xref: /openbmc/linux/drivers/rtc/rtc-at91rm9200.c (revision 96de2506)
1 /*
2  *	Real Time Clock interface for Linux on Atmel AT91RM9200
3  *
4  *	Copyright (C) 2002 Rick Bronson
5  *
6  *	Converted to RTC class model by Andrew Victor
7  *
8  *	Ported to Linux 2.6 by Steven Scholz
9  *	Based on s3c2410-rtc.c Simtec Electronics
10  *
11  *	Based on sa1100-rtc.c by Nils Faerber
12  *	Based on rtc.c by Paul Gortmaker
13  *
14  *	This program is free software; you can redistribute it and/or
15  *	modify it under the terms of the GNU General Public License
16  *	as published by the Free Software Foundation; either version
17  *	2 of the License, or (at your option) any later version.
18  *
19  */
20 
21 #include <linux/bcd.h>
22 #include <linux/clk.h>
23 #include <linux/completion.h>
24 #include <linux/interrupt.h>
25 #include <linux/ioctl.h>
26 #include <linux/io.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/of_device.h>
30 #include <linux/of.h>
31 #include <linux/platform_device.h>
32 #include <linux/rtc.h>
33 #include <linux/spinlock.h>
34 #include <linux/suspend.h>
35 #include <linux/time.h>
36 #include <linux/uaccess.h>
37 
38 #include "rtc-at91rm9200.h"
39 
40 #define at91_rtc_read(field) \
41 	readl_relaxed(at91_rtc_regs + field)
42 #define at91_rtc_write(field, val) \
43 	writel_relaxed((val), at91_rtc_regs + field)
44 
45 struct at91_rtc_config {
46 	bool use_shadow_imr;
47 };
48 
49 static const struct at91_rtc_config *at91_rtc_config;
50 static DECLARE_COMPLETION(at91_rtc_updated);
51 static DECLARE_COMPLETION(at91_rtc_upd_rdy);
52 static void __iomem *at91_rtc_regs;
53 static int irq;
54 static DEFINE_SPINLOCK(at91_rtc_lock);
55 static u32 at91_rtc_shadow_imr;
56 static bool suspended;
57 static DEFINE_SPINLOCK(suspended_lock);
58 static unsigned long cached_events;
59 static u32 at91_rtc_imr;
60 static struct clk *sclk;
61 
62 static void at91_rtc_write_ier(u32 mask)
63 {
64 	unsigned long flags;
65 
66 	spin_lock_irqsave(&at91_rtc_lock, flags);
67 	at91_rtc_shadow_imr |= mask;
68 	at91_rtc_write(AT91_RTC_IER, mask);
69 	spin_unlock_irqrestore(&at91_rtc_lock, flags);
70 }
71 
72 static void at91_rtc_write_idr(u32 mask)
73 {
74 	unsigned long flags;
75 
76 	spin_lock_irqsave(&at91_rtc_lock, flags);
77 	at91_rtc_write(AT91_RTC_IDR, mask);
78 	/*
79 	 * Register read back (of any RTC-register) needed to make sure
80 	 * IDR-register write has reached the peripheral before updating
81 	 * shadow mask.
82 	 *
83 	 * Note that there is still a possibility that the mask is updated
84 	 * before interrupts have actually been disabled in hardware. The only
85 	 * way to be certain would be to poll the IMR-register, which is is
86 	 * the very register we are trying to emulate. The register read back
87 	 * is a reasonable heuristic.
88 	 */
89 	at91_rtc_read(AT91_RTC_SR);
90 	at91_rtc_shadow_imr &= ~mask;
91 	spin_unlock_irqrestore(&at91_rtc_lock, flags);
92 }
93 
94 static u32 at91_rtc_read_imr(void)
95 {
96 	unsigned long flags;
97 	u32 mask;
98 
99 	if (at91_rtc_config->use_shadow_imr) {
100 		spin_lock_irqsave(&at91_rtc_lock, flags);
101 		mask = at91_rtc_shadow_imr;
102 		spin_unlock_irqrestore(&at91_rtc_lock, flags);
103 	} else {
104 		mask = at91_rtc_read(AT91_RTC_IMR);
105 	}
106 
107 	return mask;
108 }
109 
110 /*
111  * Decode time/date into rtc_time structure
112  */
113 static void at91_rtc_decodetime(unsigned int timereg, unsigned int calreg,
114 				struct rtc_time *tm)
115 {
116 	unsigned int time, date;
117 
118 	/* must read twice in case it changes */
119 	do {
120 		time = at91_rtc_read(timereg);
121 		date = at91_rtc_read(calreg);
122 	} while ((time != at91_rtc_read(timereg)) ||
123 			(date != at91_rtc_read(calreg)));
124 
125 	tm->tm_sec  = bcd2bin((time & AT91_RTC_SEC) >> 0);
126 	tm->tm_min  = bcd2bin((time & AT91_RTC_MIN) >> 8);
127 	tm->tm_hour = bcd2bin((time & AT91_RTC_HOUR) >> 16);
128 
129 	/*
130 	 * The Calendar Alarm register does not have a field for
131 	 * the year - so these will return an invalid value.
132 	 */
133 	tm->tm_year  = bcd2bin(date & AT91_RTC_CENT) * 100;	/* century */
134 	tm->tm_year += bcd2bin((date & AT91_RTC_YEAR) >> 8);	/* year */
135 
136 	tm->tm_wday = bcd2bin((date & AT91_RTC_DAY) >> 21) - 1;	/* day of the week [0-6], Sunday=0 */
137 	tm->tm_mon  = bcd2bin((date & AT91_RTC_MONTH) >> 16) - 1;
138 	tm->tm_mday = bcd2bin((date & AT91_RTC_DATE) >> 24);
139 }
140 
141 /*
142  * Read current time and date in RTC
143  */
144 static int at91_rtc_readtime(struct device *dev, struct rtc_time *tm)
145 {
146 	at91_rtc_decodetime(AT91_RTC_TIMR, AT91_RTC_CALR, tm);
147 	tm->tm_yday = rtc_year_days(tm->tm_mday, tm->tm_mon, tm->tm_year);
148 	tm->tm_year = tm->tm_year - 1900;
149 
150 	dev_dbg(dev, "%s(): %4d-%02d-%02d %02d:%02d:%02d\n", __func__,
151 		1900 + tm->tm_year, tm->tm_mon, tm->tm_mday,
152 		tm->tm_hour, tm->tm_min, tm->tm_sec);
153 
154 	return 0;
155 }
156 
157 /*
158  * Set current time and date in RTC
159  */
160 static int at91_rtc_settime(struct device *dev, struct rtc_time *tm)
161 {
162 	unsigned long cr;
163 
164 	dev_dbg(dev, "%s(): %4d-%02d-%02d %02d:%02d:%02d\n", __func__,
165 		1900 + tm->tm_year, tm->tm_mon, tm->tm_mday,
166 		tm->tm_hour, tm->tm_min, tm->tm_sec);
167 
168 	wait_for_completion(&at91_rtc_upd_rdy);
169 
170 	/* Stop Time/Calendar from counting */
171 	cr = at91_rtc_read(AT91_RTC_CR);
172 	at91_rtc_write(AT91_RTC_CR, cr | AT91_RTC_UPDCAL | AT91_RTC_UPDTIM);
173 
174 	at91_rtc_write_ier(AT91_RTC_ACKUPD);
175 	wait_for_completion(&at91_rtc_updated);	/* wait for ACKUPD interrupt */
176 	at91_rtc_write_idr(AT91_RTC_ACKUPD);
177 
178 	at91_rtc_write(AT91_RTC_TIMR,
179 			  bin2bcd(tm->tm_sec) << 0
180 			| bin2bcd(tm->tm_min) << 8
181 			| bin2bcd(tm->tm_hour) << 16);
182 
183 	at91_rtc_write(AT91_RTC_CALR,
184 			  bin2bcd((tm->tm_year + 1900) / 100)	/* century */
185 			| bin2bcd(tm->tm_year % 100) << 8	/* year */
186 			| bin2bcd(tm->tm_mon + 1) << 16		/* tm_mon starts at zero */
187 			| bin2bcd(tm->tm_wday + 1) << 21	/* day of the week [0-6], Sunday=0 */
188 			| bin2bcd(tm->tm_mday) << 24);
189 
190 	/* Restart Time/Calendar */
191 	cr = at91_rtc_read(AT91_RTC_CR);
192 	at91_rtc_write(AT91_RTC_SCCR, AT91_RTC_SECEV);
193 	at91_rtc_write(AT91_RTC_CR, cr & ~(AT91_RTC_UPDCAL | AT91_RTC_UPDTIM));
194 	at91_rtc_write_ier(AT91_RTC_SECEV);
195 
196 	return 0;
197 }
198 
199 /*
200  * Read alarm time and date in RTC
201  */
202 static int at91_rtc_readalarm(struct device *dev, struct rtc_wkalrm *alrm)
203 {
204 	struct rtc_time *tm = &alrm->time;
205 
206 	at91_rtc_decodetime(AT91_RTC_TIMALR, AT91_RTC_CALALR, tm);
207 	tm->tm_year = -1;
208 
209 	alrm->enabled = (at91_rtc_read_imr() & AT91_RTC_ALARM)
210 			? 1 : 0;
211 
212 	dev_dbg(dev, "%s(): %02d-%02d %02d:%02d:%02d %sabled\n", __func__,
213 		tm->tm_mon, tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec,
214 		alrm->enabled ? "en" : "dis");
215 
216 	return 0;
217 }
218 
219 /*
220  * Set alarm time and date in RTC
221  */
222 static int at91_rtc_setalarm(struct device *dev, struct rtc_wkalrm *alrm)
223 {
224 	struct rtc_time tm;
225 
226 	at91_rtc_decodetime(AT91_RTC_TIMR, AT91_RTC_CALR, &tm);
227 
228 	tm.tm_mon = alrm->time.tm_mon;
229 	tm.tm_mday = alrm->time.tm_mday;
230 	tm.tm_hour = alrm->time.tm_hour;
231 	tm.tm_min = alrm->time.tm_min;
232 	tm.tm_sec = alrm->time.tm_sec;
233 
234 	at91_rtc_write_idr(AT91_RTC_ALARM);
235 	at91_rtc_write(AT91_RTC_TIMALR,
236 		  bin2bcd(tm.tm_sec) << 0
237 		| bin2bcd(tm.tm_min) << 8
238 		| bin2bcd(tm.tm_hour) << 16
239 		| AT91_RTC_HOUREN | AT91_RTC_MINEN | AT91_RTC_SECEN);
240 	at91_rtc_write(AT91_RTC_CALALR,
241 		  bin2bcd(tm.tm_mon + 1) << 16		/* tm_mon starts at zero */
242 		| bin2bcd(tm.tm_mday) << 24
243 		| AT91_RTC_DATEEN | AT91_RTC_MTHEN);
244 
245 	if (alrm->enabled) {
246 		at91_rtc_write(AT91_RTC_SCCR, AT91_RTC_ALARM);
247 		at91_rtc_write_ier(AT91_RTC_ALARM);
248 	}
249 
250 	dev_dbg(dev, "%s(): %4d-%02d-%02d %02d:%02d:%02d\n", __func__,
251 		tm.tm_year, tm.tm_mon, tm.tm_mday, tm.tm_hour,
252 		tm.tm_min, tm.tm_sec);
253 
254 	return 0;
255 }
256 
257 static int at91_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
258 {
259 	dev_dbg(dev, "%s(): cmd=%08x\n", __func__, enabled);
260 
261 	if (enabled) {
262 		at91_rtc_write(AT91_RTC_SCCR, AT91_RTC_ALARM);
263 		at91_rtc_write_ier(AT91_RTC_ALARM);
264 	} else
265 		at91_rtc_write_idr(AT91_RTC_ALARM);
266 
267 	return 0;
268 }
269 /*
270  * Provide additional RTC information in /proc/driver/rtc
271  */
272 static int at91_rtc_proc(struct device *dev, struct seq_file *seq)
273 {
274 	unsigned long imr = at91_rtc_read_imr();
275 
276 	seq_printf(seq, "update_IRQ\t: %s\n",
277 			(imr & AT91_RTC_ACKUPD) ? "yes" : "no");
278 	seq_printf(seq, "periodic_IRQ\t: %s\n",
279 			(imr & AT91_RTC_SECEV) ? "yes" : "no");
280 
281 	return 0;
282 }
283 
284 /*
285  * IRQ handler for the RTC
286  */
287 static irqreturn_t at91_rtc_interrupt(int irq, void *dev_id)
288 {
289 	struct platform_device *pdev = dev_id;
290 	struct rtc_device *rtc = platform_get_drvdata(pdev);
291 	unsigned int rtsr;
292 	unsigned long events = 0;
293 	int ret = IRQ_NONE;
294 
295 	spin_lock(&suspended_lock);
296 	rtsr = at91_rtc_read(AT91_RTC_SR) & at91_rtc_read_imr();
297 	if (rtsr) {		/* this interrupt is shared!  Is it ours? */
298 		if (rtsr & AT91_RTC_ALARM)
299 			events |= (RTC_AF | RTC_IRQF);
300 		if (rtsr & AT91_RTC_SECEV) {
301 			complete(&at91_rtc_upd_rdy);
302 			at91_rtc_write_idr(AT91_RTC_SECEV);
303 		}
304 		if (rtsr & AT91_RTC_ACKUPD)
305 			complete(&at91_rtc_updated);
306 
307 		at91_rtc_write(AT91_RTC_SCCR, rtsr);	/* clear status reg */
308 
309 		if (!suspended) {
310 			rtc_update_irq(rtc, 1, events);
311 
312 			dev_dbg(&pdev->dev, "%s(): num=%ld, events=0x%02lx\n",
313 				__func__, events >> 8, events & 0x000000FF);
314 		} else {
315 			cached_events |= events;
316 			at91_rtc_write_idr(at91_rtc_imr);
317 			pm_system_wakeup();
318 		}
319 
320 		ret = IRQ_HANDLED;
321 	}
322 	spin_unlock(&suspended_lock);
323 
324 	return ret;
325 }
326 
327 static const struct at91_rtc_config at91rm9200_config = {
328 };
329 
330 static const struct at91_rtc_config at91sam9x5_config = {
331 	.use_shadow_imr	= true,
332 };
333 
334 #ifdef CONFIG_OF
335 static const struct of_device_id at91_rtc_dt_ids[] = {
336 	{
337 		.compatible = "atmel,at91rm9200-rtc",
338 		.data = &at91rm9200_config,
339 	}, {
340 		.compatible = "atmel,at91sam9x5-rtc",
341 		.data = &at91sam9x5_config,
342 	}, {
343 		/* sentinel */
344 	}
345 };
346 MODULE_DEVICE_TABLE(of, at91_rtc_dt_ids);
347 #endif
348 
349 static const struct at91_rtc_config *
350 at91_rtc_get_config(struct platform_device *pdev)
351 {
352 	const struct of_device_id *match;
353 
354 	if (pdev->dev.of_node) {
355 		match = of_match_node(at91_rtc_dt_ids, pdev->dev.of_node);
356 		if (!match)
357 			return NULL;
358 		return (const struct at91_rtc_config *)match->data;
359 	}
360 
361 	return &at91rm9200_config;
362 }
363 
364 static const struct rtc_class_ops at91_rtc_ops = {
365 	.read_time	= at91_rtc_readtime,
366 	.set_time	= at91_rtc_settime,
367 	.read_alarm	= at91_rtc_readalarm,
368 	.set_alarm	= at91_rtc_setalarm,
369 	.proc		= at91_rtc_proc,
370 	.alarm_irq_enable = at91_rtc_alarm_irq_enable,
371 };
372 
373 /*
374  * Initialize and install RTC driver
375  */
376 static int __init at91_rtc_probe(struct platform_device *pdev)
377 {
378 	struct rtc_device *rtc;
379 	struct resource *regs;
380 	int ret = 0;
381 
382 	at91_rtc_config = at91_rtc_get_config(pdev);
383 	if (!at91_rtc_config)
384 		return -ENODEV;
385 
386 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
387 	if (!regs) {
388 		dev_err(&pdev->dev, "no mmio resource defined\n");
389 		return -ENXIO;
390 	}
391 
392 	irq = platform_get_irq(pdev, 0);
393 	if (irq < 0) {
394 		dev_err(&pdev->dev, "no irq resource defined\n");
395 		return -ENXIO;
396 	}
397 
398 	at91_rtc_regs = devm_ioremap(&pdev->dev, regs->start,
399 				     resource_size(regs));
400 	if (!at91_rtc_regs) {
401 		dev_err(&pdev->dev, "failed to map registers, aborting.\n");
402 		return -ENOMEM;
403 	}
404 
405 	rtc = devm_rtc_allocate_device(&pdev->dev);
406 	if (IS_ERR(rtc))
407 		return PTR_ERR(rtc);
408 	platform_set_drvdata(pdev, rtc);
409 
410 	sclk = devm_clk_get(&pdev->dev, NULL);
411 	if (IS_ERR(sclk))
412 		return PTR_ERR(sclk);
413 
414 	ret = clk_prepare_enable(sclk);
415 	if (ret) {
416 		dev_err(&pdev->dev, "Could not enable slow clock\n");
417 		return ret;
418 	}
419 
420 	at91_rtc_write(AT91_RTC_CR, 0);
421 	at91_rtc_write(AT91_RTC_MR, 0);		/* 24 hour mode */
422 
423 	/* Disable all interrupts */
424 	at91_rtc_write_idr(AT91_RTC_ACKUPD | AT91_RTC_ALARM |
425 					AT91_RTC_SECEV | AT91_RTC_TIMEV |
426 					AT91_RTC_CALEV);
427 
428 	ret = devm_request_irq(&pdev->dev, irq, at91_rtc_interrupt,
429 			       IRQF_SHARED | IRQF_COND_SUSPEND,
430 			       "at91_rtc", pdev);
431 	if (ret) {
432 		dev_err(&pdev->dev, "IRQ %d already in use.\n", irq);
433 		goto err_clk;
434 	}
435 
436 	/* cpu init code should really have flagged this device as
437 	 * being wake-capable; if it didn't, do that here.
438 	 */
439 	if (!device_can_wakeup(&pdev->dev))
440 		device_init_wakeup(&pdev->dev, 1);
441 
442 	rtc->ops = &at91_rtc_ops;
443 	rtc->range_min = RTC_TIMESTAMP_BEGIN_1900;
444 	rtc->range_max = RTC_TIMESTAMP_END_2099;
445 	ret = rtc_register_device(rtc);
446 	if (ret)
447 		goto err_clk;
448 
449 	/* enable SECEV interrupt in order to initialize at91_rtc_upd_rdy
450 	 * completion.
451 	 */
452 	at91_rtc_write_ier(AT91_RTC_SECEV);
453 
454 	dev_info(&pdev->dev, "AT91 Real Time Clock driver.\n");
455 	return 0;
456 
457 err_clk:
458 	clk_disable_unprepare(sclk);
459 
460 	return ret;
461 }
462 
463 /*
464  * Disable and remove the RTC driver
465  */
466 static int __exit at91_rtc_remove(struct platform_device *pdev)
467 {
468 	/* Disable all interrupts */
469 	at91_rtc_write_idr(AT91_RTC_ACKUPD | AT91_RTC_ALARM |
470 					AT91_RTC_SECEV | AT91_RTC_TIMEV |
471 					AT91_RTC_CALEV);
472 
473 	clk_disable_unprepare(sclk);
474 
475 	return 0;
476 }
477 
478 static void at91_rtc_shutdown(struct platform_device *pdev)
479 {
480 	/* Disable all interrupts */
481 	at91_rtc_write(AT91_RTC_IDR, AT91_RTC_ACKUPD | AT91_RTC_ALARM |
482 					AT91_RTC_SECEV | AT91_RTC_TIMEV |
483 					AT91_RTC_CALEV);
484 }
485 
486 #ifdef CONFIG_PM_SLEEP
487 
488 /* AT91RM9200 RTC Power management control */
489 
490 static int at91_rtc_suspend(struct device *dev)
491 {
492 	/* this IRQ is shared with DBGU and other hardware which isn't
493 	 * necessarily doing PM like we are...
494 	 */
495 	at91_rtc_write(AT91_RTC_SCCR, AT91_RTC_ALARM);
496 
497 	at91_rtc_imr = at91_rtc_read_imr()
498 			& (AT91_RTC_ALARM|AT91_RTC_SECEV);
499 	if (at91_rtc_imr) {
500 		if (device_may_wakeup(dev)) {
501 			unsigned long flags;
502 
503 			enable_irq_wake(irq);
504 
505 			spin_lock_irqsave(&suspended_lock, flags);
506 			suspended = true;
507 			spin_unlock_irqrestore(&suspended_lock, flags);
508 		} else {
509 			at91_rtc_write_idr(at91_rtc_imr);
510 		}
511 	}
512 	return 0;
513 }
514 
515 static int at91_rtc_resume(struct device *dev)
516 {
517 	struct rtc_device *rtc = dev_get_drvdata(dev);
518 
519 	if (at91_rtc_imr) {
520 		if (device_may_wakeup(dev)) {
521 			unsigned long flags;
522 
523 			spin_lock_irqsave(&suspended_lock, flags);
524 
525 			if (cached_events) {
526 				rtc_update_irq(rtc, 1, cached_events);
527 				cached_events = 0;
528 			}
529 
530 			suspended = false;
531 			spin_unlock_irqrestore(&suspended_lock, flags);
532 
533 			disable_irq_wake(irq);
534 		}
535 		at91_rtc_write_ier(at91_rtc_imr);
536 	}
537 	return 0;
538 }
539 #endif
540 
541 static SIMPLE_DEV_PM_OPS(at91_rtc_pm_ops, at91_rtc_suspend, at91_rtc_resume);
542 
543 static struct platform_driver at91_rtc_driver = {
544 	.remove		= __exit_p(at91_rtc_remove),
545 	.shutdown	= at91_rtc_shutdown,
546 	.driver		= {
547 		.name	= "at91_rtc",
548 		.pm	= &at91_rtc_pm_ops,
549 		.of_match_table = of_match_ptr(at91_rtc_dt_ids),
550 	},
551 };
552 
553 module_platform_driver_probe(at91_rtc_driver, at91_rtc_probe);
554 
555 MODULE_AUTHOR("Rick Bronson");
556 MODULE_DESCRIPTION("RTC driver for Atmel AT91RM9200");
557 MODULE_LICENSE("GPL");
558 MODULE_ALIAS("platform:at91_rtc");
559