free_irq(rtc_irq, cmos_rtc.rtc);
706 cleanup1:
707 	cmos_rtc.dev = NULL;
708 	rtc_device_unregister(cmos_rtc.rtc);
709 cleanup0:
710 	release_region(ports->start, ports->end + 1 - ports->start);
711 	return retval;
712 }
713 
714 static void cmos_do_shutdown(void)
715 {
716 	unsigned char	rtc_control;
717 
718 	spin_lock_irq(&rtc_lock);
719 	rtc_control = CMOS_READ(RTC_CONTROL);
720 	rtc_control &= ~(RTC_PIE|RTC_AIE|RTC_UIE);
721 	CMOS_WRITE(rtc_control, RTC_CONTROL);
722 	CMOS_READ(RTC_INTR_FLAGS);
723 	spin_unlock_irq(&rtc_lock);
724 }
725 
726 static void __exit cmos_do_remove(struct device *dev)
727 {
728 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
729 	struct resource *ports;
730 
731 	cmos_do_shutdown();
732 
733 	sysfs_remove_bin_file(&dev->kobj, &nvram);
734 
735 	if (is_valid_irq(cmos->irq)) {
736 		free_irq(cmos->irq, cmos->rtc);
737 		hpet_unregister_irq_handler(cmos_interrupt);
738 	}
739 
740 	rtc_device_unregister(cmos->rtc);
741 	cmos->rtc = NULL;
742 
743 	ports = cmos->iomem;
744 	release_region(ports->start, ports->end + 1 - ports->start);
745 	cmos->iomem = NULL;
746 
747 	cmos->dev = NULL;
748 	dev_set_drvdata(dev, NULL);
749 }
750 
751 #ifdef	CONFIG_PM
752 
753 static int cmos_suspend(struct device *dev, pm_message_t mesg)
754 {
755 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
756 	int		do_wake = device_may_wakeup(dev);
757 	unsigned char	tmp;
758 
759 	/* only the alarm might be a wakeup event source */
760 	spin_lock_irq(&rtc_lock);
761 	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
762 	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
763 		unsigned char	irqstat;
764 
765 		if (do_wake)
766 			tmp &= ~(RTC_PIE|RTC_UIE);
767 		else
768 			tmp &= ~(RTC_PIE|RTC_AIE|RTC_UIE);
769 		CMOS_WRITE(tmp, RTC_CONTROL);
770 		irqstat = CMOS_READ(RTC_INTR_FLAGS);
771 		irqstat &= (tmp & RTC_IRQMASK) | RTC_IRQF;
772 		if (is_intr(irqstat))
773 			rtc_update_irq(cmos->rtc, 1, irqstat);
774 	}
775 	spin_unlock_irq(&rtc_lock);
776 
777 	if (tmp & RTC_AIE) {
778 		cmos->enabled_wake = 1;
779 		if (cmos->wake_on)
780 			cmos->wake_on(dev);
781 		else
782 			enable_irq_wake(cmos->irq);
783 	}
784 
785 	pr_debug("%s: suspend%s, ctrl %02x\n",
786 			cmos_rtc.rtc->dev.bus_id,
787 			(tmp & RTC_AIE) ? ", alarm may wake" : "",
788 			tmp);
789 
790 	return 0;
791 }
792 
793 static int cmos_resume(struct device *dev)
794 {
795 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
796 	unsigned char	tmp = cmos->suspend_ctrl;
797 
798 	/* re-enable any irqs previously active */
799 	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
800 
801 		if (cmos->enabled_wake) {
802 			if (cmos->wake_off)
803 				cmos->wake_off(dev);
804 			else
805 				disable_irq_wake(cmos->irq);
806 			cmos->enabled_wake = 0;
807 		}
808 
809 		spin_lock_irq(&rtc_lock);
810 		CMOS_WRITE(tmp, RTC_CONTROL);
811 		tmp = CMOS_READ(RTC_INTR_FLAGS);
812 		tmp &= (cmos->suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
813 		if (is_intr(tmp))
814 			rtc_update_irq(cmos->rtc, 1, tmp);
815 		spin_unlock_irq(&rtc_lock);
816 	}
817 
818 	pr_debug("%s: resume, ctrl %02x\n",
819 			cmos_rtc.rtc->dev.bus_id,
820 			cmos->suspend_ctrl);
821 
822 
823 	return 0;
824 }
825 
826 #else
827 #define	cmos_suspend	NULL
828 #define	cmos_resume	NULL
829 #endif
830 
831 /*----------------------------------------------------------------*/
832 
833 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
834  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
835  * probably list them in similar PNPBIOS tables; so PNP is more common.
836  *
837  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
838  * predate even PNPBIOS should set up platform_bus devices.
839  */
840 
841 #ifdef	CONFIG_PNP
842 
843 #include <linux/pnp.h>
844 
845 static int __devinit
846 cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
847 {
848 	/* REVISIT paranoia argues for a shutdown notifier, since PNP
849 	 * drivers can't provide shutdown() methods to disable IRQs.
850 	 * Or better yet, fix PNP to allow those methods...
851 	 */
852 	if (pnp_port_start(pnp,0) == 0x70 && !pnp_irq_valid(pnp,0))
853 		/* Some machines contain a PNP entry for the RTC, but
854 		 * don't define the IRQ. It should always be safe to
855 		 * hardcode it in these cases
856 		 */
857 		return cmos_do_probe(&pnp->dev,
858 				pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
859 	else
860 		return cmos_do_probe(&pnp->dev,
861 				pnp_get_resource(pnp, IORESOURCE_IO, 0),
862 				pnp_irq(pnp, 0));
863 }
864 
865 static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
866 {
867 	cmos_do_remove(&pnp->dev);
868 }
869 
870 #ifdef	CONFIG_PM
871 
872 static int cmos_pnp_suspend(struct pnp_dev *pnp, pm_message_t mesg)
873 {
874 	return cmos_suspend(&pnp->dev, mesg);
875 }
876 
877 static int cmos_pnp_resume(struct pnp_dev *pnp)
878 {
879 	return cmos_resume(&pnp->dev);
880 }
881 
882 #else
883 #define	cmos_pnp_suspend	NULL
884 #define	cmos_pnp_resume		NULL
885 #endif
886 
887 
888 static const struct pnp_device_id rtc_ids[] = {
889 	{ .id = "PNP0b00", },
890 	{ .id = "PNP0b01", },
891 	{ .id = "PNP0b02", },
892 	{ },
893 };
894 MODULE_DEVICE_TABLE(pnp, rtc_ids);
895 
896 static struct pnp_driver cmos_pnp_driver = {
897 	.name		= (char *) driver_name,
898 	.id_table	= rtc_ids,
899 	.probe		= cmos_pnp_probe,
900 	.remove		= __exit_p(cmos_pnp_remove),
901 
902 	/* flag ensures resume() gets called, and stops syslog spam */
903 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
904 	.suspend	= cmos_pnp_suspend,
905 	.resume		= cmos_pnp_resume,
906 };
907 
908 static int __init cmos_init(void)
909 {
910 	return pnp_register_driver(&cmos_pnp_driver);
911 }
912 module_init(cmos_init);
913 
914 static void __exit cmos_exit(void)
915 {
916 	pnp_unregister_driver(&cmos_pnp_driver);
917 }
918 module_exit(cmos_exit);
919 
920 #else	/* no PNP */
921 
922 /*----------------------------------------------------------------*/
923 
924 /* Platform setup should have set up an RTC device, when PNP is
925  * unavailable ... this could happen even on (older) PCs.
926  */
927 
928 static int __init cmos_platform_probe(struct platform_device *pdev)
929 {
930 	return cmos_do_probe(&pdev->dev,
931 			platform_get_resource(pdev, IORESOURCE_IO, 0),
932 			platform_get_irq(pdev, 0));
933 }
934 
935 static int __exit cmos_platform_remove(struct platform_device *pdev)
936 {
937 	cmos_do_remove(&pdev->dev);
938 	return 0;
939 }
940 
941 static void cmos_platform_shutdown(struct platform_device *pdev)
942 {
943 	cmos_do_shutdown();
944 }
945 
946 /* work with hotplug and coldplug */
947 MODULE_ALIAS("platform:rtc_cmos");
948 
949 static struct platform_driver cmos_platform_driver = {
950 	.remove		= __exit_p(cmos_platform_remove),
951 	.shutdown	= cmos_platform_shutdown,
952 	.driver = {
953 		.name		= (char *) driver_name,
954 		.suspend	= cmos_suspend,
955 		.resume		= cmos_resume,
956 	}
957 };
958 
959 static int __init cmos_init(void)
960 {
961 	return platform_driver_probe(&cmos_platform_driver,
962 			cmos_platform_probe);
963 }
964 module_init(cmos_init);
965 
966 static void __exit cmos_exit(void)
967 {
968 	platform_driver_unregister(&cmos_platform_driver);
969 }
970 module_exit(cmos_exit);
971 
972 
973 #endif	/* !PNP */
974 
975 MODULE_AUTHOR("David Brownell");
976 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
977 MODULE_LICENSE("GPL");
978