xref: /openbmc/linux/drivers/rtc/rtc-at91rm9200.c (revision be709d48)
1 /*
2  *	Real Time Clock interface for Linux on Atmel AT91RM9200
3  *
4  *	Copyright (C) 2002 Rick Bronson
5  *
6  *	Converted to RTC class model by Andrew Victor
7  *
8  *	Ported to Linux 2.6 by Steven Scholz
9  *	Based on s3c2410-rtc.c Simtec Electronics
10  *
11  *	Based on sa1100-rtc.c by Nils Faerber
12  *	Based on rtc.c by Paul Gortmaker
13  *
14  *	This program is free software; you can redistribute it and/or
15  *	modify it under the terms of the GNU General Public License
16  *	as published by the Free Software Foundation; either version
17  *	2 of the License, or (at your option) any later version.
18  *
19  */
20 
21 #include <linux/bcd.h>
22 #include <linux/clk.h>
23 #include <linux/completion.h>
24 #include <linux/interrupt.h>
25 #include <linux/ioctl.h>
26 #include <linux/io.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/of_device.h>
30 #include <linux/of.h>
31 #include <linux/platform_device.h>
32 #include <linux/rtc.h>
33 #include <linux/spinlock.h>
34 #include <linux/suspend.h>
35 #include <linux/time.h>
36 #include <linux/uaccess.h>
37 
38 #include "rtc-at91rm9200.h"
39 
40 #define at91_rtc_read(field) \
41 	readl_relaxed(at91_rtc_regs + field)
42 #define at91_rtc_write(field, val) \
43 	writel_relaxed((val), at91_rtc_regs + field)
44 
45 struct at91_rtc_config {
46 	bool use_shadow_imr;
47 };
48 
49 static const struct at91_rtc_config *at91_rtc_config;
50 static DECLARE_COMPLETION(at91_rtc_updated);
51 static DECLARE_COMPLETION(at91_rtc_upd_rdy);
52 static void __iomem *at91_rtc_regs;
53 static int irq;
54 static DEFINE_SPINLOCK(at91_rtc_lock);
55 static u32 at91_rtc_shadow_imr;
56 static bool suspended;
57 static DEFINE_SPINLOCK(suspended_lock);
58 static unsigned long cached_events;
59 static u32 at91_rtc_imr;
60 static struct clk *sclk;
61 
62 static void at91_rtc_write_ier(u32 mask)
63 {
64 	unsigned long flags;
65 
66 	spin_lock_irqsave(&at91_rtc_lock, flags);
67 	at91_rtc_shadow_imr |= mask;
68 	at91_rtc_write(AT91_RTC_IER, mask);
69 	spin_unlock_irqrestore(&at91_rtc_lock, flags);
70 }
71 
72 static void at91_rtc_write_idr(u32 mask)
73 {
74 	unsigned long flags;
75 
76 	spin_lock_irqsave(&at91_rtc_lock, flags);
77 	at91_rtc_write(AT91_RTC_IDR, mask);
78 	/*
79 	 * Register read back (of any RTC-register) needed to make sure
80 	 * IDR-register write has reached the peripheral before updating
81 	 * shadow mask.
82 	 *
83 	 * Note that there is still a possibility that the mask is updated
84 	 * before interrupts have actually been disabled in hardware. The only
85 	 * way to be certain would be to poll the IMR-register, which is is
86 	 * the very register we are trying to emulate. The register read back
87 	 * is a reasonable heuristic.
88 	 */
89 	at91_rtc_read(AT91_RTC_SR);
90 	at91_rtc_shadow_imr &= ~mask;
91 	spin_unlock_irqrestore(&at91_rtc_lock, flags);
92 }
93 
94 static u32 at91_rtc_read_imr(void)
95 {
96 	unsigned long flags;
97 	u32 mask;
98 
99 	if (at91_rtc_config->use_shadow_imr) {
100 		spin_lock_irqsave(&at91_rtc_lock, flags);
101 		mask = at91_rtc_shadow_imr;
102 		spin_unlock_irqrestore(&at91_rtc_lock, flags);
103 	} else {
104 		mask = at91_rtc_read(AT91_RTC_IMR);
105 	}
106 
107 	return mask;
108 }
109 
110 /*
111  * Decode time/date into rtc_time structure
112  */
113 static void at91_rtc_decodetime(unsigned int timereg, unsigned int calreg,
114 				struct rtc_time *tm)
115 {
116 	unsigned int time, date;
117 
118 	/* must read twice in case it changes */
119 	do {
120 		time = at91_rtc_read(timereg);
121 		date = at91_rtc_read(calreg);
122 	} while ((time != at91_rtc_read(timereg)) ||
123 			(date != at91_rtc_read(calreg)));
124 
125 	tm->tm_sec  = bcd2bin((time & AT91_RTC_SEC) >> 0);
126 	tm->tm_min  = bcd2bin((time & AT91_RTC_MIN) >> 8);
127 	tm->tm_hour = bcd2bin((time & AT91_RTC_HOUR) >> 16);
128 
129 	/*
130 	 * The Calendar Alarm register does not have a field for
131 	 * the year - so these will return an invalid value.
132 	 */
133 	tm->tm_year  = bcd2bin(date & AT91_RTC_CENT) * 100;	/* century */
134 	tm->tm_year += bcd2bin((date & AT91_RTC_YEAR) >> 8);	/* year */
135 
136 	tm->tm_wday = bcd2bin((date & AT91_RTC_DAY) >> 21) - 1;	/* day of the week [0-6], Sunday=0 */
137 	tm->tm_mon  = bcd2bin((date & AT91_RTC_MONTH) >> 16) - 1;
138 	tm->tm_mday = bcd2bin((date & AT91_RTC_DATE) >> 24);
139 }
140 
141 /*
142  * Read current time and date in RTC
143  */
144 static int at91_rtc_readtime(struct device *dev, struct rtc_time *tm)
145 {
146 	at91_rtc_decodetime(AT91_RTC_TIMR, AT91_RTC_CALR, tm);
147 	tm->tm_yday = rtc_year_days(tm->tm_mday, tm->tm_mon, tm->tm_year);
148 	tm->tm_year = tm->tm_year - 1900;
149 
150 	dev_dbg(dev, "%s(): %ptR\n", __func__, tm);
151 
152 	return 0;
153 }
154 
155 /*
156  * Set current time and date in RTC
157  */
158 static int at91_rtc_settime(struct device *dev, struct rtc_time *tm)
159 {
160 	unsigned long cr;
161 
162 	dev_dbg(dev, "%s(): %ptR\n", __func__, tm);
163 
164 	wait_for_completion(&at91_rtc_upd_rdy);
165 
166 	/* Stop Time/Calendar from counting */
167 	cr = at91_rtc_read(AT91_RTC_CR);
168 	at91_rtc_write(AT91_RTC_CR, cr | AT91_RTC_UPDCAL | AT91_RTC_UPDTIM);
169 
170 	at91_rtc_write_ier(AT91_RTC_ACKUPD);
171 	wait_for_completion(&at91_rtc_updated);	/* wait for ACKUPD interrupt */
172 	at91_rtc_write_idr(AT91_RTC_ACKUPD);
173 
174 	at91_rtc_write(AT91_RTC_TIMR,
175 			  bin2bcd(tm->tm_sec) << 0
176 			| bin2bcd(tm->tm_min) << 8
177 			| bin2bcd(tm->tm_hour) << 16);
178 
179 	at91_rtc_write(AT91_RTC_CALR,
180 			  bin2bcd((tm->tm_year + 1900) / 100)	/* century */
181 			| bin2bcd(tm->tm_year % 100) << 8	/* year */
182 			| bin2bcd(tm->tm_mon + 1) << 16		/* tm_mon starts at zero */
183 			| bin2bcd(tm->tm_wday + 1) << 21	/* day of the week [0-6], Sunday=0 */
184 			| bin2bcd(tm->tm_mday) << 24);
185 
186 	/* Restart Time/Calendar */
187 	cr = at91_rtc_read(AT91_RTC_CR);
188 	at91_rtc_write(AT91_RTC_SCCR, AT91_RTC_SECEV);
189 	at91_rtc_write(AT91_RTC_CR, cr & ~(AT91_RTC_UPDCAL | AT91_RTC_UPDTIM));
190 	at91_rtc_write_ier(AT91_RTC_SECEV);
191 
192 	return 0;
193 }
194 
195 /*
196  * Read alarm time and date in RTC
197  */
198 static int at91_rtc_readalarm(struct device *dev, struct rtc_wkalrm *alrm)
199 {
200 	struct rtc_time *tm = &alrm->time;
201 
202 	at91_rtc_decodetime(AT91_RTC_TIMALR, AT91_RTC_CALALR, tm);
203 	tm->tm_year = -1;
204 
205 	alrm->enabled = (at91_rtc_read_imr() & AT91_RTC_ALARM)
206 			? 1 : 0;
207 
208 	dev_dbg(dev, "%s(): %ptR %sabled\n", __func__, tm,
209 		alrm->enabled ? "en" : "dis");
210 
211 	return 0;
212 }
213 
214 /*
215  * Set alarm time and date in RTC
216  */
217 static int at91_rtc_setalarm(struct device *dev, struct rtc_wkalrm *alrm)
218 {
219 	struct rtc_time tm;
220 
221 	at91_rtc_decodetime(AT91_RTC_TIMR, AT91_RTC_CALR, &tm);
222 
223 	tm.tm_mon = alrm->time.tm_mon;
224 	tm.tm_mday = alrm->time.tm_mday;
225 	tm.tm_hour = alrm->time.tm_hour;
226 	tm.tm_min = alrm->time.tm_min;
227 	tm.tm_sec = alrm->time.tm_sec;
228 
229 	at91_rtc_write_idr(AT91_RTC_ALARM);
230 	at91_rtc_write(AT91_RTC_TIMALR,
231 		  bin2bcd(tm.tm_sec) << 0
232 		| bin2bcd(tm.tm_min) << 8
233 		| bin2bcd(tm.tm_hour) << 16
234 		| AT91_RTC_HOUREN | AT91_RTC_MINEN | AT91_RTC_SECEN);
235 	at91_rtc_write(AT91_RTC_CALALR,
236 		  bin2bcd(tm.tm_mon + 1) << 16		/* tm_mon starts at zero */
237 		| bin2bcd(tm.tm_mday) << 24
238 		| AT91_RTC_DATEEN | AT91_RTC_MTHEN);
239 
240 	if (alrm->enabled) {
241 		at91_rtc_write(AT91_RTC_SCCR, AT91_RTC_ALARM);
242 		at91_rtc_write_ier(AT91_RTC_ALARM);
243 	}
244 
245 	dev_dbg(dev, "%s(): %ptR\n", __func__, &tm);
246 
247 	return 0;
248 }
249 
250 static int at91_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
251 {
252 	dev_dbg(dev, "%s(): cmd=%08x\n", __func__, enabled);
253 
254 	if (enabled) {
255 		at91_rtc_write(AT91_RTC_SCCR, AT91_RTC_ALARM);
256 		at91_rtc_write_ier(AT91_RTC_ALARM);
257 	} else
258 		at91_rtc_write_idr(AT91_RTC_ALARM);
259 
260 	return 0;
261 }
262 /*
263  * Provide additional RTC information in /proc/driver/rtc
264  */
265 static int at91_rtc_proc(struct device *dev, struct seq_file *seq)
266 {
267 	unsigned long imr = at91_rtc_read_imr();
268 
269 	seq_printf(seq, "update_IRQ\t: %s\n",
270 			(imr & AT91_RTC_ACKUPD) ? "yes" : "no");
271 	seq_printf(seq, "periodic_IRQ\t: %s\n",
272 			(imr & AT91_RTC_SECEV) ? "yes" : "no");
273 
274 	return 0;
275 }
276 
277 /*
278  * IRQ handler for the RTC
279  */
280 static irqreturn_t at91_rtc_interrupt(int irq, void *dev_id)
281 {
282 	struct platform_device *pdev = dev_id;
283 	struct rtc_device *rtc = platform_get_drvdata(pdev);
284 	unsigned int rtsr;
285 	unsigned long events = 0;
286 	int ret = IRQ_NONE;
287 
288 	spin_lock(&suspended_lock);
289 	rtsr = at91_rtc_read(AT91_RTC_SR) & at91_rtc_read_imr();
290 	if (rtsr) {		/* this interrupt is shared!  Is it ours? */
291 		if (rtsr & AT91_RTC_ALARM)
292 			events |= (RTC_AF | RTC_IRQF);
293 		if (rtsr & AT91_RTC_SECEV) {
294 			complete(&at91_rtc_upd_rdy);
295 			at91_rtc_write_idr(AT91_RTC_SECEV);
296 		}
297 		if (rtsr & AT91_RTC_ACKUPD)
298 			complete(&at91_rtc_updated);
299 
300 		at91_rtc_write(AT91_RTC_SCCR, rtsr);	/* clear status reg */
301 
302 		if (!suspended) {
303 			rtc_update_irq(rtc, 1, events);
304 
305 			dev_dbg(&pdev->dev, "%s(): num=%ld, events=0x%02lx\n",
306 				__func__, events >> 8, events & 0x000000FF);
307 		} else {
308 			cached_events |= events;
309 			at91_rtc_write_idr(at91_rtc_imr);
310 			pm_system_wakeup();
311 		}
312 
313 		ret = IRQ_HANDLED;
314 	}
315 	spin_unlock(&suspended_lock);
316 
317 	return ret;
318 }
319 
320 static const struct at91_rtc_config at91rm9200_config = {
321 };
322 
323 static const struct at91_rtc_config at91sam9x5_config = {
324 	.use_shadow_imr	= true,
325 };
326 
327 #ifdef CONFIG_OF
328 static const struct of_device_id at91_rtc_dt_ids[] = {
329 	{
330 		.compatible = "atmel,at91rm9200-rtc",
331 		.data = &at91rm9200_config,
332 	}, {
333 		.compatible = "atmel,at91sam9x5-rtc",
334 		.data = &at91sam9x5_config,
335 	}, {
336 		/* sentinel */
337 	}
338 };
339 MODULE_DEVICE_TABLE(of, at91_rtc_dt_ids);
340 #endif
341 
342 static const struct at91_rtc_config *
343 at91_rtc_get_config(struct platform_device *pdev)
344 {
345 	const struct of_device_id *match;
346 
347 	if (pdev->dev.of_node) {
348 		match = of_match_node(at91_rtc_dt_ids, pdev->dev.of_node);
349 		if (!match)
350 			return NULL;
351 		return (const struct at91_rtc_config *)match->data;
352 	}
353 
354 	return &at91rm9200_config;
355 }
356 
357 static const struct rtc_class_ops at91_rtc_ops = {
358 	.read_time	= at91_rtc_readtime,
359 	.set_time	= at91_rtc_settime,
360 	.read_alarm	= at91_rtc_readalarm,
361 	.set_alarm	= at91_rtc_setalarm,
362 	.proc		= at91_rtc_proc,
363 	.alarm_irq_enable = at91_rtc_alarm_irq_enable,
364 };
365 
366 /*
367  * Initialize and install RTC driver
368  */
369 static int __init at91_rtc_probe(struct platform_device *pdev)
370 {
371 	struct rtc_device *rtc;
372 	struct resource *regs;
373 	int ret = 0;
374 
375 	at91_rtc_config = at91_rtc_get_config(pdev);
376 	if (!at91_rtc_config)
377 		return -ENODEV;
378 
379 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
380 	if (!regs) {
381 		dev_err(&pdev->dev, "no mmio resource defined\n");
382 		return -ENXIO;
383 	}
384 
385 	irq = platform_get_irq(pdev, 0);
386 	if (irq < 0) {
387 		dev_err(&pdev->dev, "no irq resource defined\n");
388 		return -ENXIO;
389 	}
390 
391 	at91_rtc_regs = devm_ioremap(&pdev->dev, regs->start,
392 				     resource_size(regs));
393 	if (!at91_rtc_regs) {
394 		dev_err(&pdev->dev, "failed to map registers, aborting.\n");
395 		return -ENOMEM;
396 	}
397 
398 	rtc = devm_rtc_allocate_device(&pdev->dev);
399 	if (IS_ERR(rtc))
400 		return PTR_ERR(rtc);
401 	platform_set_drvdata(pdev, rtc);
402 
403 	sclk = devm_clk_get(&pdev->dev, NULL);
404 	if (IS_ERR(sclk))
405 		return PTR_ERR(sclk);
406 
407 	ret = clk_prepare_enable(sclk);
408 	if (ret) {
409 		dev_err(&pdev->dev, "Could not enable slow clock\n");
410 		return ret;
411 	}
412 
413 	at91_rtc_write(AT91_RTC_CR, 0);
414 	at91_rtc_write(AT91_RTC_MR, 0);		/* 24 hour mode */
415 
416 	/* Disable all interrupts */
417 	at91_rtc_write_idr(AT91_RTC_ACKUPD | AT91_RTC_ALARM |
418 					AT91_RTC_SECEV | AT91_RTC_TIMEV |
419 					AT91_RTC_CALEV);
420 
421 	ret = devm_request_irq(&pdev->dev, irq, at91_rtc_interrupt,
422 			       IRQF_SHARED | IRQF_COND_SUSPEND,
423 			       "at91_rtc", pdev);
424 	if (ret) {
425 		dev_err(&pdev->dev, "IRQ %d already in use.\n", irq);
426 		goto err_clk;
427 	}
428 
429 	/* cpu init code should really have flagged this device as
430 	 * being wake-capable; if it didn't, do that here.
431 	 */
432 	if (!device_can_wakeup(&pdev->dev))
433 		device_init_wakeup(&pdev->dev, 1);
434 
435 	rtc->ops = &at91_rtc_ops;
436 	rtc->range_min = RTC_TIMESTAMP_BEGIN_1900;
437 	rtc->range_max = RTC_TIMESTAMP_END_2099;
438 	ret = rtc_register_device(rtc);
439 	if (ret)
440 		goto err_clk;
441 
442 	/* enable SECEV interrupt in order to initialize at91_rtc_upd_rdy
443 	 * completion.
444 	 */
445 	at91_rtc_write_ier(AT91_RTC_SECEV);
446 
447 	dev_info(&pdev->dev, "AT91 Real Time Clock driver.\n");
448 	return 0;
449 
450 err_clk:
451 	clk_disable_unprepare(sclk);
452 
453 	return ret;
454 }
455 
456 /*
457  * Disable and remove the RTC driver
458  */
459 static int __exit at91_rtc_remove(struct platform_device *pdev)
460 {
461 	/* Disable all interrupts */
462 	at91_rtc_write_idr(AT91_RTC_ACKUPD | AT91_RTC_ALARM |
463 					AT91_RTC_SECEV | AT91_RTC_TIMEV |
464 					AT91_RTC_CALEV);
465 
466 	clk_disable_unprepare(sclk);
467 
468 	return 0;
469 }
470 
471 static void at91_rtc_shutdown(struct platform_device *pdev)
472 {
473 	/* Disable all interrupts */
474 	at91_rtc_write(AT91_RTC_IDR, AT91_RTC_ACKUPD | AT91_RTC_ALARM |
475 					AT91_RTC_SECEV | AT91_RTC_TIMEV |
476 					AT91_RTC_CALEV);
477 }
478 
479 #ifdef CONFIG_PM_SLEEP
480 
481 /* AT91RM9200 RTC Power management control */
482 
483 static int at91_rtc_suspend(struct device *dev)
484 {
485 	/* this IRQ is shared with DBGU and other hardware which isn't
486 	 * necessarily doing PM like we are...
487 	 */
488 	at91_rtc_write(AT91_RTC_SCCR, AT91_RTC_ALARM);
489 
490 	at91_rtc_imr = at91_rtc_read_imr()
491 			& (AT91_RTC_ALARM|AT91_RTC_SECEV);
492 	if (at91_rtc_imr) {
493 		if (device_may_wakeup(dev)) {
494 			unsigned long flags;
495 
496 			enable_irq_wake(irq);
497 
498 			spin_lock_irqsave(&suspended_lock, flags);
499 			suspended = true;
500 			spin_unlock_irqrestore(&suspended_lock, flags);
501 		} else {
502 			at91_rtc_write_idr(at91_rtc_imr);
503 		}
504 	}
505 	return 0;
506 }
507 
508 static int at91_rtc_resume(struct device *dev)
509 {
510 	struct rtc_device *rtc = dev_get_drvdata(dev);
511 
512 	if (at91_rtc_imr) {
513 		if (device_may_wakeup(dev)) {
514 			unsigned long flags;
515 
516 			spin_lock_irqsave(&suspended_lock, flags);
517 
518 			if (cached_events) {
519 				rtc_update_irq(rtc, 1, cached_events);
520 				cached_events = 0;
521 			}
522 
523 			suspended = false;
524 			spin_unlock_irqrestore(&suspended_lock, flags);
525 
526 			disable_irq_wake(irq);
527 		}
528 		at91_rtc_write_ier(at91_rtc_imr);
529 	}
530 	return 0;
531 }
532 #endif
533 
534 static SIMPLE_DEV_PM_OPS(at91_rtc_pm_ops, at91_rtc_suspend, at91_rtc_resume);
535 
536 static struct platform_driver at91_rtc_driver = {
537 	.remove		= __exit_p(at91_rtc_remove),
538 	.shutdown	= at91_rtc_shutdown,
539 	.driver		= {
540 		.name	= "at91_rtc",
541 		.pm	= &at91_rtc_pm_ops,
542 		.of_match_table = of_match_ptr(at91_rtc_dt_ids),
543 	},
544 };
545 
546 module_platform_driver_probe(at91_rtc_driver, at91_rtc_probe);
547 
548 MODULE_AUTHOR("Rick Bronson");
549 MODULE_DESCRIPTION("RTC driver for Atmel AT91RM9200");
550 MODULE_LICENSE("GPL");
551 MODULE_ALIAS("platform:at91_rtc");
552