xref: /openbmc/linux/drivers/rtc/rtc-cmos.c (revision 106f10fe)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
4  *
5  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
6  * Copyright (C) 2006 David Brownell (convert to new framework)
7  */
8 
9 /*
10  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
11  * That defined the register interface now provided by all PCs, some
12  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
13  * integrate an MC146818 clone in their southbridge, and boards use
14  * that instead of discrete clones like the DS12887 or M48T86.  There
15  * are also clones that connect using the LPC bus.
16  *
17  * That register API is also used directly by various other drivers
18  * (notably for integrated NVRAM), infrastructure (x86 has code to
19  * bypass the RTC framework, directly reading the RTC during boot
20  * and updating minutes/seconds for systems using NTP synch) and
21  * utilities (like userspace 'hwclock', if no /dev node exists).
22  *
23  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
24  * interrupts disabled, holding the global rtc_lock, to exclude those
25  * other drivers and utilities on correctly configured systems.
26  */
27 
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/spinlock.h>
35 #include <linux/platform_device.h>
36 #include <linux/log2.h>
37 #include <linux/pm.h>
38 #include <linux/of.h>
39 #include <linux/of_platform.h>
40 #ifdef CONFIG_X86
41 #include <asm/i8259.h>
42 #include <asm/processor.h>
43 #include <linux/dmi.h>
44 #endif
45 
46 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
47 #include <linux/mc146818rtc.h>
48 
49 #ifdef CONFIG_ACPI
50 /*
51  * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
52  *
53  * If cleared, ACPI SCI is only used to wake up the system from suspend
54  *
55  * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
56  */
57 
58 static bool use_acpi_alarm;
59 module_param(use_acpi_alarm, bool, 0444);
60 
61 static inline int cmos_use_acpi_alarm(void)
62 {
63 	return use_acpi_alarm;
64 }
65 #else /* !CONFIG_ACPI */
66 
67 static inline int cmos_use_acpi_alarm(void)
68 {
69 	return 0;
70 }
71 #endif
72 
73 struct cmos_rtc {
74 	struct rtc_device	*rtc;
75 	struct device		*dev;
76 	int			irq;
77 	struct resource		*iomem;
78 	time64_t		alarm_expires;
79 
80 	void			(*wake_on)(struct device *);
81 	void			(*wake_off)(struct device *);
82 
83 	u8			enabled_wake;
84 	u8			suspend_ctrl;
85 
86 	/* newer hardware extends the original register set */
87 	u8			day_alrm;
88 	u8			mon_alrm;
89 	u8			century;
90 
91 	struct rtc_wkalrm	saved_wkalrm;
92 };
93 
94 /* both platform and pnp busses use negative numbers for invalid irqs */
95 #define is_valid_irq(n)		((n) > 0)
96 
97 static const char driver_name[] = "rtc_cmos";
98 
99 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
100  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
101  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
102  */
103 #define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
104 
105 static inline int is_intr(u8 rtc_intr)
106 {
107 	if (!(rtc_intr & RTC_IRQF))
108 		return 0;
109 	return rtc_intr & RTC_IRQMASK;
110 }
111 
112 /*----------------------------------------------------------------*/
113 
114 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
115  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
116  * used in a broken "legacy replacement" mode.  The breakage includes
117  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
118  * other (better) use.
119  *
120  * When that broken mode is in use, platform glue provides a partial
121  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
122  * want to use HPET for anything except those IRQs though...
123  */
124 #ifdef CONFIG_HPET_EMULATE_RTC
125 #include <asm/hpet.h>
126 #else
127 
128 static inline int is_hpet_enabled(void)
129 {
130 	return 0;
131 }
132 
133 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
134 {
135 	return 0;
136 }
137 
138 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
139 {
140 	return 0;
141 }
142 
143 static inline int
144 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
145 {
146 	return 0;
147 }
148 
149 static inline int hpet_set_periodic_freq(unsigned long freq)
150 {
151 	return 0;
152 }
153 
154 static inline int hpet_rtc_dropped_irq(void)
155 {
156 	return 0;
157 }
158 
159 static inline int hpet_rtc_timer_init(void)
160 {
161 	return 0;
162 }
163 
164 extern irq_handler_t hpet_rtc_interrupt;
165 
166 static inline int hpet_register_irq_handler(irq_handler_t handler)
167 {
168 	return 0;
169 }
170 
171 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
172 {
173 	return 0;
174 }
175 
176 #endif
177 
178 /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
179 static inline int use_hpet_alarm(void)
180 {
181 	return is_hpet_enabled() && !cmos_use_acpi_alarm();
182 }
183 
184 /*----------------------------------------------------------------*/
185 
186 #ifdef RTC_PORT
187 
188 /* Most newer x86 systems have two register banks, the first used
189  * for RTC and NVRAM and the second only for NVRAM.  Caller must
190  * own rtc_lock ... and we won't worry about access during NMI.
191  */
192 #define can_bank2	true
193 
194 static inline unsigned char cmos_read_bank2(unsigned char addr)
195 {
196 	outb(addr, RTC_PORT(2));
197 	return inb(RTC_PORT(3));
198 }
199 
200 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
201 {
202 	outb(addr, RTC_PORT(2));
203 	outb(val, RTC_PORT(3));
204 }
205 
206 #else
207 
208 #define can_bank2	false
209 
210 static inline unsigned char cmos_read_bank2(unsigned char addr)
211 {
212 	return 0;
213 }
214 
215 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
216 {
217 }
218 
219 #endif
220 
221 /*----------------------------------------------------------------*/
222 
223 static int cmos_read_time(struct device *dev, struct rtc_time *t)
224 {
225 	int ret;
226 
227 	/*
228 	 * If pm_trace abused the RTC for storage, set the timespec to 0,
229 	 * which tells the caller that this RTC value is unusable.
230 	 */
231 	if (!pm_trace_rtc_valid())
232 		return -EIO;
233 
234 	ret = mc146818_get_time(t, 1000);
235 	if (ret < 0) {
236 		dev_err_ratelimited(dev, "unable to read current time\n");
237 		return ret;
238 	}
239 
240 	return 0;
241 }
242 
243 static int cmos_set_time(struct device *dev, struct rtc_time *t)
244 {
245 	/* NOTE: this ignores the issue whereby updating the seconds
246 	 * takes effect exactly 500ms after we write the register.
247 	 * (Also queueing and other delays before we get this far.)
248 	 */
249 	return mc146818_set_time(t);
250 }
251 
252 struct cmos_read_alarm_callback_param {
253 	struct cmos_rtc *cmos;
254 	struct rtc_time *time;
255 	unsigned char	rtc_control;
256 };
257 
258 static void cmos_read_alarm_callback(unsigned char __always_unused seconds,
259 				     void *param_in)
260 {
261 	struct cmos_read_alarm_callback_param *p =
262 		(struct cmos_read_alarm_callback_param *)param_in;
263 	struct rtc_time *time = p->time;
264 
265 	time->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
266 	time->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
267 	time->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
268 
269 	if (p->cmos->day_alrm) {
270 		/* ignore upper bits on readback per ACPI spec */
271 		time->tm_mday = CMOS_READ(p->cmos->day_alrm) & 0x3f;
272 		if (!time->tm_mday)
273 			time->tm_mday = -1;
274 
275 		if (p->cmos->mon_alrm) {
276 			time->tm_mon = CMOS_READ(p->cmos->mon_alrm);
277 			if (!time->tm_mon)
278 				time->tm_mon = -1;
279 		}
280 	}
281 
282 	p->rtc_control = CMOS_READ(RTC_CONTROL);
283 }
284 
285 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
286 {
287 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
288 	struct cmos_read_alarm_callback_param p = {
289 		.cmos = cmos,
290 		.time = &t->time,
291 	};
292 
293 	/* This not only a rtc_op, but also called directly */
294 	if (!is_valid_irq(cmos->irq))
295 		return -ETIMEDOUT;
296 
297 	/* Basic alarms only support hour, minute, and seconds fields.
298 	 * Some also support day and month, for alarms up to a year in
299 	 * the future.
300 	 */
301 
302 	/* Some Intel chipsets disconnect the alarm registers when the clock
303 	 * update is in progress - during this time reads return bogus values
304 	 * and writes may fail silently. See for example "7th Generation Intel®
305 	 * Processor Family I/O for U/Y Platforms [...] Datasheet", section
306 	 * 27.7.1
307 	 *
308 	 * Use the mc146818_avoid_UIP() function to avoid this.
309 	 */
310 	if (!mc146818_avoid_UIP(cmos_read_alarm_callback, 10, &p))
311 		return -EIO;
312 
313 	if (!(p.rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
314 		if (((unsigned)t->time.tm_sec) < 0x60)
315 			t->time.tm_sec = bcd2bin(t->time.tm_sec);
316 		else
317 			t->time.tm_sec = -1;
318 		if (((unsigned)t->time.tm_min) < 0x60)
319 			t->time.tm_min = bcd2bin(t->time.tm_min);
320 		else
321 			t->time.tm_min = -1;
322 		if (((unsigned)t->time.tm_hour) < 0x24)
323 			t->time.tm_hour = bcd2bin(t->time.tm_hour);
324 		else
325 			t->time.tm_hour = -1;
326 
327 		if (cmos->day_alrm) {
328 			if (((unsigned)t->time.tm_mday) <= 0x31)
329 				t->time.tm_mday = bcd2bin(t->time.tm_mday);
330 			else
331 				t->time.tm_mday = -1;
332 
333 			if (cmos->mon_alrm) {
334 				if (((unsigned)t->time.tm_mon) <= 0x12)
335 					t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
336 				else
337 					t->time.tm_mon = -1;
338 			}
339 		}
340 	}
341 
342 	t->enabled = !!(p.rtc_control & RTC_AIE);
343 	t->pending = 0;
344 
345 	return 0;
346 }
347 
348 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
349 {
350 	unsigned char	rtc_intr;
351 
352 	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
353 	 * allegedly some older rtcs need that to handle irqs properly
354 	 */
355 	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
356 
357 	if (use_hpet_alarm())
358 		return;
359 
360 	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
361 	if (is_intr(rtc_intr))
362 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
363 }
364 
365 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
366 {
367 	unsigned char	rtc_control;
368 
369 	/* flush any pending IRQ status, notably for update irqs,
370 	 * before we enable new IRQs
371 	 */
372 	rtc_control = CMOS_READ(RTC_CONTROL);
373 	cmos_checkintr(cmos, rtc_control);
374 
375 	rtc_control |= mask;
376 	CMOS_WRITE(rtc_control, RTC_CONTROL);
377 	if (use_hpet_alarm())
378 		hpet_set_rtc_irq_bit(mask);
379 
380 	if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
381 		if (cmos->wake_on)
382 			cmos->wake_on(cmos->dev);
383 	}
384 
385 	cmos_checkintr(cmos, rtc_control);
386 }
387 
388 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
389 {
390 	unsigned char	rtc_control;
391 
392 	rtc_control = CMOS_READ(RTC_CONTROL);
393 	rtc_control &= ~mask;
394 	CMOS_WRITE(rtc_control, RTC_CONTROL);
395 	if (use_hpet_alarm())
396 		hpet_mask_rtc_irq_bit(mask);
397 
398 	if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
399 		if (cmos->wake_off)
400 			cmos->wake_off(cmos->dev);
401 	}
402 
403 	cmos_checkintr(cmos, rtc_control);
404 }
405 
406 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
407 {
408 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
409 	struct rtc_time now;
410 
411 	cmos_read_time(dev, &now);
412 
413 	if (!cmos->day_alrm) {
414 		time64_t t_max_date;
415 		time64_t t_alrm;
416 
417 		t_max_date = rtc_tm_to_time64(&now);
418 		t_max_date += 24 * 60 * 60 - 1;
419 		t_alrm = rtc_tm_to_time64(&t->time);
420 		if (t_alrm > t_max_date) {
421 			dev_err(dev,
422 				"Alarms can be up to one day in the future\n");
423 			return -EINVAL;
424 		}
425 	} else if (!cmos->mon_alrm) {
426 		struct rtc_time max_date = now;
427 		time64_t t_max_date;
428 		time64_t t_alrm;
429 		int max_mday;
430 
431 		if (max_date.tm_mon == 11) {
432 			max_date.tm_mon = 0;
433 			max_date.tm_year += 1;
434 		} else {
435 			max_date.tm_mon += 1;
436 		}
437 		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
438 		if (max_date.tm_mday > max_mday)
439 			max_date.tm_mday = max_mday;
440 
441 		t_max_date = rtc_tm_to_time64(&max_date);
442 		t_max_date -= 1;
443 		t_alrm = rtc_tm_to_time64(&t->time);
444 		if (t_alrm > t_max_date) {
445 			dev_err(dev,
446 				"Alarms can be up to one month in the future\n");
447 			return -EINVAL;
448 		}
449 	} else {
450 		struct rtc_time max_date = now;
451 		time64_t t_max_date;
452 		time64_t t_alrm;
453 		int max_mday;
454 
455 		max_date.tm_year += 1;
456 		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
457 		if (max_date.tm_mday > max_mday)
458 			max_date.tm_mday = max_mday;
459 
460 		t_max_date = rtc_tm_to_time64(&max_date);
461 		t_max_date -= 1;
462 		t_alrm = rtc_tm_to_time64(&t->time);
463 		if (t_alrm > t_max_date) {
464 			dev_err(dev,
465 				"Alarms can be up to one year in the future\n");
466 			return -EINVAL;
467 		}
468 	}
469 
470 	return 0;
471 }
472 
473 struct cmos_set_alarm_callback_param {
474 	struct cmos_rtc *cmos;
475 	unsigned char mon, mday, hrs, min, sec;
476 	struct rtc_wkalrm *t;
477 };
478 
479 /* Note: this function may be executed by mc146818_avoid_UIP() more then
480  *	 once
481  */
482 static void cmos_set_alarm_callback(unsigned char __always_unused seconds,
483 				    void *param_in)
484 {
485 	struct cmos_set_alarm_callback_param *p =
486 		(struct cmos_set_alarm_callback_param *)param_in;
487 
488 	/* next rtc irq must not be from previous alarm setting */
489 	cmos_irq_disable(p->cmos, RTC_AIE);
490 
491 	/* update alarm */
492 	CMOS_WRITE(p->hrs, RTC_HOURS_ALARM);
493 	CMOS_WRITE(p->min, RTC_MINUTES_ALARM);
494 	CMOS_WRITE(p->sec, RTC_SECONDS_ALARM);
495 
496 	/* the system may support an "enhanced" alarm */
497 	if (p->cmos->day_alrm) {
498 		CMOS_WRITE(p->mday, p->cmos->day_alrm);
499 		if (p->cmos->mon_alrm)
500 			CMOS_WRITE(p->mon, p->cmos->mon_alrm);
501 	}
502 
503 	if (use_hpet_alarm()) {
504 		/*
505 		 * FIXME the HPET alarm glue currently ignores day_alrm
506 		 * and mon_alrm ...
507 		 */
508 		hpet_set_alarm_time(p->t->time.tm_hour, p->t->time.tm_min,
509 				    p->t->time.tm_sec);
510 	}
511 
512 	if (p->t->enabled)
513 		cmos_irq_enable(p->cmos, RTC_AIE);
514 }
515 
516 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
517 {
518 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
519 	struct cmos_set_alarm_callback_param p = {
520 		.cmos = cmos,
521 		.t = t
522 	};
523 	unsigned char rtc_control;
524 	int ret;
525 
526 	/* This not only a rtc_op, but also called directly */
527 	if (!is_valid_irq(cmos->irq))
528 		return -EIO;
529 
530 	ret = cmos_validate_alarm(dev, t);
531 	if (ret < 0)
532 		return ret;
533 
534 	p.mon = t->time.tm_mon + 1;
535 	p.mday = t->time.tm_mday;
536 	p.hrs = t->time.tm_hour;
537 	p.min = t->time.tm_min;
538 	p.sec = t->time.tm_sec;
539 
540 	spin_lock_irq(&rtc_lock);
541 	rtc_control = CMOS_READ(RTC_CONTROL);
542 	spin_unlock_irq(&rtc_lock);
543 
544 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
545 		/* Writing 0xff means "don't care" or "match all".  */
546 		p.mon = (p.mon <= 12) ? bin2bcd(p.mon) : 0xff;
547 		p.mday = (p.mday >= 1 && p.mday <= 31) ? bin2bcd(p.mday) : 0xff;
548 		p.hrs = (p.hrs < 24) ? bin2bcd(p.hrs) : 0xff;
549 		p.min = (p.min < 60) ? bin2bcd(p.min) : 0xff;
550 		p.sec = (p.sec < 60) ? bin2bcd(p.sec) : 0xff;
551 	}
552 
553 	/*
554 	 * Some Intel chipsets disconnect the alarm registers when the clock
555 	 * update is in progress - during this time writes fail silently.
556 	 *
557 	 * Use mc146818_avoid_UIP() to avoid this.
558 	 */
559 	if (!mc146818_avoid_UIP(cmos_set_alarm_callback, 10, &p))
560 		return -ETIMEDOUT;
561 
562 	cmos->alarm_expires = rtc_tm_to_time64(&t->time);
563 
564 	return 0;
565 }
566 
567 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
568 {
569 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
570 	unsigned long	flags;
571 
572 	spin_lock_irqsave(&rtc_lock, flags);
573 
574 	if (enabled)
575 		cmos_irq_enable(cmos, RTC_AIE);
576 	else
577 		cmos_irq_disable(cmos, RTC_AIE);
578 
579 	spin_unlock_irqrestore(&rtc_lock, flags);
580 	return 0;
581 }
582 
583 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
584 
585 static int cmos_procfs(struct device *dev, struct seq_file *seq)
586 {
587 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
588 	unsigned char	rtc_control, valid;
589 
590 	spin_lock_irq(&rtc_lock);
591 	rtc_control = CMOS_READ(RTC_CONTROL);
592 	valid = CMOS_READ(RTC_VALID);
593 	spin_unlock_irq(&rtc_lock);
594 
595 	/* NOTE:  at least ICH6 reports battery status using a different
596 	 * (non-RTC) bit; and SQWE is ignored on many current systems.
597 	 */
598 	seq_printf(seq,
599 		   "periodic_IRQ\t: %s\n"
600 		   "update_IRQ\t: %s\n"
601 		   "HPET_emulated\t: %s\n"
602 		   // "square_wave\t: %s\n"
603 		   "BCD\t\t: %s\n"
604 		   "DST_enable\t: %s\n"
605 		   "periodic_freq\t: %d\n"
606 		   "batt_status\t: %s\n",
607 		   (rtc_control & RTC_PIE) ? "yes" : "no",
608 		   (rtc_control & RTC_UIE) ? "yes" : "no",
609 		   use_hpet_alarm() ? "yes" : "no",
610 		   // (rtc_control & RTC_SQWE) ? "yes" : "no",
611 		   (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
612 		   (rtc_control & RTC_DST_EN) ? "yes" : "no",
613 		   cmos->rtc->irq_freq,
614 		   (valid & RTC_VRT) ? "okay" : "dead");
615 
616 	return 0;
617 }
618 
619 #else
620 #define	cmos_procfs	NULL
621 #endif
622 
623 static const struct rtc_class_ops cmos_rtc_ops = {
624 	.read_time		= cmos_read_time,
625 	.set_time		= cmos_set_time,
626 	.read_alarm		= cmos_read_alarm,
627 	.set_alarm		= cmos_set_alarm,
628 	.proc			= cmos_procfs,
629 	.alarm_irq_enable	= cmos_alarm_irq_enable,
630 };
631 
632 /*----------------------------------------------------------------*/
633 
634 /*
635  * All these chips have at least 64 bytes of address space, shared by
636  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
637  * by boot firmware.  Modern chips have 128 or 256 bytes.
638  */
639 
640 #define NVRAM_OFFSET	(RTC_REG_D + 1)
641 
642 static int cmos_nvram_read(void *priv, unsigned int off, void *val,
643 			   size_t count)
644 {
645 	unsigned char *buf = val;
646 
647 	off += NVRAM_OFFSET;
648 	spin_lock_irq(&rtc_lock);
649 	for (; count; count--, off++) {
650 		if (off < 128)
651 			*buf++ = CMOS_READ(off);
652 		else if (can_bank2)
653 			*buf++ = cmos_read_bank2(off);
654 		else
655 			break;
656 	}
657 	spin_unlock_irq(&rtc_lock);
658 
659 	return count ? -EIO : 0;
660 }
661 
662 static int cmos_nvram_write(void *priv, unsigned int off, void *val,
663 			    size_t count)
664 {
665 	struct cmos_rtc	*cmos = priv;
666 	unsigned char	*buf = val;
667 
668 	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
669 	 * checksum on part of the NVRAM data.  That's currently ignored
670 	 * here.  If userspace is smart enough to know what fields of
671 	 * NVRAM to update, updating checksums is also part of its job.
672 	 */
673 	off += NVRAM_OFFSET;
674 	spin_lock_irq(&rtc_lock);
675 	for (; count; count--, off++) {
676 		/* don't trash RTC registers */
677 		if (off == cmos->day_alrm
678 				|| off == cmos->mon_alrm
679 				|| off == cmos->century)
680 			buf++;
681 		else if (off < 128)
682 			CMOS_WRITE(*buf++, off);
683 		else if (can_bank2)
684 			cmos_write_bank2(*buf++, off);
685 		else
686 			break;
687 	}
688 	spin_unlock_irq(&rtc_lock);
689 
690 	return count ? -EIO : 0;
691 }
692 
693 /*----------------------------------------------------------------*/
694 
695 static struct cmos_rtc	cmos_rtc;
696 
697 static irqreturn_t cmos_interrupt(int irq, void *p)
698 {
699 	u8		irqstat;
700 	u8		rtc_control;
701 
702 	spin_lock(&rtc_lock);
703 
704 	/* When the HPET interrupt handler calls us, the interrupt
705 	 * status is passed as arg1 instead of the irq number.  But
706 	 * always clear irq status, even when HPET is in the way.
707 	 *
708 	 * Note that HPET and RTC are almost certainly out of phase,
709 	 * giving different IRQ status ...
710 	 */
711 	irqstat = CMOS_READ(RTC_INTR_FLAGS);
712 	rtc_control = CMOS_READ(RTC_CONTROL);
713 	if (use_hpet_alarm())
714 		irqstat = (unsigned long)irq & 0xF0;
715 
716 	/* If we were suspended, RTC_CONTROL may not be accurate since the
717 	 * bios may have cleared it.
718 	 */
719 	if (!cmos_rtc.suspend_ctrl)
720 		irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
721 	else
722 		irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
723 
724 	/* All Linux RTC alarms should be treated as if they were oneshot.
725 	 * Similar code may be needed in system wakeup paths, in case the
726 	 * alarm woke the system.
727 	 */
728 	if (irqstat & RTC_AIE) {
729 		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
730 		rtc_control &= ~RTC_AIE;
731 		CMOS_WRITE(rtc_control, RTC_CONTROL);
732 		if (use_hpet_alarm())
733 			hpet_mask_rtc_irq_bit(RTC_AIE);
734 		CMOS_READ(RTC_INTR_FLAGS);
735 	}
736 	spin_unlock(&rtc_lock);
737 
738 	if (is_intr(irqstat)) {
739 		rtc_update_irq(p, 1, irqstat);
740 		return IRQ_HANDLED;
741 	} else
742 		return IRQ_NONE;
743 }
744 
745 #ifdef	CONFIG_ACPI
746 
747 #include <linux/acpi.h>
748 
749 static u32 rtc_handler(void *context)
750 {
751 	struct device *dev = context;
752 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
753 	unsigned char rtc_control = 0;
754 	unsigned char rtc_intr;
755 	unsigned long flags;
756 
757 
758 	/*
759 	 * Always update rtc irq when ACPI is used as RTC Alarm.
760 	 * Or else, ACPI SCI is enabled during suspend/resume only,
761 	 * update rtc irq in that case.
762 	 */
763 	if (cmos_use_acpi_alarm())
764 		cmos_interrupt(0, (void *)cmos->rtc);
765 	else {
766 		/* Fix me: can we use cmos_interrupt() here as well? */
767 		spin_lock_irqsave(&rtc_lock, flags);
768 		if (cmos_rtc.suspend_ctrl)
769 			rtc_control = CMOS_READ(RTC_CONTROL);
770 		if (rtc_control & RTC_AIE) {
771 			cmos_rtc.suspend_ctrl &= ~RTC_AIE;
772 			CMOS_WRITE(rtc_control, RTC_CONTROL);
773 			rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
774 			rtc_update_irq(cmos->rtc, 1, rtc_intr);
775 		}
776 		spin_unlock_irqrestore(&rtc_lock, flags);
777 	}
778 
779 	pm_wakeup_hard_event(dev);
780 	acpi_clear_event(ACPI_EVENT_RTC);
781 	acpi_disable_event(ACPI_EVENT_RTC, 0);
782 	return ACPI_INTERRUPT_HANDLED;
783 }
784 
785 static void acpi_rtc_event_setup(struct device *dev)
786 {
787 	if (acpi_disabled)
788 		return;
789 
790 	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
791 	/*
792 	 * After the RTC handler is installed, the Fixed_RTC event should
793 	 * be disabled. Only when the RTC alarm is set will it be enabled.
794 	 */
795 	acpi_clear_event(ACPI_EVENT_RTC);
796 	acpi_disable_event(ACPI_EVENT_RTC, 0);
797 }
798 
799 static void acpi_rtc_event_cleanup(void)
800 {
801 	if (acpi_disabled)
802 		return;
803 
804 	acpi_remove_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler);
805 }
806 
807 static void rtc_wake_on(struct device *dev)
808 {
809 	acpi_clear_event(ACPI_EVENT_RTC);
810 	acpi_enable_event(ACPI_EVENT_RTC, 0);
811 }
812 
813 static void rtc_wake_off(struct device *dev)
814 {
815 	acpi_disable_event(ACPI_EVENT_RTC, 0);
816 }
817 
818 #ifdef CONFIG_X86
819 static void use_acpi_alarm_quirks(void)
820 {
821 	switch (boot_cpu_data.x86_vendor) {
822 	case X86_VENDOR_INTEL:
823 		if (dmi_get_bios_year() < 2015)
824 			return;
825 		break;
826 	case X86_VENDOR_AMD:
827 	case X86_VENDOR_HYGON:
828 		if (dmi_get_bios_year() < 2021)
829 			return;
830 		break;
831 	default:
832 		return;
833 	}
834 	if (!is_hpet_enabled())
835 		return;
836 
837 	use_acpi_alarm = true;
838 }
839 #else
840 static inline void use_acpi_alarm_quirks(void) { }
841 #endif
842 
843 static void acpi_cmos_wake_setup(struct device *dev)
844 {
845 	if (acpi_disabled)
846 		return;
847 
848 	use_acpi_alarm_quirks();
849 
850 	cmos_rtc.wake_on = rtc_wake_on;
851 	cmos_rtc.wake_off = rtc_wake_off;
852 
853 	/* ACPI tables bug workaround. */
854 	if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
855 		dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
856 			acpi_gbl_FADT.month_alarm);
857 		acpi_gbl_FADT.month_alarm = 0;
858 	}
859 
860 	cmos_rtc.day_alrm = acpi_gbl_FADT.day_alarm;
861 	cmos_rtc.mon_alrm = acpi_gbl_FADT.month_alarm;
862 	cmos_rtc.century = acpi_gbl_FADT.century;
863 
864 	if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
865 		dev_info(dev, "RTC can wake from S4\n");
866 
867 	/* RTC always wakes from S1/S2/S3, and often S4/STD */
868 	device_init_wakeup(dev, 1);
869 }
870 
871 static void cmos_check_acpi_rtc_status(struct device *dev,
872 					      unsigned char *rtc_control)
873 {
874 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
875 	acpi_event_status rtc_status;
876 	acpi_status status;
877 
878 	if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
879 		return;
880 
881 	status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
882 	if (ACPI_FAILURE(status)) {
883 		dev_err(dev, "Could not get RTC status\n");
884 	} else if (rtc_status & ACPI_EVENT_FLAG_SET) {
885 		unsigned char mask;
886 		*rtc_control &= ~RTC_AIE;
887 		CMOS_WRITE(*rtc_control, RTC_CONTROL);
888 		mask = CMOS_READ(RTC_INTR_FLAGS);
889 		rtc_update_irq(cmos->rtc, 1, mask);
890 	}
891 }
892 
893 #else /* !CONFIG_ACPI */
894 
895 static inline void acpi_rtc_event_setup(struct device *dev)
896 {
897 }
898 
899 static inline void acpi_rtc_event_cleanup(void)
900 {
901 }
902 
903 static inline void acpi_cmos_wake_setup(struct device *dev)
904 {
905 }
906 
907 static inline void cmos_check_acpi_rtc_status(struct device *dev,
908 					      unsigned char *rtc_control)
909 {
910 }
911 #endif /* CONFIG_ACPI */
912 
913 #ifdef	CONFIG_PNP
914 #define	INITSECTION
915 
916 #else
917 #define	INITSECTION	__init
918 #endif
919 
920 #define SECS_PER_DAY	(24 * 60 * 60)
921 #define SECS_PER_MONTH	(28 * SECS_PER_DAY)
922 #define SECS_PER_YEAR	(365 * SECS_PER_DAY)
923 
924 static int INITSECTION
925 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
926 {
927 	struct cmos_rtc_board_info	*info = dev_get_platdata(dev);
928 	int				retval = 0;
929 	unsigned char			rtc_control;
930 	unsigned			address_space;
931 	u32				flags = 0;
932 	struct nvmem_config nvmem_cfg = {
933 		.name = "cmos_nvram",
934 		.word_size = 1,
935 		.stride = 1,
936 		.reg_read = cmos_nvram_read,
937 		.reg_write = cmos_nvram_write,
938 		.priv = &cmos_rtc,
939 	};
940 
941 	/* there can be only one ... */
942 	if (cmos_rtc.dev)
943 		return -EBUSY;
944 
945 	if (!ports)
946 		return -ENODEV;
947 
948 	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
949 	 *
950 	 * REVISIT non-x86 systems may instead use memory space resources
951 	 * (needing ioremap etc), not i/o space resources like this ...
952 	 */
953 	if (RTC_IOMAPPED)
954 		ports = request_region(ports->start, resource_size(ports),
955 				       driver_name);
956 	else
957 		ports = request_mem_region(ports->start, resource_size(ports),
958 					   driver_name);
959 	if (!ports) {
960 		dev_dbg(dev, "i/o registers already in use\n");
961 		return -EBUSY;
962 	}
963 
964 	cmos_rtc.irq = rtc_irq;
965 	cmos_rtc.iomem = ports;
966 
967 	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
968 	 * driver did, but don't reject unknown configs.   Old hardware
969 	 * won't address 128 bytes.  Newer chips have multiple banks,
970 	 * though they may not be listed in one I/O resource.
971 	 */
972 #if	defined(CONFIG_ATARI)
973 	address_space = 64;
974 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
975 			|| defined(__sparc__) || defined(__mips__) \
976 			|| defined(__powerpc__)
977 	address_space = 128;
978 #else
979 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
980 	address_space = 128;
981 #endif
982 	if (can_bank2 && ports->end > (ports->start + 1))
983 		address_space = 256;
984 
985 	/* For ACPI systems extension info comes from the FADT.  On others,
986 	 * board specific setup provides it as appropriate.  Systems where
987 	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
988 	 * some almost-clones) can provide hooks to make that behave.
989 	 *
990 	 * Note that ACPI doesn't preclude putting these registers into
991 	 * "extended" areas of the chip, including some that we won't yet
992 	 * expect CMOS_READ and friends to handle.
993 	 */
994 	if (info) {
995 		if (info->flags)
996 			flags = info->flags;
997 		if (info->address_space)
998 			address_space = info->address_space;
999 
1000 		cmos_rtc.day_alrm = info->rtc_day_alarm;
1001 		cmos_rtc.mon_alrm = info->rtc_mon_alarm;
1002 		cmos_rtc.century = info->rtc_century;
1003 
1004 		if (info->wake_on && info->wake_off) {
1005 			cmos_rtc.wake_on = info->wake_on;
1006 			cmos_rtc.wake_off = info->wake_off;
1007 		}
1008 	} else {
1009 		acpi_cmos_wake_setup(dev);
1010 	}
1011 
1012 	if (cmos_rtc.day_alrm >= 128)
1013 		cmos_rtc.day_alrm = 0;
1014 
1015 	if (cmos_rtc.mon_alrm >= 128)
1016 		cmos_rtc.mon_alrm = 0;
1017 
1018 	if (cmos_rtc.century >= 128)
1019 		cmos_rtc.century = 0;
1020 
1021 	cmos_rtc.dev = dev;
1022 	dev_set_drvdata(dev, &cmos_rtc);
1023 
1024 	cmos_rtc.rtc = devm_rtc_allocate_device(dev);
1025 	if (IS_ERR(cmos_rtc.rtc)) {
1026 		retval = PTR_ERR(cmos_rtc.rtc);
1027 		goto cleanup0;
1028 	}
1029 
1030 	if (cmos_rtc.mon_alrm)
1031 		cmos_rtc.rtc->alarm_offset_max = SECS_PER_YEAR - 1;
1032 	else if (cmos_rtc.day_alrm)
1033 		cmos_rtc.rtc->alarm_offset_max = SECS_PER_MONTH - 1;
1034 	else
1035 		cmos_rtc.rtc->alarm_offset_max = SECS_PER_DAY - 1;
1036 
1037 	rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
1038 
1039 	if (!mc146818_does_rtc_work()) {
1040 		dev_warn(dev, "broken or not accessible\n");
1041 		retval = -ENXIO;
1042 		goto cleanup1;
1043 	}
1044 
1045 	spin_lock_irq(&rtc_lock);
1046 
1047 	if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
1048 		/* force periodic irq to CMOS reset default of 1024Hz;
1049 		 *
1050 		 * REVISIT it's been reported that at least one x86_64 ALI
1051 		 * mobo doesn't use 32KHz here ... for portability we might
1052 		 * need to do something about other clock frequencies.
1053 		 */
1054 		cmos_rtc.rtc->irq_freq = 1024;
1055 		if (use_hpet_alarm())
1056 			hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
1057 		CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
1058 	}
1059 
1060 	/* disable irqs */
1061 	if (is_valid_irq(rtc_irq))
1062 		cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
1063 
1064 	rtc_control = CMOS_READ(RTC_CONTROL);
1065 
1066 	spin_unlock_irq(&rtc_lock);
1067 
1068 	if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
1069 		dev_warn(dev, "only 24-hr supported\n");
1070 		retval = -ENXIO;
1071 		goto cleanup1;
1072 	}
1073 
1074 	if (use_hpet_alarm())
1075 		hpet_rtc_timer_init();
1076 
1077 	if (is_valid_irq(rtc_irq)) {
1078 		irq_handler_t rtc_cmos_int_handler;
1079 
1080 		if (use_hpet_alarm()) {
1081 			rtc_cmos_int_handler = hpet_rtc_interrupt;
1082 			retval = hpet_register_irq_handler(cmos_interrupt);
1083 			if (retval) {
1084 				hpet_mask_rtc_irq_bit(RTC_IRQMASK);
1085 				dev_warn(dev, "hpet_register_irq_handler "
1086 						" failed in rtc_init().");
1087 				goto cleanup1;
1088 			}
1089 		} else
1090 			rtc_cmos_int_handler = cmos_interrupt;
1091 
1092 		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
1093 				0, dev_name(&cmos_rtc.rtc->dev),
1094 				cmos_rtc.rtc);
1095 		if (retval < 0) {
1096 			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
1097 			goto cleanup1;
1098 		}
1099 	} else {
1100 		clear_bit(RTC_FEATURE_ALARM, cmos_rtc.rtc->features);
1101 	}
1102 
1103 	cmos_rtc.rtc->ops = &cmos_rtc_ops;
1104 
1105 	retval = devm_rtc_register_device(cmos_rtc.rtc);
1106 	if (retval)
1107 		goto cleanup2;
1108 
1109 	/* Set the sync offset for the periodic 11min update correct */
1110 	cmos_rtc.rtc->set_offset_nsec = NSEC_PER_SEC / 2;
1111 
1112 	/* export at least the first block of NVRAM */
1113 	nvmem_cfg.size = address_space - NVRAM_OFFSET;
1114 	devm_rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg);
1115 
1116 	/*
1117 	 * Everything has gone well so far, so by default register a handler for
1118 	 * the ACPI RTC fixed event.
1119 	 */
1120 	if (!info)
1121 		acpi_rtc_event_setup(dev);
1122 
1123 	dev_info(dev, "%s%s, %d bytes nvram%s\n",
1124 		 !is_valid_irq(rtc_irq) ? "no alarms" :
1125 		 cmos_rtc.mon_alrm ? "alarms up to one year" :
1126 		 cmos_rtc.day_alrm ? "alarms up to one month" :
1127 		 "alarms up to one day",
1128 		 cmos_rtc.century ? ", y3k" : "",
1129 		 nvmem_cfg.size,
1130 		 use_hpet_alarm() ? ", hpet irqs" : "");
1131 
1132 	return 0;
1133 
1134 cleanup2:
1135 	if (is_valid_irq(rtc_irq))
1136 		free_irq(rtc_irq, cmos_rtc.rtc);
1137 cleanup1:
1138 	cmos_rtc.dev = NULL;
1139 cleanup0:
1140 	if (RTC_IOMAPPED)
1141 		release_region(ports->start, resource_size(ports));
1142 	else
1143 		release_mem_region(ports->start, resource_size(ports));
1144 	return retval;
1145 }
1146 
1147 static void cmos_do_shutdown(int rtc_irq)
1148 {
1149 	spin_lock_irq(&rtc_lock);
1150 	if (is_valid_irq(rtc_irq))
1151 		cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
1152 	spin_unlock_irq(&rtc_lock);
1153 }
1154 
1155 static void cmos_do_remove(struct device *dev)
1156 {
1157 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1158 	struct resource *ports;
1159 
1160 	cmos_do_shutdown(cmos->irq);
1161 
1162 	if (is_valid_irq(cmos->irq)) {
1163 		free_irq(cmos->irq, cmos->rtc);
1164 		if (use_hpet_alarm())
1165 			hpet_unregister_irq_handler(cmos_interrupt);
1166 	}
1167 
1168 	if (!dev_get_platdata(dev))
1169 		acpi_rtc_event_cleanup();
1170 
1171 	cmos->rtc = NULL;
1172 
1173 	ports = cmos->iomem;
1174 	if (RTC_IOMAPPED)
1175 		release_region(ports->start, resource_size(ports));
1176 	else
1177 		release_mem_region(ports->start, resource_size(ports));
1178 	cmos->iomem = NULL;
1179 
1180 	cmos->dev = NULL;
1181 }
1182 
1183 static int cmos_aie_poweroff(struct device *dev)
1184 {
1185 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1186 	struct rtc_time now;
1187 	time64_t t_now;
1188 	int retval = 0;
1189 	unsigned char rtc_control;
1190 
1191 	if (!cmos->alarm_expires)
1192 		return -EINVAL;
1193 
1194 	spin_lock_irq(&rtc_lock);
1195 	rtc_control = CMOS_READ(RTC_CONTROL);
1196 	spin_unlock_irq(&rtc_lock);
1197 
1198 	/* We only care about the situation where AIE is disabled. */
1199 	if (rtc_control & RTC_AIE)
1200 		return -EBUSY;
1201 
1202 	cmos_read_time(dev, &now);
1203 	t_now = rtc_tm_to_time64(&now);
1204 
1205 	/*
1206 	 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
1207 	 * automatically right after shutdown on some buggy boxes.
1208 	 * This automatic rebooting issue won't happen when the alarm
1209 	 * time is larger than now+1 seconds.
1210 	 *
1211 	 * If the alarm time is equal to now+1 seconds, the issue can be
1212 	 * prevented by cancelling the alarm.
1213 	 */
1214 	if (cmos->alarm_expires == t_now + 1) {
1215 		struct rtc_wkalrm alarm;
1216 
1217 		/* Cancel the AIE timer by configuring the past time. */
1218 		rtc_time64_to_tm(t_now - 1, &alarm.time);
1219 		alarm.enabled = 0;
1220 		retval = cmos_set_alarm(dev, &alarm);
1221 	} else if (cmos->alarm_expires > t_now + 1) {
1222 		retval = -EBUSY;
1223 	}
1224 
1225 	return retval;
1226 }
1227 
1228 static int cmos_suspend(struct device *dev)
1229 {
1230 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1231 	unsigned char	tmp;
1232 
1233 	/* only the alarm might be a wakeup event source */
1234 	spin_lock_irq(&rtc_lock);
1235 	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
1236 	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
1237 		unsigned char	mask;
1238 
1239 		if (device_may_wakeup(dev))
1240 			mask = RTC_IRQMASK & ~RTC_AIE;
1241 		else
1242 			mask = RTC_IRQMASK;
1243 		tmp &= ~mask;
1244 		CMOS_WRITE(tmp, RTC_CONTROL);
1245 		if (use_hpet_alarm())
1246 			hpet_mask_rtc_irq_bit(mask);
1247 		cmos_checkintr(cmos, tmp);
1248 	}
1249 	spin_unlock_irq(&rtc_lock);
1250 
1251 	if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
1252 		cmos->enabled_wake = 1;
1253 		if (cmos->wake_on)
1254 			cmos->wake_on(dev);
1255 		else
1256 			enable_irq_wake(cmos->irq);
1257 	}
1258 
1259 	memset(&cmos->saved_wkalrm, 0, sizeof(struct rtc_wkalrm));
1260 	cmos_read_alarm(dev, &cmos->saved_wkalrm);
1261 
1262 	dev_dbg(dev, "suspend%s, ctrl %02x\n",
1263 			(tmp & RTC_AIE) ? ", alarm may wake" : "",
1264 			tmp);
1265 
1266 	return 0;
1267 }
1268 
1269 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1270  * after a detour through G3 "mechanical off", although the ACPI spec
1271  * says wakeup should only work from G1/S4 "hibernate".  To most users,
1272  * distinctions between S4 and S5 are pointless.  So when the hardware
1273  * allows, don't draw that distinction.
1274  */
1275 static inline int cmos_poweroff(struct device *dev)
1276 {
1277 	if (!IS_ENABLED(CONFIG_PM))
1278 		return -ENOSYS;
1279 
1280 	return cmos_suspend(dev);
1281 }
1282 
1283 static void cmos_check_wkalrm(struct device *dev)
1284 {
1285 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
1286 	struct rtc_wkalrm current_alarm;
1287 	time64_t t_now;
1288 	time64_t t_current_expires;
1289 	time64_t t_saved_expires;
1290 	struct rtc_time now;
1291 
1292 	/* Check if we have RTC Alarm armed */
1293 	if (!(cmos->suspend_ctrl & RTC_AIE))
1294 		return;
1295 
1296 	cmos_read_time(dev, &now);
1297 	t_now = rtc_tm_to_time64(&now);
1298 
1299 	/*
1300 	 * ACPI RTC wake event is cleared after resume from STR,
1301 	 * ACK the rtc irq here
1302 	 */
1303 	if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
1304 		local_irq_disable();
1305 		cmos_interrupt(0, (void *)cmos->rtc);
1306 		local_irq_enable();
1307 		return;
1308 	}
1309 
1310 	memset(&current_alarm, 0, sizeof(struct rtc_wkalrm));
1311 	cmos_read_alarm(dev, &current_alarm);
1312 	t_current_expires = rtc_tm_to_time64(&current_alarm.time);
1313 	t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1314 	if (t_current_expires != t_saved_expires ||
1315 	    cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1316 		cmos_set_alarm(dev, &cmos->saved_wkalrm);
1317 	}
1318 }
1319 
1320 static int __maybe_unused cmos_resume(struct device *dev)
1321 {
1322 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1323 	unsigned char tmp;
1324 
1325 	if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
1326 		if (cmos->wake_off)
1327 			cmos->wake_off(dev);
1328 		else
1329 			disable_irq_wake(cmos->irq);
1330 		cmos->enabled_wake = 0;
1331 	}
1332 
1333 	/* The BIOS might have changed the alarm, restore it */
1334 	cmos_check_wkalrm(dev);
1335 
1336 	spin_lock_irq(&rtc_lock);
1337 	tmp = cmos->suspend_ctrl;
1338 	cmos->suspend_ctrl = 0;
1339 	/* re-enable any irqs previously active */
1340 	if (tmp & RTC_IRQMASK) {
1341 		unsigned char	mask;
1342 
1343 		if (device_may_wakeup(dev) && use_hpet_alarm())
1344 			hpet_rtc_timer_init();
1345 
1346 		do {
1347 			CMOS_WRITE(tmp, RTC_CONTROL);
1348 			if (use_hpet_alarm())
1349 				hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1350 
1351 			mask = CMOS_READ(RTC_INTR_FLAGS);
1352 			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1353 			if (!use_hpet_alarm() || !is_intr(mask))
1354 				break;
1355 
1356 			/* force one-shot behavior if HPET blocked
1357 			 * the wake alarm's irq
1358 			 */
1359 			rtc_update_irq(cmos->rtc, 1, mask);
1360 			tmp &= ~RTC_AIE;
1361 			hpet_mask_rtc_irq_bit(RTC_AIE);
1362 		} while (mask & RTC_AIE);
1363 
1364 		if (tmp & RTC_AIE)
1365 			cmos_check_acpi_rtc_status(dev, &tmp);
1366 	}
1367 	spin_unlock_irq(&rtc_lock);
1368 
1369 	dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1370 
1371 	return 0;
1372 }
1373 
1374 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1375 
1376 /*----------------------------------------------------------------*/
1377 
1378 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1379  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1380  * probably list them in similar PNPBIOS tables; so PNP is more common.
1381  *
1382  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
1383  * predate even PNPBIOS should set up platform_bus devices.
1384  */
1385 
1386 #ifdef	CONFIG_PNP
1387 
1388 #include <linux/pnp.h>
1389 
1390 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1391 {
1392 	int irq;
1393 
1394 	if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1395 		irq = 0;
1396 #ifdef CONFIG_X86
1397 		/* Some machines contain a PNP entry for the RTC, but
1398 		 * don't define the IRQ. It should always be safe to
1399 		 * hardcode it on systems with a legacy PIC.
1400 		 */
1401 		if (nr_legacy_irqs())
1402 			irq = RTC_IRQ;
1403 #endif
1404 	} else {
1405 		irq = pnp_irq(pnp, 0);
1406 	}
1407 
1408 	return cmos_do_probe(&pnp->dev, pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1409 }
1410 
1411 static void cmos_pnp_remove(struct pnp_dev *pnp)
1412 {
1413 	cmos_do_remove(&pnp->dev);
1414 }
1415 
1416 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1417 {
1418 	struct device *dev = &pnp->dev;
1419 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1420 
1421 	if (system_state == SYSTEM_POWER_OFF) {
1422 		int retval = cmos_poweroff(dev);
1423 
1424 		if (cmos_aie_poweroff(dev) < 0 && !retval)
1425 			return;
1426 	}
1427 
1428 	cmos_do_shutdown(cmos->irq);
1429 }
1430 
1431 static const struct pnp_device_id rtc_ids[] = {
1432 	{ .id = "PNP0b00", },
1433 	{ .id = "PNP0b01", },
1434 	{ .id = "PNP0b02", },
1435 	{ },
1436 };
1437 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1438 
1439 static struct pnp_driver cmos_pnp_driver = {
1440 	.name		= driver_name,
1441 	.id_table	= rtc_ids,
1442 	.probe		= cmos_pnp_probe,
1443 	.remove		= cmos_pnp_remove,
1444 	.shutdown	= cmos_pnp_shutdown,
1445 
1446 	/* flag ensures resume() gets called, and stops syslog spam */
1447 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1448 	.driver		= {
1449 			.pm = &cmos_pm_ops,
1450 	},
1451 };
1452 
1453 #endif	/* CONFIG_PNP */
1454 
1455 #ifdef CONFIG_OF
1456 static const struct of_device_id of_cmos_match[] = {
1457 	{
1458 		.compatible = "motorola,mc146818",
1459 	},
1460 	{ },
1461 };
1462 MODULE_DEVICE_TABLE(of, of_cmos_match);
1463 
1464 static __init void cmos_of_init(struct platform_device *pdev)
1465 {
1466 	struct device_node *node = pdev->dev.of_node;
1467 	const __be32 *val;
1468 
1469 	if (!node)
1470 		return;
1471 
1472 	val = of_get_property(node, "ctrl-reg", NULL);
1473 	if (val)
1474 		CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1475 
1476 	val = of_get_property(node, "freq-reg", NULL);
1477 	if (val)
1478 		CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1479 }
1480 #else
1481 static inline void cmos_of_init(struct platform_device *pdev) {}
1482 #endif
1483 /*----------------------------------------------------------------*/
1484 
1485 /* Platform setup should have set up an RTC device, when PNP is
1486  * unavailable ... this could happen even on (older) PCs.
1487  */
1488 
1489 static int __init cmos_platform_probe(struct platform_device *pdev)
1490 {
1491 	struct resource *resource;
1492 	int irq;
1493 
1494 	cmos_of_init(pdev);
1495 
1496 	if (RTC_IOMAPPED)
1497 		resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1498 	else
1499 		resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1500 	irq = platform_get_irq(pdev, 0);
1501 	if (irq < 0)
1502 		irq = -1;
1503 
1504 	return cmos_do_probe(&pdev->dev, resource, irq);
1505 }
1506 
1507 static void cmos_platform_remove(struct platform_device *pdev)
1508 {
1509 	cmos_do_remove(&pdev->dev);
1510 }
1511 
1512 static void cmos_platform_shutdown(struct platform_device *pdev)
1513 {
1514 	struct device *dev = &pdev->dev;
1515 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1516 
1517 	if (system_state == SYSTEM_POWER_OFF) {
1518 		int retval = cmos_poweroff(dev);
1519 
1520 		if (cmos_aie_poweroff(dev) < 0 && !retval)
1521 			return;
1522 	}
1523 
1524 	cmos_do_shutdown(cmos->irq);
1525 }
1526 
1527 /* work with hotplug and coldplug */
1528 MODULE_ALIAS("platform:rtc_cmos");
1529 
1530 static struct platform_driver cmos_platform_driver = {
1531 	.remove_new	= cmos_platform_remove,
1532 	.shutdown	= cmos_platform_shutdown,
1533 	.driver = {
1534 		.name		= driver_name,
1535 		.pm		= &cmos_pm_ops,
1536 		.of_match_table = of_match_ptr(of_cmos_match),
1537 	}
1538 };
1539 
1540 #ifdef CONFIG_PNP
1541 static bool pnp_driver_registered;
1542 #endif
1543 static bool platform_driver_registered;
1544 
1545 static int __init cmos_init(void)
1546 {
1547 	int retval = 0;
1548 
1549 #ifdef	CONFIG_PNP
1550 	retval = pnp_register_driver(&cmos_pnp_driver);
1551 	if (retval == 0)
1552 		pnp_driver_registered = true;
1553 #endif
1554 
1555 	if (!cmos_rtc.dev) {
1556 		retval = platform_driver_probe(&cmos_platform_driver,
1557 					       cmos_platform_probe);
1558 		if (retval == 0)
1559 			platform_driver_registered = true;
1560 	}
1561 
1562 	if (retval == 0)
1563 		return 0;
1564 
1565 #ifdef	CONFIG_PNP
1566 	if (pnp_driver_registered)
1567 		pnp_unregister_driver(&cmos_pnp_driver);
1568 #endif
1569 	return retval;
1570 }
1571 module_init(cmos_init);
1572 
1573 static void __exit cmos_exit(void)
1574 {
1575 #ifdef	CONFIG_PNP
1576 	if (pnp_driver_registered)
1577 		pnp_unregister_driver(&cmos_pnp_driver);
1578 #endif
1579 	if (platform_driver_registered)
1580 		platform_driver_unregister(&cmos_platform_driver);
1581 }
1582 module_exit(cmos_exit);
1583 
1584 
1585 MODULE_AUTHOR("David Brownell");
1586 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1587 MODULE_LICENSE("GPL");
1588