xref: /openbmc/linux/drivers/rtc/rtc-cmos.c (revision 1fa6ac37)
1 /*
2  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
3  *
4  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5  * Copyright (C) 2006 David Brownell (convert to new framework)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  */
12 
13 /*
14  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15  * That defined the register interface now provided by all PCs, some
16  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
17  * integrate an MC146818 clone in their southbridge, and boards use
18  * that instead of discrete clones like the DS12887 or M48T86.  There
19  * are also clones that connect using the LPC bus.
20  *
21  * That register API is also used directly by various other drivers
22  * (notably for integrated NVRAM), infrastructure (x86 has code to
23  * bypass the RTC framework, directly reading the RTC during boot
24  * and updating minutes/seconds for systems using NTP synch) and
25  * utilities (like userspace 'hwclock', if no /dev node exists).
26  *
27  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28  * interrupts disabled, holding the global rtc_lock, to exclude those
29  * other drivers and utilities on correctly configured systems.
30  */
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/interrupt.h>
35 #include <linux/spinlock.h>
36 #include <linux/platform_device.h>
37 #include <linux/mod_devicetable.h>
38 #include <linux/log2.h>
39 
40 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
41 #include <asm-generic/rtc.h>
42 
43 struct cmos_rtc {
44 	struct rtc_device	*rtc;
45 	struct device		*dev;
46 	int			irq;
47 	struct resource		*iomem;
48 
49 	void			(*wake_on)(struct device *);
50 	void			(*wake_off)(struct device *);
51 
52 	u8			enabled_wake;
53 	u8			suspend_ctrl;
54 
55 	/* newer hardware extends the original register set */
56 	u8			day_alrm;
57 	u8			mon_alrm;
58 	u8			century;
59 };
60 
61 /* both platform and pnp busses use negative numbers for invalid irqs */
62 #define is_valid_irq(n)		((n) > 0)
63 
64 static const char driver_name[] = "rtc_cmos";
65 
66 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
67  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
68  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
69  */
70 #define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
71 
72 static inline int is_intr(u8 rtc_intr)
73 {
74 	if (!(rtc_intr & RTC_IRQF))
75 		return 0;
76 	return rtc_intr & RTC_IRQMASK;
77 }
78 
79 /*----------------------------------------------------------------*/
80 
81 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
82  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
83  * used in a broken "legacy replacement" mode.  The breakage includes
84  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
85  * other (better) use.
86  *
87  * When that broken mode is in use, platform glue provides a partial
88  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
89  * want to use HPET for anything except those IRQs though...
90  */
91 #ifdef CONFIG_HPET_EMULATE_RTC
92 #include <asm/hpet.h>
93 #else
94 
95 static inline int is_hpet_enabled(void)
96 {
97 	return 0;
98 }
99 
100 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
101 {
102 	return 0;
103 }
104 
105 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
106 {
107 	return 0;
108 }
109 
110 static inline int
111 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
112 {
113 	return 0;
114 }
115 
116 static inline int hpet_set_periodic_freq(unsigned long freq)
117 {
118 	return 0;
119 }
120 
121 static inline int hpet_rtc_dropped_irq(void)
122 {
123 	return 0;
124 }
125 
126 static inline int hpet_rtc_timer_init(void)
127 {
128 	return 0;
129 }
130 
131 extern irq_handler_t hpet_rtc_interrupt;
132 
133 static inline int hpet_register_irq_handler(irq_handler_t handler)
134 {
135 	return 0;
136 }
137 
138 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
139 {
140 	return 0;
141 }
142 
143 #endif
144 
145 /*----------------------------------------------------------------*/
146 
147 #ifdef RTC_PORT
148 
149 /* Most newer x86 systems have two register banks, the first used
150  * for RTC and NVRAM and the second only for NVRAM.  Caller must
151  * own rtc_lock ... and we won't worry about access during NMI.
152  */
153 #define can_bank2	true
154 
155 static inline unsigned char cmos_read_bank2(unsigned char addr)
156 {
157 	outb(addr, RTC_PORT(2));
158 	return inb(RTC_PORT(3));
159 }
160 
161 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
162 {
163 	outb(addr, RTC_PORT(2));
164 	outb(val, RTC_PORT(2));
165 }
166 
167 #else
168 
169 #define can_bank2	false
170 
171 static inline unsigned char cmos_read_bank2(unsigned char addr)
172 {
173 	return 0;
174 }
175 
176 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
177 {
178 }
179 
180 #endif
181 
182 /*----------------------------------------------------------------*/
183 
184 static int cmos_read_time(struct device *dev, struct rtc_time *t)
185 {
186 	/* REVISIT:  if the clock has a "century" register, use
187 	 * that instead of the heuristic in get_rtc_time().
188 	 * That'll make Y3K compatility (year > 2070) easy!
189 	 */
190 	get_rtc_time(t);
191 	return 0;
192 }
193 
194 static int cmos_set_time(struct device *dev, struct rtc_time *t)
195 {
196 	/* REVISIT:  set the "century" register if available
197 	 *
198 	 * NOTE: this ignores the issue whereby updating the seconds
199 	 * takes effect exactly 500ms after we write the register.
200 	 * (Also queueing and other delays before we get this far.)
201 	 */
202 	return set_rtc_time(t);
203 }
204 
205 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
206 {
207 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
208 	unsigned char	rtc_control;
209 
210 	if (!is_valid_irq(cmos->irq))
211 		return -EIO;
212 
213 	/* Basic alarms only support hour, minute, and seconds fields.
214 	 * Some also support day and month, for alarms up to a year in
215 	 * the future.
216 	 */
217 	t->time.tm_mday = -1;
218 	t->time.tm_mon = -1;
219 
220 	spin_lock_irq(&rtc_lock);
221 	t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
222 	t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
223 	t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
224 
225 	if (cmos->day_alrm) {
226 		/* ignore upper bits on readback per ACPI spec */
227 		t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
228 		if (!t->time.tm_mday)
229 			t->time.tm_mday = -1;
230 
231 		if (cmos->mon_alrm) {
232 			t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
233 			if (!t->time.tm_mon)
234 				t->time.tm_mon = -1;
235 		}
236 	}
237 
238 	rtc_control = CMOS_READ(RTC_CONTROL);
239 	spin_unlock_irq(&rtc_lock);
240 
241 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
242 		if (((unsigned)t->time.tm_sec) < 0x60)
243 			t->time.tm_sec = bcd2bin(t->time.tm_sec);
244 		else
245 			t->time.tm_sec = -1;
246 		if (((unsigned)t->time.tm_min) < 0x60)
247 			t->time.tm_min = bcd2bin(t->time.tm_min);
248 		else
249 			t->time.tm_min = -1;
250 		if (((unsigned)t->time.tm_hour) < 0x24)
251 			t->time.tm_hour = bcd2bin(t->time.tm_hour);
252 		else
253 			t->time.tm_hour = -1;
254 
255 		if (cmos->day_alrm) {
256 			if (((unsigned)t->time.tm_mday) <= 0x31)
257 				t->time.tm_mday = bcd2bin(t->time.tm_mday);
258 			else
259 				t->time.tm_mday = -1;
260 
261 			if (cmos->mon_alrm) {
262 				if (((unsigned)t->time.tm_mon) <= 0x12)
263 					t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
264 				else
265 					t->time.tm_mon = -1;
266 			}
267 		}
268 	}
269 	t->time.tm_year = -1;
270 
271 	t->enabled = !!(rtc_control & RTC_AIE);
272 	t->pending = 0;
273 
274 	return 0;
275 }
276 
277 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
278 {
279 	unsigned char	rtc_intr;
280 
281 	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
282 	 * allegedly some older rtcs need that to handle irqs properly
283 	 */
284 	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
285 
286 	if (is_hpet_enabled())
287 		return;
288 
289 	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
290 	if (is_intr(rtc_intr))
291 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
292 }
293 
294 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
295 {
296 	unsigned char	rtc_control;
297 
298 	/* flush any pending IRQ status, notably for update irqs,
299 	 * before we enable new IRQs
300 	 */
301 	rtc_control = CMOS_READ(RTC_CONTROL);
302 	cmos_checkintr(cmos, rtc_control);
303 
304 	rtc_control |= mask;
305 	CMOS_WRITE(rtc_control, RTC_CONTROL);
306 	hpet_set_rtc_irq_bit(mask);
307 
308 	cmos_checkintr(cmos, rtc_control);
309 }
310 
311 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
312 {
313 	unsigned char	rtc_control;
314 
315 	rtc_control = CMOS_READ(RTC_CONTROL);
316 	rtc_control &= ~mask;
317 	CMOS_WRITE(rtc_control, RTC_CONTROL);
318 	hpet_mask_rtc_irq_bit(mask);
319 
320 	cmos_checkintr(cmos, rtc_control);
321 }
322 
323 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
324 {
325 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
326        unsigned char   mon, mday, hrs, min, sec, rtc_control;
327 
328 	if (!is_valid_irq(cmos->irq))
329 		return -EIO;
330 
331 	mon = t->time.tm_mon + 1;
332 	mday = t->time.tm_mday;
333 	hrs = t->time.tm_hour;
334 	min = t->time.tm_min;
335 	sec = t->time.tm_sec;
336 
337 	rtc_control = CMOS_READ(RTC_CONTROL);
338 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
339 		/* Writing 0xff means "don't care" or "match all".  */
340 		mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
341 		mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
342 		hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
343 		min = (min < 60) ? bin2bcd(min) : 0xff;
344 		sec = (sec < 60) ? bin2bcd(sec) : 0xff;
345 	}
346 
347 	spin_lock_irq(&rtc_lock);
348 
349 	/* next rtc irq must not be from previous alarm setting */
350 	cmos_irq_disable(cmos, RTC_AIE);
351 
352 	/* update alarm */
353 	CMOS_WRITE(hrs, RTC_HOURS_ALARM);
354 	CMOS_WRITE(min, RTC_MINUTES_ALARM);
355 	CMOS_WRITE(sec, RTC_SECONDS_ALARM);
356 
357 	/* the system may support an "enhanced" alarm */
358 	if (cmos->day_alrm) {
359 		CMOS_WRITE(mday, cmos->day_alrm);
360 		if (cmos->mon_alrm)
361 			CMOS_WRITE(mon, cmos->mon_alrm);
362 	}
363 
364 	/* FIXME the HPET alarm glue currently ignores day_alrm
365 	 * and mon_alrm ...
366 	 */
367 	hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
368 
369 	if (t->enabled)
370 		cmos_irq_enable(cmos, RTC_AIE);
371 
372 	spin_unlock_irq(&rtc_lock);
373 
374 	return 0;
375 }
376 
377 static int cmos_irq_set_freq(struct device *dev, int freq)
378 {
379 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
380 	int		f;
381 	unsigned long	flags;
382 
383 	if (!is_valid_irq(cmos->irq))
384 		return -ENXIO;
385 
386 	if (!is_power_of_2(freq))
387 		return -EINVAL;
388 	/* 0 = no irqs; 1 = 2^15 Hz ... 15 = 2^0 Hz */
389 	f = ffs(freq);
390 	if (f-- > 16)
391 		return -EINVAL;
392 	f = 16 - f;
393 
394 	spin_lock_irqsave(&rtc_lock, flags);
395 	hpet_set_periodic_freq(freq);
396 	CMOS_WRITE(RTC_REF_CLCK_32KHZ | f, RTC_FREQ_SELECT);
397 	spin_unlock_irqrestore(&rtc_lock, flags);
398 
399 	return 0;
400 }
401 
402 static int cmos_irq_set_state(struct device *dev, int enabled)
403 {
404 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
405 	unsigned long	flags;
406 
407 	if (!is_valid_irq(cmos->irq))
408 		return -ENXIO;
409 
410 	spin_lock_irqsave(&rtc_lock, flags);
411 
412 	if (enabled)
413 		cmos_irq_enable(cmos, RTC_PIE);
414 	else
415 		cmos_irq_disable(cmos, RTC_PIE);
416 
417 	spin_unlock_irqrestore(&rtc_lock, flags);
418 	return 0;
419 }
420 
421 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
422 {
423 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
424 	unsigned long	flags;
425 
426 	if (!is_valid_irq(cmos->irq))
427 		return -EINVAL;
428 
429 	spin_lock_irqsave(&rtc_lock, flags);
430 
431 	if (enabled)
432 		cmos_irq_enable(cmos, RTC_AIE);
433 	else
434 		cmos_irq_disable(cmos, RTC_AIE);
435 
436 	spin_unlock_irqrestore(&rtc_lock, flags);
437 	return 0;
438 }
439 
440 static int cmos_update_irq_enable(struct device *dev, unsigned int enabled)
441 {
442 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
443 	unsigned long	flags;
444 
445 	if (!is_valid_irq(cmos->irq))
446 		return -EINVAL;
447 
448 	spin_lock_irqsave(&rtc_lock, flags);
449 
450 	if (enabled)
451 		cmos_irq_enable(cmos, RTC_UIE);
452 	else
453 		cmos_irq_disable(cmos, RTC_UIE);
454 
455 	spin_unlock_irqrestore(&rtc_lock, flags);
456 	return 0;
457 }
458 
459 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
460 
461 static int cmos_procfs(struct device *dev, struct seq_file *seq)
462 {
463 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
464 	unsigned char	rtc_control, valid;
465 
466 	spin_lock_irq(&rtc_lock);
467 	rtc_control = CMOS_READ(RTC_CONTROL);
468 	valid = CMOS_READ(RTC_VALID);
469 	spin_unlock_irq(&rtc_lock);
470 
471 	/* NOTE:  at least ICH6 reports battery status using a different
472 	 * (non-RTC) bit; and SQWE is ignored on many current systems.
473 	 */
474 	return seq_printf(seq,
475 			"periodic_IRQ\t: %s\n"
476 			"update_IRQ\t: %s\n"
477 			"HPET_emulated\t: %s\n"
478 			// "square_wave\t: %s\n"
479 			"BCD\t\t: %s\n"
480 			"DST_enable\t: %s\n"
481 			"periodic_freq\t: %d\n"
482 			"batt_status\t: %s\n",
483 			(rtc_control & RTC_PIE) ? "yes" : "no",
484 			(rtc_control & RTC_UIE) ? "yes" : "no",
485 			is_hpet_enabled() ? "yes" : "no",
486 			// (rtc_control & RTC_SQWE) ? "yes" : "no",
487 			(rtc_control & RTC_DM_BINARY) ? "no" : "yes",
488 			(rtc_control & RTC_DST_EN) ? "yes" : "no",
489 			cmos->rtc->irq_freq,
490 			(valid & RTC_VRT) ? "okay" : "dead");
491 }
492 
493 #else
494 #define	cmos_procfs	NULL
495 #endif
496 
497 static const struct rtc_class_ops cmos_rtc_ops = {
498 	.read_time		= cmos_read_time,
499 	.set_time		= cmos_set_time,
500 	.read_alarm		= cmos_read_alarm,
501 	.set_alarm		= cmos_set_alarm,
502 	.proc			= cmos_procfs,
503 	.irq_set_freq		= cmos_irq_set_freq,
504 	.irq_set_state		= cmos_irq_set_state,
505 	.alarm_irq_enable	= cmos_alarm_irq_enable,
506 	.update_irq_enable	= cmos_update_irq_enable,
507 };
508 
509 /*----------------------------------------------------------------*/
510 
511 /*
512  * All these chips have at least 64 bytes of address space, shared by
513  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
514  * by boot firmware.  Modern chips have 128 or 256 bytes.
515  */
516 
517 #define NVRAM_OFFSET	(RTC_REG_D + 1)
518 
519 static ssize_t
520 cmos_nvram_read(struct file *filp, struct kobject *kobj,
521 		struct bin_attribute *attr,
522 		char *buf, loff_t off, size_t count)
523 {
524 	int	retval;
525 
526 	if (unlikely(off >= attr->size))
527 		return 0;
528 	if (unlikely(off < 0))
529 		return -EINVAL;
530 	if ((off + count) > attr->size)
531 		count = attr->size - off;
532 
533 	off += NVRAM_OFFSET;
534 	spin_lock_irq(&rtc_lock);
535 	for (retval = 0; count; count--, off++, retval++) {
536 		if (off < 128)
537 			*buf++ = CMOS_READ(off);
538 		else if (can_bank2)
539 			*buf++ = cmos_read_bank2(off);
540 		else
541 			break;
542 	}
543 	spin_unlock_irq(&rtc_lock);
544 
545 	return retval;
546 }
547 
548 static ssize_t
549 cmos_nvram_write(struct file *filp, struct kobject *kobj,
550 		struct bin_attribute *attr,
551 		char *buf, loff_t off, size_t count)
552 {
553 	struct cmos_rtc	*cmos;
554 	int		retval;
555 
556 	cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
557 	if (unlikely(off >= attr->size))
558 		return -EFBIG;
559 	if (unlikely(off < 0))
560 		return -EINVAL;
561 	if ((off + count) > attr->size)
562 		count = attr->size - off;
563 
564 	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
565 	 * checksum on part of the NVRAM data.  That's currently ignored
566 	 * here.  If userspace is smart enough to know what fields of
567 	 * NVRAM to update, updating checksums is also part of its job.
568 	 */
569 	off += NVRAM_OFFSET;
570 	spin_lock_irq(&rtc_lock);
571 	for (retval = 0; count; count--, off++, retval++) {
572 		/* don't trash RTC registers */
573 		if (off == cmos->day_alrm
574 				|| off == cmos->mon_alrm
575 				|| off == cmos->century)
576 			buf++;
577 		else if (off < 128)
578 			CMOS_WRITE(*buf++, off);
579 		else if (can_bank2)
580 			cmos_write_bank2(*buf++, off);
581 		else
582 			break;
583 	}
584 	spin_unlock_irq(&rtc_lock);
585 
586 	return retval;
587 }
588 
589 static struct bin_attribute nvram = {
590 	.attr = {
591 		.name	= "nvram",
592 		.mode	= S_IRUGO | S_IWUSR,
593 	},
594 
595 	.read	= cmos_nvram_read,
596 	.write	= cmos_nvram_write,
597 	/* size gets set up later */
598 };
599 
600 /*----------------------------------------------------------------*/
601 
602 static struct cmos_rtc	cmos_rtc;
603 
604 static irqreturn_t cmos_interrupt(int irq, void *p)
605 {
606 	u8		irqstat;
607 	u8		rtc_control;
608 
609 	spin_lock(&rtc_lock);
610 
611 	/* When the HPET interrupt handler calls us, the interrupt
612 	 * status is passed as arg1 instead of the irq number.  But
613 	 * always clear irq status, even when HPET is in the way.
614 	 *
615 	 * Note that HPET and RTC are almost certainly out of phase,
616 	 * giving different IRQ status ...
617 	 */
618 	irqstat = CMOS_READ(RTC_INTR_FLAGS);
619 	rtc_control = CMOS_READ(RTC_CONTROL);
620 	if (is_hpet_enabled())
621 		irqstat = (unsigned long)irq & 0xF0;
622 	irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
623 
624 	/* All Linux RTC alarms should be treated as if they were oneshot.
625 	 * Similar code may be needed in system wakeup paths, in case the
626 	 * alarm woke the system.
627 	 */
628 	if (irqstat & RTC_AIE) {
629 		rtc_control &= ~RTC_AIE;
630 		CMOS_WRITE(rtc_control, RTC_CONTROL);
631 		hpet_mask_rtc_irq_bit(RTC_AIE);
632 
633 		CMOS_READ(RTC_INTR_FLAGS);
634 	}
635 	spin_unlock(&rtc_lock);
636 
637 	if (is_intr(irqstat)) {
638 		rtc_update_irq(p, 1, irqstat);
639 		return IRQ_HANDLED;
640 	} else
641 		return IRQ_NONE;
642 }
643 
644 #ifdef	CONFIG_PNP
645 #define	INITSECTION
646 
647 #else
648 #define	INITSECTION	__init
649 #endif
650 
651 static int INITSECTION
652 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
653 {
654 	struct cmos_rtc_board_info	*info = dev->platform_data;
655 	int				retval = 0;
656 	unsigned char			rtc_control;
657 	unsigned			address_space;
658 
659 	/* there can be only one ... */
660 	if (cmos_rtc.dev)
661 		return -EBUSY;
662 
663 	if (!ports)
664 		return -ENODEV;
665 
666 	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
667 	 *
668 	 * REVISIT non-x86 systems may instead use memory space resources
669 	 * (needing ioremap etc), not i/o space resources like this ...
670 	 */
671 	ports = request_region(ports->start,
672 			ports->end + 1 - ports->start,
673 			driver_name);
674 	if (!ports) {
675 		dev_dbg(dev, "i/o registers already in use\n");
676 		return -EBUSY;
677 	}
678 
679 	cmos_rtc.irq = rtc_irq;
680 	cmos_rtc.iomem = ports;
681 
682 	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
683 	 * driver did, but don't reject unknown configs.   Old hardware
684 	 * won't address 128 bytes.  Newer chips have multiple banks,
685 	 * though they may not be listed in one I/O resource.
686 	 */
687 #if	defined(CONFIG_ATARI)
688 	address_space = 64;
689 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
690 			|| defined(__sparc__) || defined(__mips__)
691 	address_space = 128;
692 #else
693 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
694 	address_space = 128;
695 #endif
696 	if (can_bank2 && ports->end > (ports->start + 1))
697 		address_space = 256;
698 
699 	/* For ACPI systems extension info comes from the FADT.  On others,
700 	 * board specific setup provides it as appropriate.  Systems where
701 	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
702 	 * some almost-clones) can provide hooks to make that behave.
703 	 *
704 	 * Note that ACPI doesn't preclude putting these registers into
705 	 * "extended" areas of the chip, including some that we won't yet
706 	 * expect CMOS_READ and friends to handle.
707 	 */
708 	if (info) {
709 		if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
710 			cmos_rtc.day_alrm = info->rtc_day_alarm;
711 		if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
712 			cmos_rtc.mon_alrm = info->rtc_mon_alarm;
713 		if (info->rtc_century && info->rtc_century < 128)
714 			cmos_rtc.century = info->rtc_century;
715 
716 		if (info->wake_on && info->wake_off) {
717 			cmos_rtc.wake_on = info->wake_on;
718 			cmos_rtc.wake_off = info->wake_off;
719 		}
720 	}
721 
722 	cmos_rtc.dev = dev;
723 	dev_set_drvdata(dev, &cmos_rtc);
724 
725 	cmos_rtc.rtc = rtc_device_register(driver_name, dev,
726 				&cmos_rtc_ops, THIS_MODULE);
727 	if (IS_ERR(cmos_rtc.rtc)) {
728 		retval = PTR_ERR(cmos_rtc.rtc);
729 		goto cleanup0;
730 	}
731 
732 	rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
733 
734 	spin_lock_irq(&rtc_lock);
735 
736 	/* force periodic irq to CMOS reset default of 1024Hz;
737 	 *
738 	 * REVISIT it's been reported that at least one x86_64 ALI mobo
739 	 * doesn't use 32KHz here ... for portability we might need to
740 	 * do something about other clock frequencies.
741 	 */
742 	cmos_rtc.rtc->irq_freq = 1024;
743 	hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
744 	CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
745 
746 	/* disable irqs */
747 	cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
748 
749 	rtc_control = CMOS_READ(RTC_CONTROL);
750 
751 	spin_unlock_irq(&rtc_lock);
752 
753 	/* FIXME:
754 	 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
755 	 */
756        if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
757 		dev_warn(dev, "only 24-hr supported\n");
758 		retval = -ENXIO;
759 		goto cleanup1;
760 	}
761 
762 	if (is_valid_irq(rtc_irq)) {
763 		irq_handler_t rtc_cmos_int_handler;
764 
765 		if (is_hpet_enabled()) {
766 			int err;
767 
768 			rtc_cmos_int_handler = hpet_rtc_interrupt;
769 			err = hpet_register_irq_handler(cmos_interrupt);
770 			if (err != 0) {
771 				printk(KERN_WARNING "hpet_register_irq_handler "
772 						" failed in rtc_init().");
773 				goto cleanup1;
774 			}
775 		} else
776 			rtc_cmos_int_handler = cmos_interrupt;
777 
778 		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
779 				IRQF_DISABLED, dev_name(&cmos_rtc.rtc->dev),
780 				cmos_rtc.rtc);
781 		if (retval < 0) {
782 			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
783 			goto cleanup1;
784 		}
785 	}
786 	hpet_rtc_timer_init();
787 
788 	/* export at least the first block of NVRAM */
789 	nvram.size = address_space - NVRAM_OFFSET;
790 	retval = sysfs_create_bin_file(&dev->kobj, &nvram);
791 	if (retval < 0) {
792 		dev_dbg(dev, "can't create nvram file? %d\n", retval);
793 		goto cleanup2;
794 	}
795 
796 	pr_info("%s: %s%s, %zd bytes nvram%s\n",
797 		dev_name(&cmos_rtc.rtc->dev),
798 		!is_valid_irq(rtc_irq) ? "no alarms" :
799 			cmos_rtc.mon_alrm ? "alarms up to one year" :
800 			cmos_rtc.day_alrm ? "alarms up to one month" :
801 			"alarms up to one day",
802 		cmos_rtc.century ? ", y3k" : "",
803 		nvram.size,
804 		is_hpet_enabled() ? ", hpet irqs" : "");
805 
806 	return 0;
807 
808 cleanup2:
809 	if (is_valid_irq(rtc_irq))
810 		free_irq(rtc_irq, cmos_rtc.rtc);
811 cleanup1:
812 	cmos_rtc.dev = NULL;
813 	rtc_device_unregister(cmos_rtc.rtc);
814 cleanup0:
815 	release_region(ports->start, ports->end + 1 - ports->start);
816 	return retval;
817 }
818 
819 static void cmos_do_shutdown(void)
820 {
821 	spin_lock_irq(&rtc_lock);
822 	cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
823 	spin_unlock_irq(&rtc_lock);
824 }
825 
826 static void __exit cmos_do_remove(struct device *dev)
827 {
828 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
829 	struct resource *ports;
830 
831 	cmos_do_shutdown();
832 
833 	sysfs_remove_bin_file(&dev->kobj, &nvram);
834 
835 	if (is_valid_irq(cmos->irq)) {
836 		free_irq(cmos->irq, cmos->rtc);
837 		hpet_unregister_irq_handler(cmos_interrupt);
838 	}
839 
840 	rtc_device_unregister(cmos->rtc);
841 	cmos->rtc = NULL;
842 
843 	ports = cmos->iomem;
844 	release_region(ports->start, ports->end + 1 - ports->start);
845 	cmos->iomem = NULL;
846 
847 	cmos->dev = NULL;
848 	dev_set_drvdata(dev, NULL);
849 }
850 
851 #ifdef	CONFIG_PM
852 
853 static int cmos_suspend(struct device *dev, pm_message_t mesg)
854 {
855 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
856 	unsigned char	tmp;
857 
858 	/* only the alarm might be a wakeup event source */
859 	spin_lock_irq(&rtc_lock);
860 	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
861 	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
862 		unsigned char	mask;
863 
864 		if (device_may_wakeup(dev))
865 			mask = RTC_IRQMASK & ~RTC_AIE;
866 		else
867 			mask = RTC_IRQMASK;
868 		tmp &= ~mask;
869 		CMOS_WRITE(tmp, RTC_CONTROL);
870 
871 		/* shut down hpet emulation - we don't need it for alarm */
872 		hpet_mask_rtc_irq_bit(RTC_PIE|RTC_AIE|RTC_UIE);
873 		cmos_checkintr(cmos, tmp);
874 	}
875 	spin_unlock_irq(&rtc_lock);
876 
877 	if (tmp & RTC_AIE) {
878 		cmos->enabled_wake = 1;
879 		if (cmos->wake_on)
880 			cmos->wake_on(dev);
881 		else
882 			enable_irq_wake(cmos->irq);
883 	}
884 
885 	pr_debug("%s: suspend%s, ctrl %02x\n",
886 			dev_name(&cmos_rtc.rtc->dev),
887 			(tmp & RTC_AIE) ? ", alarm may wake" : "",
888 			tmp);
889 
890 	return 0;
891 }
892 
893 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
894  * after a detour through G3 "mechanical off", although the ACPI spec
895  * says wakeup should only work from G1/S4 "hibernate".  To most users,
896  * distinctions between S4 and S5 are pointless.  So when the hardware
897  * allows, don't draw that distinction.
898  */
899 static inline int cmos_poweroff(struct device *dev)
900 {
901 	return cmos_suspend(dev, PMSG_HIBERNATE);
902 }
903 
904 static int cmos_resume(struct device *dev)
905 {
906 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
907 	unsigned char	tmp = cmos->suspend_ctrl;
908 
909 	/* re-enable any irqs previously active */
910 	if (tmp & RTC_IRQMASK) {
911 		unsigned char	mask;
912 
913 		if (cmos->enabled_wake) {
914 			if (cmos->wake_off)
915 				cmos->wake_off(dev);
916 			else
917 				disable_irq_wake(cmos->irq);
918 			cmos->enabled_wake = 0;
919 		}
920 
921 		spin_lock_irq(&rtc_lock);
922 		do {
923 			CMOS_WRITE(tmp, RTC_CONTROL);
924 			hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
925 
926 			mask = CMOS_READ(RTC_INTR_FLAGS);
927 			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
928 			if (!is_hpet_enabled() || !is_intr(mask))
929 				break;
930 
931 			/* force one-shot behavior if HPET blocked
932 			 * the wake alarm's irq
933 			 */
934 			rtc_update_irq(cmos->rtc, 1, mask);
935 			tmp &= ~RTC_AIE;
936 			hpet_mask_rtc_irq_bit(RTC_AIE);
937 		} while (mask & RTC_AIE);
938 		spin_unlock_irq(&rtc_lock);
939 	}
940 
941 	pr_debug("%s: resume, ctrl %02x\n",
942 			dev_name(&cmos_rtc.rtc->dev),
943 			tmp);
944 
945 	return 0;
946 }
947 
948 #else
949 #define	cmos_suspend	NULL
950 #define	cmos_resume	NULL
951 
952 static inline int cmos_poweroff(struct device *dev)
953 {
954 	return -ENOSYS;
955 }
956 
957 #endif
958 
959 /*----------------------------------------------------------------*/
960 
961 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
962  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
963  * probably list them in similar PNPBIOS tables; so PNP is more common.
964  *
965  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
966  * predate even PNPBIOS should set up platform_bus devices.
967  */
968 
969 #ifdef	CONFIG_ACPI
970 
971 #include <linux/acpi.h>
972 
973 #ifdef	CONFIG_PM
974 static u32 rtc_handler(void *context)
975 {
976 	acpi_clear_event(ACPI_EVENT_RTC);
977 	acpi_disable_event(ACPI_EVENT_RTC, 0);
978 	return ACPI_INTERRUPT_HANDLED;
979 }
980 
981 static inline void rtc_wake_setup(void)
982 {
983 	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, NULL);
984 	/*
985 	 * After the RTC handler is installed, the Fixed_RTC event should
986 	 * be disabled. Only when the RTC alarm is set will it be enabled.
987 	 */
988 	acpi_clear_event(ACPI_EVENT_RTC);
989 	acpi_disable_event(ACPI_EVENT_RTC, 0);
990 }
991 
992 static void rtc_wake_on(struct device *dev)
993 {
994 	acpi_clear_event(ACPI_EVENT_RTC);
995 	acpi_enable_event(ACPI_EVENT_RTC, 0);
996 }
997 
998 static void rtc_wake_off(struct device *dev)
999 {
1000 	acpi_disable_event(ACPI_EVENT_RTC, 0);
1001 }
1002 #else
1003 #define rtc_wake_setup()	do{}while(0)
1004 #define rtc_wake_on		NULL
1005 #define rtc_wake_off		NULL
1006 #endif
1007 
1008 /* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1009  * its device node and pass extra config data.  This helps its driver use
1010  * capabilities that the now-obsolete mc146818 didn't have, and informs it
1011  * that this board's RTC is wakeup-capable (per ACPI spec).
1012  */
1013 static struct cmos_rtc_board_info acpi_rtc_info;
1014 
1015 static void __devinit
1016 cmos_wake_setup(struct device *dev)
1017 {
1018 	if (acpi_disabled)
1019 		return;
1020 
1021 	rtc_wake_setup();
1022 	acpi_rtc_info.wake_on = rtc_wake_on;
1023 	acpi_rtc_info.wake_off = rtc_wake_off;
1024 
1025 	/* workaround bug in some ACPI tables */
1026 	if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1027 		dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1028 			acpi_gbl_FADT.month_alarm);
1029 		acpi_gbl_FADT.month_alarm = 0;
1030 	}
1031 
1032 	acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1033 	acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1034 	acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1035 
1036 	/* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1037 	if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1038 		dev_info(dev, "RTC can wake from S4\n");
1039 
1040 	dev->platform_data = &acpi_rtc_info;
1041 
1042 	/* RTC always wakes from S1/S2/S3, and often S4/STD */
1043 	device_init_wakeup(dev, 1);
1044 }
1045 
1046 #else
1047 
1048 static void __devinit
1049 cmos_wake_setup(struct device *dev)
1050 {
1051 }
1052 
1053 #endif
1054 
1055 #ifdef	CONFIG_PNP
1056 
1057 #include <linux/pnp.h>
1058 
1059 static int __devinit
1060 cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1061 {
1062 	cmos_wake_setup(&pnp->dev);
1063 
1064 	if (pnp_port_start(pnp,0) == 0x70 && !pnp_irq_valid(pnp,0))
1065 		/* Some machines contain a PNP entry for the RTC, but
1066 		 * don't define the IRQ. It should always be safe to
1067 		 * hardcode it in these cases
1068 		 */
1069 		return cmos_do_probe(&pnp->dev,
1070 				pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
1071 	else
1072 		return cmos_do_probe(&pnp->dev,
1073 				pnp_get_resource(pnp, IORESOURCE_IO, 0),
1074 				pnp_irq(pnp, 0));
1075 }
1076 
1077 static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
1078 {
1079 	cmos_do_remove(&pnp->dev);
1080 }
1081 
1082 #ifdef	CONFIG_PM
1083 
1084 static int cmos_pnp_suspend(struct pnp_dev *pnp, pm_message_t mesg)
1085 {
1086 	return cmos_suspend(&pnp->dev, mesg);
1087 }
1088 
1089 static int cmos_pnp_resume(struct pnp_dev *pnp)
1090 {
1091 	return cmos_resume(&pnp->dev);
1092 }
1093 
1094 #else
1095 #define	cmos_pnp_suspend	NULL
1096 #define	cmos_pnp_resume		NULL
1097 #endif
1098 
1099 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1100 {
1101 	if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pnp->dev))
1102 		return;
1103 
1104 	cmos_do_shutdown();
1105 }
1106 
1107 static const struct pnp_device_id rtc_ids[] = {
1108 	{ .id = "PNP0b00", },
1109 	{ .id = "PNP0b01", },
1110 	{ .id = "PNP0b02", },
1111 	{ },
1112 };
1113 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1114 
1115 static struct pnp_driver cmos_pnp_driver = {
1116 	.name		= (char *) driver_name,
1117 	.id_table	= rtc_ids,
1118 	.probe		= cmos_pnp_probe,
1119 	.remove		= __exit_p(cmos_pnp_remove),
1120 	.shutdown	= cmos_pnp_shutdown,
1121 
1122 	/* flag ensures resume() gets called, and stops syslog spam */
1123 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1124 	.suspend	= cmos_pnp_suspend,
1125 	.resume		= cmos_pnp_resume,
1126 };
1127 
1128 #endif	/* CONFIG_PNP */
1129 
1130 /*----------------------------------------------------------------*/
1131 
1132 /* Platform setup should have set up an RTC device, when PNP is
1133  * unavailable ... this could happen even on (older) PCs.
1134  */
1135 
1136 static int __init cmos_platform_probe(struct platform_device *pdev)
1137 {
1138 	cmos_wake_setup(&pdev->dev);
1139 	return cmos_do_probe(&pdev->dev,
1140 			platform_get_resource(pdev, IORESOURCE_IO, 0),
1141 			platform_get_irq(pdev, 0));
1142 }
1143 
1144 static int __exit cmos_platform_remove(struct platform_device *pdev)
1145 {
1146 	cmos_do_remove(&pdev->dev);
1147 	return 0;
1148 }
1149 
1150 static void cmos_platform_shutdown(struct platform_device *pdev)
1151 {
1152 	if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pdev->dev))
1153 		return;
1154 
1155 	cmos_do_shutdown();
1156 }
1157 
1158 /* work with hotplug and coldplug */
1159 MODULE_ALIAS("platform:rtc_cmos");
1160 
1161 static struct platform_driver cmos_platform_driver = {
1162 	.remove		= __exit_p(cmos_platform_remove),
1163 	.shutdown	= cmos_platform_shutdown,
1164 	.driver = {
1165 		.name		= (char *) driver_name,
1166 		.suspend	= cmos_suspend,
1167 		.resume		= cmos_resume,
1168 	}
1169 };
1170 
1171 #ifdef CONFIG_PNP
1172 static bool pnp_driver_registered;
1173 #endif
1174 static bool platform_driver_registered;
1175 
1176 static int __init cmos_init(void)
1177 {
1178 	int retval = 0;
1179 
1180 #ifdef	CONFIG_PNP
1181 	retval = pnp_register_driver(&cmos_pnp_driver);
1182 	if (retval == 0)
1183 		pnp_driver_registered = true;
1184 #endif
1185 
1186 	if (!cmos_rtc.dev) {
1187 		retval = platform_driver_probe(&cmos_platform_driver,
1188 					       cmos_platform_probe);
1189 		if (retval == 0)
1190 			platform_driver_registered = true;
1191 	}
1192 
1193 	if (retval == 0)
1194 		return 0;
1195 
1196 #ifdef	CONFIG_PNP
1197 	if (pnp_driver_registered)
1198 		pnp_unregister_driver(&cmos_pnp_driver);
1199 #endif
1200 	return retval;
1201 }
1202 module_init(cmos_init);
1203 
1204 static void __exit cmos_exit(void)
1205 {
1206 #ifdef	CONFIG_PNP
1207 	if (pnp_driver_registered)
1208 		pnp_unregister_driver(&cmos_pnp_driver);
1209 #endif
1210 	if (platform_driver_registered)
1211 		platform_driver_unregister(&cmos_platform_driver);
1212 }
1213 module_exit(cmos_exit);
1214 
1215 
1216 MODULE_AUTHOR("David Brownell");
1217 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1218 MODULE_LICENSE("GPL");
1219