xref: /openbmc/linux/drivers/rtc/rtc-cmos.c (revision 09a4f6f5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
4  *
5  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
6  * Copyright (C) 2006 David Brownell (convert to new framework)
7  */
8 
9 /*
10  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
11  * That defined the register interface now provided by all PCs, some
12  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
13  * integrate an MC146818 clone in their southbridge, and boards use
14  * that instead of discrete clones like the DS12887 or M48T86.  There
15  * are also clones that connect using the LPC bus.
16  *
17  * That register API is also used directly by various other drivers
18  * (notably for integrated NVRAM), infrastructure (x86 has code to
19  * bypass the RTC framework, directly reading the RTC during boot
20  * and updating minutes/seconds for systems using NTP synch) and
21  * utilities (like userspace 'hwclock', if no /dev node exists).
22  *
23  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
24  * interrupts disabled, holding the global rtc_lock, to exclude those
25  * other drivers and utilities on correctly configured systems.
26  */
27 
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/spinlock.h>
35 #include <linux/platform_device.h>
36 #include <linux/log2.h>
37 #include <linux/pm.h>
38 #include <linux/of.h>
39 #include <linux/of_platform.h>
40 #ifdef CONFIG_X86
41 #include <asm/i8259.h>
42 #include <asm/processor.h>
43 #include <linux/dmi.h>
44 #endif
45 
46 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
47 #include <linux/mc146818rtc.h>
48 
49 #ifdef CONFIG_ACPI
50 /*
51  * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
52  *
53  * If cleared, ACPI SCI is only used to wake up the system from suspend
54  *
55  * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
56  */
57 
58 static bool use_acpi_alarm;
59 module_param(use_acpi_alarm, bool, 0444);
60 
61 static inline int cmos_use_acpi_alarm(void)
62 {
63 	return use_acpi_alarm;
64 }
65 #else /* !CONFIG_ACPI */
66 
67 static inline int cmos_use_acpi_alarm(void)
68 {
69 	return 0;
70 }
71 #endif
72 
73 struct cmos_rtc {
74 	struct rtc_device	*rtc;
75 	struct device		*dev;
76 	int			irq;
77 	struct resource		*iomem;
78 	time64_t		alarm_expires;
79 
80 	void			(*wake_on)(struct device *);
81 	void			(*wake_off)(struct device *);
82 
83 	u8			enabled_wake;
84 	u8			suspend_ctrl;
85 
86 	/* newer hardware extends the original register set */
87 	u8			day_alrm;
88 	u8			mon_alrm;
89 	u8			century;
90 
91 	struct rtc_wkalrm	saved_wkalrm;
92 };
93 
94 /* both platform and pnp busses use negative numbers for invalid irqs */
95 #define is_valid_irq(n)		((n) > 0)
96 
97 static const char driver_name[] = "rtc_cmos";
98 
99 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
100  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
101  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
102  */
103 #define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
104 
105 static inline int is_intr(u8 rtc_intr)
106 {
107 	if (!(rtc_intr & RTC_IRQF))
108 		return 0;
109 	return rtc_intr & RTC_IRQMASK;
110 }
111 
112 /*----------------------------------------------------------------*/
113 
114 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
115  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
116  * used in a broken "legacy replacement" mode.  The breakage includes
117  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
118  * other (better) use.
119  *
120  * When that broken mode is in use, platform glue provides a partial
121  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
122  * want to use HPET for anything except those IRQs though...
123  */
124 #ifdef CONFIG_HPET_EMULATE_RTC
125 #include <asm/hpet.h>
126 #else
127 
128 static inline int is_hpet_enabled(void)
129 {
130 	return 0;
131 }
132 
133 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
134 {
135 	return 0;
136 }
137 
138 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
139 {
140 	return 0;
141 }
142 
143 static inline int
144 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
145 {
146 	return 0;
147 }
148 
149 static inline int hpet_set_periodic_freq(unsigned long freq)
150 {
151 	return 0;
152 }
153 
154 static inline int hpet_rtc_dropped_irq(void)
155 {
156 	return 0;
157 }
158 
159 static inline int hpet_rtc_timer_init(void)
160 {
161 	return 0;
162 }
163 
164 extern irq_handler_t hpet_rtc_interrupt;
165 
166 static inline int hpet_register_irq_handler(irq_handler_t handler)
167 {
168 	return 0;
169 }
170 
171 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
172 {
173 	return 0;
174 }
175 
176 #endif
177 
178 /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
179 static inline int use_hpet_alarm(void)
180 {
181 	return is_hpet_enabled() && !cmos_use_acpi_alarm();
182 }
183 
184 /*----------------------------------------------------------------*/
185 
186 #ifdef RTC_PORT
187 
188 /* Most newer x86 systems have two register banks, the first used
189  * for RTC and NVRAM and the second only for NVRAM.  Caller must
190  * own rtc_lock ... and we won't worry about access during NMI.
191  */
192 #define can_bank2	true
193 
194 static inline unsigned char cmos_read_bank2(unsigned char addr)
195 {
196 	outb(addr, RTC_PORT(2));
197 	return inb(RTC_PORT(3));
198 }
199 
200 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
201 {
202 	outb(addr, RTC_PORT(2));
203 	outb(val, RTC_PORT(3));
204 }
205 
206 #else
207 
208 #define can_bank2	false
209 
210 static inline unsigned char cmos_read_bank2(unsigned char addr)
211 {
212 	return 0;
213 }
214 
215 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
216 {
217 }
218 
219 #endif
220 
221 /*----------------------------------------------------------------*/
222 
223 static int cmos_read_time(struct device *dev, struct rtc_time *t)
224 {
225 	/*
226 	 * If pm_trace abused the RTC for storage, set the timespec to 0,
227 	 * which tells the caller that this RTC value is unusable.
228 	 */
229 	if (!pm_trace_rtc_valid())
230 		return -EIO;
231 
232 	/* REVISIT:  if the clock has a "century" register, use
233 	 * that instead of the heuristic in mc146818_get_time().
234 	 * That'll make Y3K compatility (year > 2070) easy!
235 	 */
236 	mc146818_get_time(t);
237 	return 0;
238 }
239 
240 static int cmos_set_time(struct device *dev, struct rtc_time *t)
241 {
242 	/* REVISIT:  set the "century" register if available
243 	 *
244 	 * NOTE: this ignores the issue whereby updating the seconds
245 	 * takes effect exactly 500ms after we write the register.
246 	 * (Also queueing and other delays before we get this far.)
247 	 */
248 	return mc146818_set_time(t);
249 }
250 
251 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
252 {
253 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
254 	unsigned char	rtc_control;
255 
256 	/* This not only a rtc_op, but also called directly */
257 	if (!is_valid_irq(cmos->irq))
258 		return -EIO;
259 
260 	/* Basic alarms only support hour, minute, and seconds fields.
261 	 * Some also support day and month, for alarms up to a year in
262 	 * the future.
263 	 */
264 
265 	spin_lock_irq(&rtc_lock);
266 	t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
267 	t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
268 	t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
269 
270 	if (cmos->day_alrm) {
271 		/* ignore upper bits on readback per ACPI spec */
272 		t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
273 		if (!t->time.tm_mday)
274 			t->time.tm_mday = -1;
275 
276 		if (cmos->mon_alrm) {
277 			t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
278 			if (!t->time.tm_mon)
279 				t->time.tm_mon = -1;
280 		}
281 	}
282 
283 	rtc_control = CMOS_READ(RTC_CONTROL);
284 	spin_unlock_irq(&rtc_lock);
285 
286 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
287 		if (((unsigned)t->time.tm_sec) < 0x60)
288 			t->time.tm_sec = bcd2bin(t->time.tm_sec);
289 		else
290 			t->time.tm_sec = -1;
291 		if (((unsigned)t->time.tm_min) < 0x60)
292 			t->time.tm_min = bcd2bin(t->time.tm_min);
293 		else
294 			t->time.tm_min = -1;
295 		if (((unsigned)t->time.tm_hour) < 0x24)
296 			t->time.tm_hour = bcd2bin(t->time.tm_hour);
297 		else
298 			t->time.tm_hour = -1;
299 
300 		if (cmos->day_alrm) {
301 			if (((unsigned)t->time.tm_mday) <= 0x31)
302 				t->time.tm_mday = bcd2bin(t->time.tm_mday);
303 			else
304 				t->time.tm_mday = -1;
305 
306 			if (cmos->mon_alrm) {
307 				if (((unsigned)t->time.tm_mon) <= 0x12)
308 					t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
309 				else
310 					t->time.tm_mon = -1;
311 			}
312 		}
313 	}
314 
315 	t->enabled = !!(rtc_control & RTC_AIE);
316 	t->pending = 0;
317 
318 	return 0;
319 }
320 
321 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
322 {
323 	unsigned char	rtc_intr;
324 
325 	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
326 	 * allegedly some older rtcs need that to handle irqs properly
327 	 */
328 	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
329 
330 	if (use_hpet_alarm())
331 		return;
332 
333 	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
334 	if (is_intr(rtc_intr))
335 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
336 }
337 
338 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
339 {
340 	unsigned char	rtc_control;
341 
342 	/* flush any pending IRQ status, notably for update irqs,
343 	 * before we enable new IRQs
344 	 */
345 	rtc_control = CMOS_READ(RTC_CONTROL);
346 	cmos_checkintr(cmos, rtc_control);
347 
348 	rtc_control |= mask;
349 	CMOS_WRITE(rtc_control, RTC_CONTROL);
350 	if (use_hpet_alarm())
351 		hpet_set_rtc_irq_bit(mask);
352 
353 	if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
354 		if (cmos->wake_on)
355 			cmos->wake_on(cmos->dev);
356 	}
357 
358 	cmos_checkintr(cmos, rtc_control);
359 }
360 
361 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
362 {
363 	unsigned char	rtc_control;
364 
365 	rtc_control = CMOS_READ(RTC_CONTROL);
366 	rtc_control &= ~mask;
367 	CMOS_WRITE(rtc_control, RTC_CONTROL);
368 	if (use_hpet_alarm())
369 		hpet_mask_rtc_irq_bit(mask);
370 
371 	if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
372 		if (cmos->wake_off)
373 			cmos->wake_off(cmos->dev);
374 	}
375 
376 	cmos_checkintr(cmos, rtc_control);
377 }
378 
379 static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
380 {
381 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
382 	struct rtc_time now;
383 
384 	cmos_read_time(dev, &now);
385 
386 	if (!cmos->day_alrm) {
387 		time64_t t_max_date;
388 		time64_t t_alrm;
389 
390 		t_max_date = rtc_tm_to_time64(&now);
391 		t_max_date += 24 * 60 * 60 - 1;
392 		t_alrm = rtc_tm_to_time64(&t->time);
393 		if (t_alrm > t_max_date) {
394 			dev_err(dev,
395 				"Alarms can be up to one day in the future\n");
396 			return -EINVAL;
397 		}
398 	} else if (!cmos->mon_alrm) {
399 		struct rtc_time max_date = now;
400 		time64_t t_max_date;
401 		time64_t t_alrm;
402 		int max_mday;
403 
404 		if (max_date.tm_mon == 11) {
405 			max_date.tm_mon = 0;
406 			max_date.tm_year += 1;
407 		} else {
408 			max_date.tm_mon += 1;
409 		}
410 		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
411 		if (max_date.tm_mday > max_mday)
412 			max_date.tm_mday = max_mday;
413 
414 		t_max_date = rtc_tm_to_time64(&max_date);
415 		t_max_date -= 1;
416 		t_alrm = rtc_tm_to_time64(&t->time);
417 		if (t_alrm > t_max_date) {
418 			dev_err(dev,
419 				"Alarms can be up to one month in the future\n");
420 			return -EINVAL;
421 		}
422 	} else {
423 		struct rtc_time max_date = now;
424 		time64_t t_max_date;
425 		time64_t t_alrm;
426 		int max_mday;
427 
428 		max_date.tm_year += 1;
429 		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
430 		if (max_date.tm_mday > max_mday)
431 			max_date.tm_mday = max_mday;
432 
433 		t_max_date = rtc_tm_to_time64(&max_date);
434 		t_max_date -= 1;
435 		t_alrm = rtc_tm_to_time64(&t->time);
436 		if (t_alrm > t_max_date) {
437 			dev_err(dev,
438 				"Alarms can be up to one year in the future\n");
439 			return -EINVAL;
440 		}
441 	}
442 
443 	return 0;
444 }
445 
446 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
447 {
448 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
449 	unsigned char mon, mday, hrs, min, sec, rtc_control;
450 	int ret;
451 
452 	/* This not only a rtc_op, but also called directly */
453 	if (!is_valid_irq(cmos->irq))
454 		return -EIO;
455 
456 	ret = cmos_validate_alarm(dev, t);
457 	if (ret < 0)
458 		return ret;
459 
460 	mon = t->time.tm_mon + 1;
461 	mday = t->time.tm_mday;
462 	hrs = t->time.tm_hour;
463 	min = t->time.tm_min;
464 	sec = t->time.tm_sec;
465 
466 	rtc_control = CMOS_READ(RTC_CONTROL);
467 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
468 		/* Writing 0xff means "don't care" or "match all".  */
469 		mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
470 		mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
471 		hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
472 		min = (min < 60) ? bin2bcd(min) : 0xff;
473 		sec = (sec < 60) ? bin2bcd(sec) : 0xff;
474 	}
475 
476 	spin_lock_irq(&rtc_lock);
477 
478 	/* next rtc irq must not be from previous alarm setting */
479 	cmos_irq_disable(cmos, RTC_AIE);
480 
481 	/* update alarm */
482 	CMOS_WRITE(hrs, RTC_HOURS_ALARM);
483 	CMOS_WRITE(min, RTC_MINUTES_ALARM);
484 	CMOS_WRITE(sec, RTC_SECONDS_ALARM);
485 
486 	/* the system may support an "enhanced" alarm */
487 	if (cmos->day_alrm) {
488 		CMOS_WRITE(mday, cmos->day_alrm);
489 		if (cmos->mon_alrm)
490 			CMOS_WRITE(mon, cmos->mon_alrm);
491 	}
492 
493 	if (use_hpet_alarm()) {
494 		/*
495 		 * FIXME the HPET alarm glue currently ignores day_alrm
496 		 * and mon_alrm ...
497 		 */
498 		hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min,
499 				    t->time.tm_sec);
500 	}
501 
502 	if (t->enabled)
503 		cmos_irq_enable(cmos, RTC_AIE);
504 
505 	spin_unlock_irq(&rtc_lock);
506 
507 	cmos->alarm_expires = rtc_tm_to_time64(&t->time);
508 
509 	return 0;
510 }
511 
512 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
513 {
514 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
515 	unsigned long	flags;
516 
517 	spin_lock_irqsave(&rtc_lock, flags);
518 
519 	if (enabled)
520 		cmos_irq_enable(cmos, RTC_AIE);
521 	else
522 		cmos_irq_disable(cmos, RTC_AIE);
523 
524 	spin_unlock_irqrestore(&rtc_lock, flags);
525 	return 0;
526 }
527 
528 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
529 
530 static int cmos_procfs(struct device *dev, struct seq_file *seq)
531 {
532 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
533 	unsigned char	rtc_control, valid;
534 
535 	spin_lock_irq(&rtc_lock);
536 	rtc_control = CMOS_READ(RTC_CONTROL);
537 	valid = CMOS_READ(RTC_VALID);
538 	spin_unlock_irq(&rtc_lock);
539 
540 	/* NOTE:  at least ICH6 reports battery status using a different
541 	 * (non-RTC) bit; and SQWE is ignored on many current systems.
542 	 */
543 	seq_printf(seq,
544 		   "periodic_IRQ\t: %s\n"
545 		   "update_IRQ\t: %s\n"
546 		   "HPET_emulated\t: %s\n"
547 		   // "square_wave\t: %s\n"
548 		   "BCD\t\t: %s\n"
549 		   "DST_enable\t: %s\n"
550 		   "periodic_freq\t: %d\n"
551 		   "batt_status\t: %s\n",
552 		   (rtc_control & RTC_PIE) ? "yes" : "no",
553 		   (rtc_control & RTC_UIE) ? "yes" : "no",
554 		   use_hpet_alarm() ? "yes" : "no",
555 		   // (rtc_control & RTC_SQWE) ? "yes" : "no",
556 		   (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
557 		   (rtc_control & RTC_DST_EN) ? "yes" : "no",
558 		   cmos->rtc->irq_freq,
559 		   (valid & RTC_VRT) ? "okay" : "dead");
560 
561 	return 0;
562 }
563 
564 #else
565 #define	cmos_procfs	NULL
566 #endif
567 
568 static const struct rtc_class_ops cmos_rtc_ops = {
569 	.read_time		= cmos_read_time,
570 	.set_time		= cmos_set_time,
571 	.read_alarm		= cmos_read_alarm,
572 	.set_alarm		= cmos_set_alarm,
573 	.proc			= cmos_procfs,
574 	.alarm_irq_enable	= cmos_alarm_irq_enable,
575 };
576 
577 static const struct rtc_class_ops cmos_rtc_ops_no_alarm = {
578 	.read_time		= cmos_read_time,
579 	.set_time		= cmos_set_time,
580 	.proc			= cmos_procfs,
581 };
582 
583 /*----------------------------------------------------------------*/
584 
585 /*
586  * All these chips have at least 64 bytes of address space, shared by
587  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
588  * by boot firmware.  Modern chips have 128 or 256 bytes.
589  */
590 
591 #define NVRAM_OFFSET	(RTC_REG_D + 1)
592 
593 static int cmos_nvram_read(void *priv, unsigned int off, void *val,
594 			   size_t count)
595 {
596 	unsigned char *buf = val;
597 	int	retval;
598 
599 	off += NVRAM_OFFSET;
600 	spin_lock_irq(&rtc_lock);
601 	for (retval = 0; count; count--, off++, retval++) {
602 		if (off < 128)
603 			*buf++ = CMOS_READ(off);
604 		else if (can_bank2)
605 			*buf++ = cmos_read_bank2(off);
606 		else
607 			break;
608 	}
609 	spin_unlock_irq(&rtc_lock);
610 
611 	return retval;
612 }
613 
614 static int cmos_nvram_write(void *priv, unsigned int off, void *val,
615 			    size_t count)
616 {
617 	struct cmos_rtc	*cmos = priv;
618 	unsigned char	*buf = val;
619 	int		retval;
620 
621 	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
622 	 * checksum on part of the NVRAM data.  That's currently ignored
623 	 * here.  If userspace is smart enough to know what fields of
624 	 * NVRAM to update, updating checksums is also part of its job.
625 	 */
626 	off += NVRAM_OFFSET;
627 	spin_lock_irq(&rtc_lock);
628 	for (retval = 0; count; count--, off++, retval++) {
629 		/* don't trash RTC registers */
630 		if (off == cmos->day_alrm
631 				|| off == cmos->mon_alrm
632 				|| off == cmos->century)
633 			buf++;
634 		else if (off < 128)
635 			CMOS_WRITE(*buf++, off);
636 		else if (can_bank2)
637 			cmos_write_bank2(*buf++, off);
638 		else
639 			break;
640 	}
641 	spin_unlock_irq(&rtc_lock);
642 
643 	return retval;
644 }
645 
646 /*----------------------------------------------------------------*/
647 
648 static struct cmos_rtc	cmos_rtc;
649 
650 static irqreturn_t cmos_interrupt(int irq, void *p)
651 {
652 	unsigned long	flags;
653 	u8		irqstat;
654 	u8		rtc_control;
655 
656 	spin_lock_irqsave(&rtc_lock, flags);
657 
658 	/* When the HPET interrupt handler calls us, the interrupt
659 	 * status is passed as arg1 instead of the irq number.  But
660 	 * always clear irq status, even when HPET is in the way.
661 	 *
662 	 * Note that HPET and RTC are almost certainly out of phase,
663 	 * giving different IRQ status ...
664 	 */
665 	irqstat = CMOS_READ(RTC_INTR_FLAGS);
666 	rtc_control = CMOS_READ(RTC_CONTROL);
667 	if (use_hpet_alarm())
668 		irqstat = (unsigned long)irq & 0xF0;
669 
670 	/* If we were suspended, RTC_CONTROL may not be accurate since the
671 	 * bios may have cleared it.
672 	 */
673 	if (!cmos_rtc.suspend_ctrl)
674 		irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
675 	else
676 		irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
677 
678 	/* All Linux RTC alarms should be treated as if they were oneshot.
679 	 * Similar code may be needed in system wakeup paths, in case the
680 	 * alarm woke the system.
681 	 */
682 	if (irqstat & RTC_AIE) {
683 		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
684 		rtc_control &= ~RTC_AIE;
685 		CMOS_WRITE(rtc_control, RTC_CONTROL);
686 		if (use_hpet_alarm())
687 			hpet_mask_rtc_irq_bit(RTC_AIE);
688 		CMOS_READ(RTC_INTR_FLAGS);
689 	}
690 	spin_unlock_irqrestore(&rtc_lock, flags);
691 
692 	if (is_intr(irqstat)) {
693 		rtc_update_irq(p, 1, irqstat);
694 		return IRQ_HANDLED;
695 	} else
696 		return IRQ_NONE;
697 }
698 
699 #ifdef	CONFIG_PNP
700 #define	INITSECTION
701 
702 #else
703 #define	INITSECTION	__init
704 #endif
705 
706 static int INITSECTION
707 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
708 {
709 	struct cmos_rtc_board_info	*info = dev_get_platdata(dev);
710 	int				retval = 0;
711 	unsigned char			rtc_control;
712 	unsigned			address_space;
713 	u32				flags = 0;
714 	struct nvmem_config nvmem_cfg = {
715 		.name = "cmos_nvram",
716 		.word_size = 1,
717 		.stride = 1,
718 		.reg_read = cmos_nvram_read,
719 		.reg_write = cmos_nvram_write,
720 		.priv = &cmos_rtc,
721 	};
722 
723 	/* there can be only one ... */
724 	if (cmos_rtc.dev)
725 		return -EBUSY;
726 
727 	if (!ports)
728 		return -ENODEV;
729 
730 	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
731 	 *
732 	 * REVISIT non-x86 systems may instead use memory space resources
733 	 * (needing ioremap etc), not i/o space resources like this ...
734 	 */
735 	if (RTC_IOMAPPED)
736 		ports = request_region(ports->start, resource_size(ports),
737 				       driver_name);
738 	else
739 		ports = request_mem_region(ports->start, resource_size(ports),
740 					   driver_name);
741 	if (!ports) {
742 		dev_dbg(dev, "i/o registers already in use\n");
743 		return -EBUSY;
744 	}
745 
746 	cmos_rtc.irq = rtc_irq;
747 	cmos_rtc.iomem = ports;
748 
749 	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
750 	 * driver did, but don't reject unknown configs.   Old hardware
751 	 * won't address 128 bytes.  Newer chips have multiple banks,
752 	 * though they may not be listed in one I/O resource.
753 	 */
754 #if	defined(CONFIG_ATARI)
755 	address_space = 64;
756 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
757 			|| defined(__sparc__) || defined(__mips__) \
758 			|| defined(__powerpc__)
759 	address_space = 128;
760 #else
761 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
762 	address_space = 128;
763 #endif
764 	if (can_bank2 && ports->end > (ports->start + 1))
765 		address_space = 256;
766 
767 	/* For ACPI systems extension info comes from the FADT.  On others,
768 	 * board specific setup provides it as appropriate.  Systems where
769 	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
770 	 * some almost-clones) can provide hooks to make that behave.
771 	 *
772 	 * Note that ACPI doesn't preclude putting these registers into
773 	 * "extended" areas of the chip, including some that we won't yet
774 	 * expect CMOS_READ and friends to handle.
775 	 */
776 	if (info) {
777 		if (info->flags)
778 			flags = info->flags;
779 		if (info->address_space)
780 			address_space = info->address_space;
781 
782 		if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
783 			cmos_rtc.day_alrm = info->rtc_day_alarm;
784 		if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
785 			cmos_rtc.mon_alrm = info->rtc_mon_alarm;
786 		if (info->rtc_century && info->rtc_century < 128)
787 			cmos_rtc.century = info->rtc_century;
788 
789 		if (info->wake_on && info->wake_off) {
790 			cmos_rtc.wake_on = info->wake_on;
791 			cmos_rtc.wake_off = info->wake_off;
792 		}
793 	}
794 
795 	cmos_rtc.dev = dev;
796 	dev_set_drvdata(dev, &cmos_rtc);
797 
798 	cmos_rtc.rtc = devm_rtc_allocate_device(dev);
799 	if (IS_ERR(cmos_rtc.rtc)) {
800 		retval = PTR_ERR(cmos_rtc.rtc);
801 		goto cleanup0;
802 	}
803 
804 	rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
805 
806 	spin_lock_irq(&rtc_lock);
807 
808 	if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
809 		/* force periodic irq to CMOS reset default of 1024Hz;
810 		 *
811 		 * REVISIT it's been reported that at least one x86_64 ALI
812 		 * mobo doesn't use 32KHz here ... for portability we might
813 		 * need to do something about other clock frequencies.
814 		 */
815 		cmos_rtc.rtc->irq_freq = 1024;
816 		if (use_hpet_alarm())
817 			hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
818 		CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
819 	}
820 
821 	/* disable irqs */
822 	if (is_valid_irq(rtc_irq))
823 		cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
824 
825 	rtc_control = CMOS_READ(RTC_CONTROL);
826 
827 	spin_unlock_irq(&rtc_lock);
828 
829 	if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
830 		dev_warn(dev, "only 24-hr supported\n");
831 		retval = -ENXIO;
832 		goto cleanup1;
833 	}
834 
835 	if (use_hpet_alarm())
836 		hpet_rtc_timer_init();
837 
838 	if (is_valid_irq(rtc_irq)) {
839 		irq_handler_t rtc_cmos_int_handler;
840 
841 		if (use_hpet_alarm()) {
842 			rtc_cmos_int_handler = hpet_rtc_interrupt;
843 			retval = hpet_register_irq_handler(cmos_interrupt);
844 			if (retval) {
845 				hpet_mask_rtc_irq_bit(RTC_IRQMASK);
846 				dev_warn(dev, "hpet_register_irq_handler "
847 						" failed in rtc_init().");
848 				goto cleanup1;
849 			}
850 		} else
851 			rtc_cmos_int_handler = cmos_interrupt;
852 
853 		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
854 				0, dev_name(&cmos_rtc.rtc->dev),
855 				cmos_rtc.rtc);
856 		if (retval < 0) {
857 			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
858 			goto cleanup1;
859 		}
860 
861 		cmos_rtc.rtc->ops = &cmos_rtc_ops;
862 	} else {
863 		cmos_rtc.rtc->ops = &cmos_rtc_ops_no_alarm;
864 	}
865 
866 	retval = devm_rtc_register_device(cmos_rtc.rtc);
867 	if (retval)
868 		goto cleanup2;
869 
870 	/* Set the sync offset for the periodic 11min update correct */
871 	cmos_rtc.rtc->set_offset_nsec = NSEC_PER_SEC / 2;
872 
873 	/* export at least the first block of NVRAM */
874 	nvmem_cfg.size = address_space - NVRAM_OFFSET;
875 	devm_rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg);
876 
877 	dev_info(dev, "%s%s, %d bytes nvram%s\n",
878 		 !is_valid_irq(rtc_irq) ? "no alarms" :
879 		 cmos_rtc.mon_alrm ? "alarms up to one year" :
880 		 cmos_rtc.day_alrm ? "alarms up to one month" :
881 		 "alarms up to one day",
882 		 cmos_rtc.century ? ", y3k" : "",
883 		 nvmem_cfg.size,
884 		 use_hpet_alarm() ? ", hpet irqs" : "");
885 
886 	return 0;
887 
888 cleanup2:
889 	if (is_valid_irq(rtc_irq))
890 		free_irq(rtc_irq, cmos_rtc.rtc);
891 cleanup1:
892 	cmos_rtc.dev = NULL;
893 cleanup0:
894 	if (RTC_IOMAPPED)
895 		release_region(ports->start, resource_size(ports));
896 	else
897 		release_mem_region(ports->start, resource_size(ports));
898 	return retval;
899 }
900 
901 static void cmos_do_shutdown(int rtc_irq)
902 {
903 	spin_lock_irq(&rtc_lock);
904 	if (is_valid_irq(rtc_irq))
905 		cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
906 	spin_unlock_irq(&rtc_lock);
907 }
908 
909 static void cmos_do_remove(struct device *dev)
910 {
911 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
912 	struct resource *ports;
913 
914 	cmos_do_shutdown(cmos->irq);
915 
916 	if (is_valid_irq(cmos->irq)) {
917 		free_irq(cmos->irq, cmos->rtc);
918 		if (use_hpet_alarm())
919 			hpet_unregister_irq_handler(cmos_interrupt);
920 	}
921 
922 	cmos->rtc = NULL;
923 
924 	ports = cmos->iomem;
925 	if (RTC_IOMAPPED)
926 		release_region(ports->start, resource_size(ports));
927 	else
928 		release_mem_region(ports->start, resource_size(ports));
929 	cmos->iomem = NULL;
930 
931 	cmos->dev = NULL;
932 }
933 
934 static int cmos_aie_poweroff(struct device *dev)
935 {
936 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
937 	struct rtc_time now;
938 	time64_t t_now;
939 	int retval = 0;
940 	unsigned char rtc_control;
941 
942 	if (!cmos->alarm_expires)
943 		return -EINVAL;
944 
945 	spin_lock_irq(&rtc_lock);
946 	rtc_control = CMOS_READ(RTC_CONTROL);
947 	spin_unlock_irq(&rtc_lock);
948 
949 	/* We only care about the situation where AIE is disabled. */
950 	if (rtc_control & RTC_AIE)
951 		return -EBUSY;
952 
953 	cmos_read_time(dev, &now);
954 	t_now = rtc_tm_to_time64(&now);
955 
956 	/*
957 	 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
958 	 * automatically right after shutdown on some buggy boxes.
959 	 * This automatic rebooting issue won't happen when the alarm
960 	 * time is larger than now+1 seconds.
961 	 *
962 	 * If the alarm time is equal to now+1 seconds, the issue can be
963 	 * prevented by cancelling the alarm.
964 	 */
965 	if (cmos->alarm_expires == t_now + 1) {
966 		struct rtc_wkalrm alarm;
967 
968 		/* Cancel the AIE timer by configuring the past time. */
969 		rtc_time64_to_tm(t_now - 1, &alarm.time);
970 		alarm.enabled = 0;
971 		retval = cmos_set_alarm(dev, &alarm);
972 	} else if (cmos->alarm_expires > t_now + 1) {
973 		retval = -EBUSY;
974 	}
975 
976 	return retval;
977 }
978 
979 static int cmos_suspend(struct device *dev)
980 {
981 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
982 	unsigned char	tmp;
983 
984 	/* only the alarm might be a wakeup event source */
985 	spin_lock_irq(&rtc_lock);
986 	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
987 	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
988 		unsigned char	mask;
989 
990 		if (device_may_wakeup(dev))
991 			mask = RTC_IRQMASK & ~RTC_AIE;
992 		else
993 			mask = RTC_IRQMASK;
994 		tmp &= ~mask;
995 		CMOS_WRITE(tmp, RTC_CONTROL);
996 		if (use_hpet_alarm())
997 			hpet_mask_rtc_irq_bit(mask);
998 		cmos_checkintr(cmos, tmp);
999 	}
1000 	spin_unlock_irq(&rtc_lock);
1001 
1002 	if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
1003 		cmos->enabled_wake = 1;
1004 		if (cmos->wake_on)
1005 			cmos->wake_on(dev);
1006 		else
1007 			enable_irq_wake(cmos->irq);
1008 	}
1009 
1010 	memset(&cmos->saved_wkalrm, 0, sizeof(struct rtc_wkalrm));
1011 	cmos_read_alarm(dev, &cmos->saved_wkalrm);
1012 
1013 	dev_dbg(dev, "suspend%s, ctrl %02x\n",
1014 			(tmp & RTC_AIE) ? ", alarm may wake" : "",
1015 			tmp);
1016 
1017 	return 0;
1018 }
1019 
1020 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1021  * after a detour through G3 "mechanical off", although the ACPI spec
1022  * says wakeup should only work from G1/S4 "hibernate".  To most users,
1023  * distinctions between S4 and S5 are pointless.  So when the hardware
1024  * allows, don't draw that distinction.
1025  */
1026 static inline int cmos_poweroff(struct device *dev)
1027 {
1028 	if (!IS_ENABLED(CONFIG_PM))
1029 		return -ENOSYS;
1030 
1031 	return cmos_suspend(dev);
1032 }
1033 
1034 static void cmos_check_wkalrm(struct device *dev)
1035 {
1036 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
1037 	struct rtc_wkalrm current_alarm;
1038 	time64_t t_now;
1039 	time64_t t_current_expires;
1040 	time64_t t_saved_expires;
1041 	struct rtc_time now;
1042 
1043 	/* Check if we have RTC Alarm armed */
1044 	if (!(cmos->suspend_ctrl & RTC_AIE))
1045 		return;
1046 
1047 	cmos_read_time(dev, &now);
1048 	t_now = rtc_tm_to_time64(&now);
1049 
1050 	/*
1051 	 * ACPI RTC wake event is cleared after resume from STR,
1052 	 * ACK the rtc irq here
1053 	 */
1054 	if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
1055 		cmos_interrupt(0, (void *)cmos->rtc);
1056 		return;
1057 	}
1058 
1059 	memset(&current_alarm, 0, sizeof(struct rtc_wkalrm));
1060 	cmos_read_alarm(dev, &current_alarm);
1061 	t_current_expires = rtc_tm_to_time64(&current_alarm.time);
1062 	t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1063 	if (t_current_expires != t_saved_expires ||
1064 	    cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1065 		cmos_set_alarm(dev, &cmos->saved_wkalrm);
1066 	}
1067 }
1068 
1069 static void cmos_check_acpi_rtc_status(struct device *dev,
1070 				       unsigned char *rtc_control);
1071 
1072 static int __maybe_unused cmos_resume(struct device *dev)
1073 {
1074 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1075 	unsigned char tmp;
1076 
1077 	if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
1078 		if (cmos->wake_off)
1079 			cmos->wake_off(dev);
1080 		else
1081 			disable_irq_wake(cmos->irq);
1082 		cmos->enabled_wake = 0;
1083 	}
1084 
1085 	/* The BIOS might have changed the alarm, restore it */
1086 	cmos_check_wkalrm(dev);
1087 
1088 	spin_lock_irq(&rtc_lock);
1089 	tmp = cmos->suspend_ctrl;
1090 	cmos->suspend_ctrl = 0;
1091 	/* re-enable any irqs previously active */
1092 	if (tmp & RTC_IRQMASK) {
1093 		unsigned char	mask;
1094 
1095 		if (device_may_wakeup(dev) && use_hpet_alarm())
1096 			hpet_rtc_timer_init();
1097 
1098 		do {
1099 			CMOS_WRITE(tmp, RTC_CONTROL);
1100 			if (use_hpet_alarm())
1101 				hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1102 
1103 			mask = CMOS_READ(RTC_INTR_FLAGS);
1104 			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1105 			if (!use_hpet_alarm() || !is_intr(mask))
1106 				break;
1107 
1108 			/* force one-shot behavior if HPET blocked
1109 			 * the wake alarm's irq
1110 			 */
1111 			rtc_update_irq(cmos->rtc, 1, mask);
1112 			tmp &= ~RTC_AIE;
1113 			hpet_mask_rtc_irq_bit(RTC_AIE);
1114 		} while (mask & RTC_AIE);
1115 
1116 		if (tmp & RTC_AIE)
1117 			cmos_check_acpi_rtc_status(dev, &tmp);
1118 	}
1119 	spin_unlock_irq(&rtc_lock);
1120 
1121 	dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1122 
1123 	return 0;
1124 }
1125 
1126 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1127 
1128 /*----------------------------------------------------------------*/
1129 
1130 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1131  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1132  * probably list them in similar PNPBIOS tables; so PNP is more common.
1133  *
1134  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
1135  * predate even PNPBIOS should set up platform_bus devices.
1136  */
1137 
1138 #ifdef	CONFIG_ACPI
1139 
1140 #include <linux/acpi.h>
1141 
1142 static u32 rtc_handler(void *context)
1143 {
1144 	struct device *dev = context;
1145 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
1146 	unsigned char rtc_control = 0;
1147 	unsigned char rtc_intr;
1148 	unsigned long flags;
1149 
1150 
1151 	/*
1152 	 * Always update rtc irq when ACPI is used as RTC Alarm.
1153 	 * Or else, ACPI SCI is enabled during suspend/resume only,
1154 	 * update rtc irq in that case.
1155 	 */
1156 	if (cmos_use_acpi_alarm())
1157 		cmos_interrupt(0, (void *)cmos->rtc);
1158 	else {
1159 		/* Fix me: can we use cmos_interrupt() here as well? */
1160 		spin_lock_irqsave(&rtc_lock, flags);
1161 		if (cmos_rtc.suspend_ctrl)
1162 			rtc_control = CMOS_READ(RTC_CONTROL);
1163 		if (rtc_control & RTC_AIE) {
1164 			cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1165 			CMOS_WRITE(rtc_control, RTC_CONTROL);
1166 			rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1167 			rtc_update_irq(cmos->rtc, 1, rtc_intr);
1168 		}
1169 		spin_unlock_irqrestore(&rtc_lock, flags);
1170 	}
1171 
1172 	pm_wakeup_hard_event(dev);
1173 	acpi_clear_event(ACPI_EVENT_RTC);
1174 	acpi_disable_event(ACPI_EVENT_RTC, 0);
1175 	return ACPI_INTERRUPT_HANDLED;
1176 }
1177 
1178 static inline void rtc_wake_setup(struct device *dev)
1179 {
1180 	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1181 	/*
1182 	 * After the RTC handler is installed, the Fixed_RTC event should
1183 	 * be disabled. Only when the RTC alarm is set will it be enabled.
1184 	 */
1185 	acpi_clear_event(ACPI_EVENT_RTC);
1186 	acpi_disable_event(ACPI_EVENT_RTC, 0);
1187 }
1188 
1189 static void rtc_wake_on(struct device *dev)
1190 {
1191 	acpi_clear_event(ACPI_EVENT_RTC);
1192 	acpi_enable_event(ACPI_EVENT_RTC, 0);
1193 }
1194 
1195 static void rtc_wake_off(struct device *dev)
1196 {
1197 	acpi_disable_event(ACPI_EVENT_RTC, 0);
1198 }
1199 
1200 #ifdef CONFIG_X86
1201 /* Enable use_acpi_alarm mode for Intel platforms no earlier than 2015 */
1202 static void use_acpi_alarm_quirks(void)
1203 {
1204 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
1205 		return;
1206 
1207 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_LOW_POWER_S0))
1208 		return;
1209 
1210 	if (!is_hpet_enabled())
1211 		return;
1212 
1213 	if (dmi_get_bios_year() < 2015)
1214 		return;
1215 
1216 	use_acpi_alarm = true;
1217 }
1218 #else
1219 static inline void use_acpi_alarm_quirks(void) { }
1220 #endif
1221 
1222 /* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1223  * its device node and pass extra config data.  This helps its driver use
1224  * capabilities that the now-obsolete mc146818 didn't have, and informs it
1225  * that this board's RTC is wakeup-capable (per ACPI spec).
1226  */
1227 static struct cmos_rtc_board_info acpi_rtc_info;
1228 
1229 static void cmos_wake_setup(struct device *dev)
1230 {
1231 	if (acpi_disabled)
1232 		return;
1233 
1234 	use_acpi_alarm_quirks();
1235 
1236 	rtc_wake_setup(dev);
1237 	acpi_rtc_info.wake_on = rtc_wake_on;
1238 	acpi_rtc_info.wake_off = rtc_wake_off;
1239 
1240 	/* workaround bug in some ACPI tables */
1241 	if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1242 		dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1243 			acpi_gbl_FADT.month_alarm);
1244 		acpi_gbl_FADT.month_alarm = 0;
1245 	}
1246 
1247 	acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1248 	acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1249 	acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1250 
1251 	/* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1252 	if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1253 		dev_info(dev, "RTC can wake from S4\n");
1254 
1255 	dev->platform_data = &acpi_rtc_info;
1256 
1257 	/* RTC always wakes from S1/S2/S3, and often S4/STD */
1258 	device_init_wakeup(dev, 1);
1259 }
1260 
1261 static void cmos_check_acpi_rtc_status(struct device *dev,
1262 				       unsigned char *rtc_control)
1263 {
1264 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
1265 	acpi_event_status rtc_status;
1266 	acpi_status status;
1267 
1268 	if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1269 		return;
1270 
1271 	status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1272 	if (ACPI_FAILURE(status)) {
1273 		dev_err(dev, "Could not get RTC status\n");
1274 	} else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1275 		unsigned char mask;
1276 		*rtc_control &= ~RTC_AIE;
1277 		CMOS_WRITE(*rtc_control, RTC_CONTROL);
1278 		mask = CMOS_READ(RTC_INTR_FLAGS);
1279 		rtc_update_irq(cmos->rtc, 1, mask);
1280 	}
1281 }
1282 
1283 #else
1284 
1285 static void cmos_wake_setup(struct device *dev)
1286 {
1287 }
1288 
1289 static void cmos_check_acpi_rtc_status(struct device *dev,
1290 				       unsigned char *rtc_control)
1291 {
1292 }
1293 
1294 #endif
1295 
1296 #ifdef	CONFIG_PNP
1297 
1298 #include <linux/pnp.h>
1299 
1300 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1301 {
1302 	cmos_wake_setup(&pnp->dev);
1303 
1304 	if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1305 		unsigned int irq = 0;
1306 #ifdef CONFIG_X86
1307 		/* Some machines contain a PNP entry for the RTC, but
1308 		 * don't define the IRQ. It should always be safe to
1309 		 * hardcode it on systems with a legacy PIC.
1310 		 */
1311 		if (nr_legacy_irqs())
1312 			irq = RTC_IRQ;
1313 #endif
1314 		return cmos_do_probe(&pnp->dev,
1315 				pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1316 	} else {
1317 		return cmos_do_probe(&pnp->dev,
1318 				pnp_get_resource(pnp, IORESOURCE_IO, 0),
1319 				pnp_irq(pnp, 0));
1320 	}
1321 }
1322 
1323 static void cmos_pnp_remove(struct pnp_dev *pnp)
1324 {
1325 	cmos_do_remove(&pnp->dev);
1326 }
1327 
1328 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1329 {
1330 	struct device *dev = &pnp->dev;
1331 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1332 
1333 	if (system_state == SYSTEM_POWER_OFF) {
1334 		int retval = cmos_poweroff(dev);
1335 
1336 		if (cmos_aie_poweroff(dev) < 0 && !retval)
1337 			return;
1338 	}
1339 
1340 	cmos_do_shutdown(cmos->irq);
1341 }
1342 
1343 static const struct pnp_device_id rtc_ids[] = {
1344 	{ .id = "PNP0b00", },
1345 	{ .id = "PNP0b01", },
1346 	{ .id = "PNP0b02", },
1347 	{ },
1348 };
1349 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1350 
1351 static struct pnp_driver cmos_pnp_driver = {
1352 	.name		= driver_name,
1353 	.id_table	= rtc_ids,
1354 	.probe		= cmos_pnp_probe,
1355 	.remove		= cmos_pnp_remove,
1356 	.shutdown	= cmos_pnp_shutdown,
1357 
1358 	/* flag ensures resume() gets called, and stops syslog spam */
1359 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1360 	.driver		= {
1361 			.pm = &cmos_pm_ops,
1362 	},
1363 };
1364 
1365 #endif	/* CONFIG_PNP */
1366 
1367 #ifdef CONFIG_OF
1368 static const struct of_device_id of_cmos_match[] = {
1369 	{
1370 		.compatible = "motorola,mc146818",
1371 	},
1372 	{ },
1373 };
1374 MODULE_DEVICE_TABLE(of, of_cmos_match);
1375 
1376 static __init void cmos_of_init(struct platform_device *pdev)
1377 {
1378 	struct device_node *node = pdev->dev.of_node;
1379 	const __be32 *val;
1380 
1381 	if (!node)
1382 		return;
1383 
1384 	val = of_get_property(node, "ctrl-reg", NULL);
1385 	if (val)
1386 		CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1387 
1388 	val = of_get_property(node, "freq-reg", NULL);
1389 	if (val)
1390 		CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1391 }
1392 #else
1393 static inline void cmos_of_init(struct platform_device *pdev) {}
1394 #endif
1395 /*----------------------------------------------------------------*/
1396 
1397 /* Platform setup should have set up an RTC device, when PNP is
1398  * unavailable ... this could happen even on (older) PCs.
1399  */
1400 
1401 static int __init cmos_platform_probe(struct platform_device *pdev)
1402 {
1403 	struct resource *resource;
1404 	int irq;
1405 
1406 	cmos_of_init(pdev);
1407 	cmos_wake_setup(&pdev->dev);
1408 
1409 	if (RTC_IOMAPPED)
1410 		resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1411 	else
1412 		resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1413 	irq = platform_get_irq(pdev, 0);
1414 	if (irq < 0)
1415 		irq = -1;
1416 
1417 	return cmos_do_probe(&pdev->dev, resource, irq);
1418 }
1419 
1420 static int cmos_platform_remove(struct platform_device *pdev)
1421 {
1422 	cmos_do_remove(&pdev->dev);
1423 	return 0;
1424 }
1425 
1426 static void cmos_platform_shutdown(struct platform_device *pdev)
1427 {
1428 	struct device *dev = &pdev->dev;
1429 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1430 
1431 	if (system_state == SYSTEM_POWER_OFF) {
1432 		int retval = cmos_poweroff(dev);
1433 
1434 		if (cmos_aie_poweroff(dev) < 0 && !retval)
1435 			return;
1436 	}
1437 
1438 	cmos_do_shutdown(cmos->irq);
1439 }
1440 
1441 /* work with hotplug and coldplug */
1442 MODULE_ALIAS("platform:rtc_cmos");
1443 
1444 static struct platform_driver cmos_platform_driver = {
1445 	.remove		= cmos_platform_remove,
1446 	.shutdown	= cmos_platform_shutdown,
1447 	.driver = {
1448 		.name		= driver_name,
1449 		.pm		= &cmos_pm_ops,
1450 		.of_match_table = of_match_ptr(of_cmos_match),
1451 	}
1452 };
1453 
1454 #ifdef CONFIG_PNP
1455 static bool pnp_driver_registered;
1456 #endif
1457 static bool platform_driver_registered;
1458 
1459 static int __init cmos_init(void)
1460 {
1461 	int retval = 0;
1462 
1463 #ifdef	CONFIG_PNP
1464 	retval = pnp_register_driver(&cmos_pnp_driver);
1465 	if (retval == 0)
1466 		pnp_driver_registered = true;
1467 #endif
1468 
1469 	if (!cmos_rtc.dev) {
1470 		retval = platform_driver_probe(&cmos_platform_driver,
1471 					       cmos_platform_probe);
1472 		if (retval == 0)
1473 			platform_driver_registered = true;
1474 	}
1475 
1476 	if (retval == 0)
1477 		return 0;
1478 
1479 #ifdef	CONFIG_PNP
1480 	if (pnp_driver_registered)
1481 		pnp_unregister_driver(&cmos_pnp_driver);
1482 #endif
1483 	return retval;
1484 }
1485 module_init(cmos_init);
1486 
1487 static void __exit cmos_exit(void)
1488 {
1489 #ifdef	CONFIG_PNP
1490 	if (pnp_driver_registered)
1491 		pnp_unregister_driver(&cmos_pnp_driver);
1492 #endif
1493 	if (platform_driver_registered)
1494 		platform_driver_unregister(&cmos_platform_driver);
1495 }
1496 module_exit(cmos_exit);
1497 
1498 
1499 MODULE_AUTHOR("David Brownell");
1500 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1501 MODULE_LICENSE("GPL");
1502