xref: /openbmc/linux/drivers/rtc/rtc-at91rm9200.c (revision 20e2fc42)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Real Time Clock interface for Linux on Atmel AT91RM9200
4  *
5  *	Copyright (C) 2002 Rick Bronson
6  *
7  *	Converted to RTC class model by Andrew Victor
8  *
9  *	Ported to Linux 2.6 by Steven Scholz
10  *	Based on s3c2410-rtc.c Simtec Electronics
11  *
12  *	Based on sa1100-rtc.c by Nils Faerber
13  *	Based on rtc.c by Paul Gortmaker
14  */
15 
16 #include <linux/bcd.h>
17 #include <linux/clk.h>
18 #include <linux/completion.h>
19 #include <linux/interrupt.h>
20 #include <linux/ioctl.h>
21 #include <linux/io.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/of_device.h>
25 #include <linux/of.h>
26 #include <linux/platform_device.h>
27 #include <linux/rtc.h>
28 #include <linux/spinlock.h>
29 #include <linux/suspend.h>
30 #include <linux/time.h>
31 #include <linux/uaccess.h>
32 
33 #include "rtc-at91rm9200.h"
34 
35 #define at91_rtc_read(field) \
36 	readl_relaxed(at91_rtc_regs + field)
37 #define at91_rtc_write(field, val) \
38 	writel_relaxed((val), at91_rtc_regs + field)
39 
40 struct at91_rtc_config {
41 	bool use_shadow_imr;
42 };
43 
44 static const struct at91_rtc_config *at91_rtc_config;
45 static DECLARE_COMPLETION(at91_rtc_updated);
46 static DECLARE_COMPLETION(at91_rtc_upd_rdy);
47 static void __iomem *at91_rtc_regs;
48 static int irq;
49 static DEFINE_SPINLOCK(at91_rtc_lock);
50 static u32 at91_rtc_shadow_imr;
51 static bool suspended;
52 static DEFINE_SPINLOCK(suspended_lock);
53 static unsigned long cached_events;
54 static u32 at91_rtc_imr;
55 static struct clk *sclk;
56 
57 static void at91_rtc_write_ier(u32 mask)
58 {
59 	unsigned long flags;
60 
61 	spin_lock_irqsave(&at91_rtc_lock, flags);
62 	at91_rtc_shadow_imr |= mask;
63 	at91_rtc_write(AT91_RTC_IER, mask);
64 	spin_unlock_irqrestore(&at91_rtc_lock, flags);
65 }
66 
67 static void at91_rtc_write_idr(u32 mask)
68 {
69 	unsigned long flags;
70 
71 	spin_lock_irqsave(&at91_rtc_lock, flags);
72 	at91_rtc_write(AT91_RTC_IDR, mask);
73 	/*
74 	 * Register read back (of any RTC-register) needed to make sure
75 	 * IDR-register write has reached the peripheral before updating
76 	 * shadow mask.
77 	 *
78 	 * Note that there is still a possibility that the mask is updated
79 	 * before interrupts have actually been disabled in hardware. The only
80 	 * way to be certain would be to poll the IMR-register, which is is
81 	 * the very register we are trying to emulate. The register read back
82 	 * is a reasonable heuristic.
83 	 */
84 	at91_rtc_read(AT91_RTC_SR);
85 	at91_rtc_shadow_imr &= ~mask;
86 	spin_unlock_irqrestore(&at91_rtc_lock, flags);
87 }
88 
89 static u32 at91_rtc_read_imr(void)
90 {
91 	unsigned long flags;
92 	u32 mask;
93 
94 	if (at91_rtc_config->use_shadow_imr) {
95 		spin_lock_irqsave(&at91_rtc_lock, flags);
96 		mask = at91_rtc_shadow_imr;
97 		spin_unlock_irqrestore(&at91_rtc_lock, flags);
98 	} else {
99 		mask = at91_rtc_read(AT91_RTC_IMR);
100 	}
101 
102 	return mask;
103 }
104 
105 /*
106  * Decode time/date into rtc_time structure
107  */
108 static void at91_rtc_decodetime(unsigned int timereg, unsigned int calreg,
109 				struct rtc_time *tm)
110 {
111 	unsigned int time, date;
112 
113 	/* must read twice in case it changes */
114 	do {
115 		time = at91_rtc_read(timereg);
116 		date = at91_rtc_read(calreg);
117 	} while ((time != at91_rtc_read(timereg)) ||
118 			(date != at91_rtc_read(calreg)));
119 
120 	tm->tm_sec  = bcd2bin((time & AT91_RTC_SEC) >> 0);
121 	tm->tm_min  = bcd2bin((time & AT91_RTC_MIN) >> 8);
122 	tm->tm_hour = bcd2bin((time & AT91_RTC_HOUR) >> 16);
123 
124 	/*
125 	 * The Calendar Alarm register does not have a field for
126 	 * the year - so these will return an invalid value.
127 	 */
128 	tm->tm_year  = bcd2bin(date & AT91_RTC_CENT) * 100;	/* century */
129 	tm->tm_year += bcd2bin((date & AT91_RTC_YEAR) >> 8);	/* year */
130 
131 	tm->tm_wday = bcd2bin((date & AT91_RTC_DAY) >> 21) - 1;	/* day of the week [0-6], Sunday=0 */
132 	tm->tm_mon  = bcd2bin((date & AT91_RTC_MONTH) >> 16) - 1;
133 	tm->tm_mday = bcd2bin((date & AT91_RTC_DATE) >> 24);
134 }
135 
136 /*
137  * Read current time and date in RTC
138  */
139 static int at91_rtc_readtime(struct device *dev, struct rtc_time *tm)
140 {
141 	at91_rtc_decodetime(AT91_RTC_TIMR, AT91_RTC_CALR, tm);
142 	tm->tm_yday = rtc_year_days(tm->tm_mday, tm->tm_mon, tm->tm_year);
143 	tm->tm_year = tm->tm_year - 1900;
144 
145 	dev_dbg(dev, "%s(): %ptR\n", __func__, tm);
146 
147 	return 0;
148 }
149 
150 /*
151  * Set current time and date in RTC
152  */
153 static int at91_rtc_settime(struct device *dev, struct rtc_time *tm)
154 {
155 	unsigned long cr;
156 
157 	dev_dbg(dev, "%s(): %ptR\n", __func__, tm);
158 
159 	wait_for_completion(&at91_rtc_upd_rdy);
160 
161 	/* Stop Time/Calendar from counting */
162 	cr = at91_rtc_read(AT91_RTC_CR);
163 	at91_rtc_write(AT91_RTC_CR, cr | AT91_RTC_UPDCAL | AT91_RTC_UPDTIM);
164 
165 	at91_rtc_write_ier(AT91_RTC_ACKUPD);
166 	wait_for_completion(&at91_rtc_updated);	/* wait for ACKUPD interrupt */
167 	at91_rtc_write_idr(AT91_RTC_ACKUPD);
168 
169 	at91_rtc_write(AT91_RTC_TIMR,
170 			  bin2bcd(tm->tm_sec) << 0
171 			| bin2bcd(tm->tm_min) << 8
172 			| bin2bcd(tm->tm_hour) << 16);
173 
174 	at91_rtc_write(AT91_RTC_CALR,
175 			  bin2bcd((tm->tm_year + 1900) / 100)	/* century */
176 			| bin2bcd(tm->tm_year % 100) << 8	/* year */
177 			| bin2bcd(tm->tm_mon + 1) << 16		/* tm_mon starts at zero */
178 			| bin2bcd(tm->tm_wday + 1) << 21	/* day of the week [0-6], Sunday=0 */
179 			| bin2bcd(tm->tm_mday) << 24);
180 
181 	/* Restart Time/Calendar */
182 	cr = at91_rtc_read(AT91_RTC_CR);
183 	at91_rtc_write(AT91_RTC_SCCR, AT91_RTC_SECEV);
184 	at91_rtc_write(AT91_RTC_CR, cr & ~(AT91_RTC_UPDCAL | AT91_RTC_UPDTIM));
185 	at91_rtc_write_ier(AT91_RTC_SECEV);
186 
187 	return 0;
188 }
189 
190 /*
191  * Read alarm time and date in RTC
192  */
193 static int at91_rtc_readalarm(struct device *dev, struct rtc_wkalrm *alrm)
194 {
195 	struct rtc_time *tm = &alrm->time;
196 
197 	at91_rtc_decodetime(AT91_RTC_TIMALR, AT91_RTC_CALALR, tm);
198 	tm->tm_year = -1;
199 
200 	alrm->enabled = (at91_rtc_read_imr() & AT91_RTC_ALARM)
201 			? 1 : 0;
202 
203 	dev_dbg(dev, "%s(): %ptR %sabled\n", __func__, tm,
204 		alrm->enabled ? "en" : "dis");
205 
206 	return 0;
207 }
208 
209 /*
210  * Set alarm time and date in RTC
211  */
212 static int at91_rtc_setalarm(struct device *dev, struct rtc_wkalrm *alrm)
213 {
214 	struct rtc_time tm;
215 
216 	at91_rtc_decodetime(AT91_RTC_TIMR, AT91_RTC_CALR, &tm);
217 
218 	tm.tm_mon = alrm->time.tm_mon;
219 	tm.tm_mday = alrm->time.tm_mday;
220 	tm.tm_hour = alrm->time.tm_hour;
221 	tm.tm_min = alrm->time.tm_min;
222 	tm.tm_sec = alrm->time.tm_sec;
223 
224 	at91_rtc_write_idr(AT91_RTC_ALARM);
225 	at91_rtc_write(AT91_RTC_TIMALR,
226 		  bin2bcd(tm.tm_sec) << 0
227 		| bin2bcd(tm.tm_min) << 8
228 		| bin2bcd(tm.tm_hour) << 16
229 		| AT91_RTC_HOUREN | AT91_RTC_MINEN | AT91_RTC_SECEN);
230 	at91_rtc_write(AT91_RTC_CALALR,
231 		  bin2bcd(tm.tm_mon + 1) << 16		/* tm_mon starts at zero */
232 		| bin2bcd(tm.tm_mday) << 24
233 		| AT91_RTC_DATEEN | AT91_RTC_MTHEN);
234 
235 	if (alrm->enabled) {
236 		at91_rtc_write(AT91_RTC_SCCR, AT91_RTC_ALARM);
237 		at91_rtc_write_ier(AT91_RTC_ALARM);
238 	}
239 
240 	dev_dbg(dev, "%s(): %ptR\n", __func__, &tm);
241 
242 	return 0;
243 }
244 
245 static int at91_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
246 {
247 	dev_dbg(dev, "%s(): cmd=%08x\n", __func__, enabled);
248 
249 	if (enabled) {
250 		at91_rtc_write(AT91_RTC_SCCR, AT91_RTC_ALARM);
251 		at91_rtc_write_ier(AT91_RTC_ALARM);
252 	} else
253 		at91_rtc_write_idr(AT91_RTC_ALARM);
254 
255 	return 0;
256 }
257 /*
258  * Provide additional RTC information in /proc/driver/rtc
259  */
260 static int at91_rtc_proc(struct device *dev, struct seq_file *seq)
261 {
262 	unsigned long imr = at91_rtc_read_imr();
263 
264 	seq_printf(seq, "update_IRQ\t: %s\n",
265 			(imr & AT91_RTC_ACKUPD) ? "yes" : "no");
266 	seq_printf(seq, "periodic_IRQ\t: %s\n",
267 			(imr & AT91_RTC_SECEV) ? "yes" : "no");
268 
269 	return 0;
270 }
271 
272 /*
273  * IRQ handler for the RTC
274  */
275 static irqreturn_t at91_rtc_interrupt(int irq, void *dev_id)
276 {
277 	struct platform_device *pdev = dev_id;
278 	struct rtc_device *rtc = platform_get_drvdata(pdev);
279 	unsigned int rtsr;
280 	unsigned long events = 0;
281 	int ret = IRQ_NONE;
282 
283 	spin_lock(&suspended_lock);
284 	rtsr = at91_rtc_read(AT91_RTC_SR) & at91_rtc_read_imr();
285 	if (rtsr) {		/* this interrupt is shared!  Is it ours? */
286 		if (rtsr & AT91_RTC_ALARM)
287 			events |= (RTC_AF | RTC_IRQF);
288 		if (rtsr & AT91_RTC_SECEV) {
289 			complete(&at91_rtc_upd_rdy);
290 			at91_rtc_write_idr(AT91_RTC_SECEV);
291 		}
292 		if (rtsr & AT91_RTC_ACKUPD)
293 			complete(&at91_rtc_updated);
294 
295 		at91_rtc_write(AT91_RTC_SCCR, rtsr);	/* clear status reg */
296 
297 		if (!suspended) {
298 			rtc_update_irq(rtc, 1, events);
299 
300 			dev_dbg(&pdev->dev, "%s(): num=%ld, events=0x%02lx\n",
301 				__func__, events >> 8, events & 0x000000FF);
302 		} else {
303 			cached_events |= events;
304 			at91_rtc_write_idr(at91_rtc_imr);
305 			pm_system_wakeup();
306 		}
307 
308 		ret = IRQ_HANDLED;
309 	}
310 	spin_unlock(&suspended_lock);
311 
312 	return ret;
313 }
314 
315 static const struct at91_rtc_config at91rm9200_config = {
316 };
317 
318 static const struct at91_rtc_config at91sam9x5_config = {
319 	.use_shadow_imr	= true,
320 };
321 
322 #ifdef CONFIG_OF
323 static const struct of_device_id at91_rtc_dt_ids[] = {
324 	{
325 		.compatible = "atmel,at91rm9200-rtc",
326 		.data = &at91rm9200_config,
327 	}, {
328 		.compatible = "atmel,at91sam9x5-rtc",
329 		.data = &at91sam9x5_config,
330 	}, {
331 		/* sentinel */
332 	}
333 };
334 MODULE_DEVICE_TABLE(of, at91_rtc_dt_ids);
335 #endif
336 
337 static const struct at91_rtc_config *
338 at91_rtc_get_config(struct platform_device *pdev)
339 {
340 	const struct of_device_id *match;
341 
342 	if (pdev->dev.of_node) {
343 		match = of_match_node(at91_rtc_dt_ids, pdev->dev.of_node);
344 		if (!match)
345 			return NULL;
346 		return (const struct at91_rtc_config *)match->data;
347 	}
348 
349 	return &at91rm9200_config;
350 }
351 
352 static const struct rtc_class_ops at91_rtc_ops = {
353 	.read_time	= at91_rtc_readtime,
354 	.set_time	= at91_rtc_settime,
355 	.read_alarm	= at91_rtc_readalarm,
356 	.set_alarm	= at91_rtc_setalarm,
357 	.proc		= at91_rtc_proc,
358 	.alarm_irq_enable = at91_rtc_alarm_irq_enable,
359 };
360 
361 /*
362  * Initialize and install RTC driver
363  */
364 static int __init at91_rtc_probe(struct platform_device *pdev)
365 {
366 	struct rtc_device *rtc;
367 	struct resource *regs;
368 	int ret = 0;
369 
370 	at91_rtc_config = at91_rtc_get_config(pdev);
371 	if (!at91_rtc_config)
372 		return -ENODEV;
373 
374 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
375 	if (!regs) {
376 		dev_err(&pdev->dev, "no mmio resource defined\n");
377 		return -ENXIO;
378 	}
379 
380 	irq = platform_get_irq(pdev, 0);
381 	if (irq < 0)
382 		return -ENXIO;
383 
384 	at91_rtc_regs = devm_ioremap(&pdev->dev, regs->start,
385 				     resource_size(regs));
386 	if (!at91_rtc_regs) {
387 		dev_err(&pdev->dev, "failed to map registers, aborting.\n");
388 		return -ENOMEM;
389 	}
390 
391 	rtc = devm_rtc_allocate_device(&pdev->dev);
392 	if (IS_ERR(rtc))
393 		return PTR_ERR(rtc);
394 	platform_set_drvdata(pdev, rtc);
395 
396 	sclk = devm_clk_get(&pdev->dev, NULL);
397 	if (IS_ERR(sclk))
398 		return PTR_ERR(sclk);
399 
400 	ret = clk_prepare_enable(sclk);
401 	if (ret) {
402 		dev_err(&pdev->dev, "Could not enable slow clock\n");
403 		return ret;
404 	}
405 
406 	at91_rtc_write(AT91_RTC_CR, 0);
407 	at91_rtc_write(AT91_RTC_MR, 0);		/* 24 hour mode */
408 
409 	/* Disable all interrupts */
410 	at91_rtc_write_idr(AT91_RTC_ACKUPD | AT91_RTC_ALARM |
411 					AT91_RTC_SECEV | AT91_RTC_TIMEV |
412 					AT91_RTC_CALEV);
413 
414 	ret = devm_request_irq(&pdev->dev, irq, at91_rtc_interrupt,
415 			       IRQF_SHARED | IRQF_COND_SUSPEND,
416 			       "at91_rtc", pdev);
417 	if (ret) {
418 		dev_err(&pdev->dev, "IRQ %d already in use.\n", irq);
419 		goto err_clk;
420 	}
421 
422 	/* cpu init code should really have flagged this device as
423 	 * being wake-capable; if it didn't, do that here.
424 	 */
425 	if (!device_can_wakeup(&pdev->dev))
426 		device_init_wakeup(&pdev->dev, 1);
427 
428 	rtc->ops = &at91_rtc_ops;
429 	rtc->range_min = RTC_TIMESTAMP_BEGIN_1900;
430 	rtc->range_max = RTC_TIMESTAMP_END_2099;
431 	ret = rtc_register_device(rtc);
432 	if (ret)
433 		goto err_clk;
434 
435 	/* enable SECEV interrupt in order to initialize at91_rtc_upd_rdy
436 	 * completion.
437 	 */
438 	at91_rtc_write_ier(AT91_RTC_SECEV);
439 
440 	dev_info(&pdev->dev, "AT91 Real Time Clock driver.\n");
441 	return 0;
442 
443 err_clk:
444 	clk_disable_unprepare(sclk);
445 
446 	return ret;
447 }
448 
449 /*
450  * Disable and remove the RTC driver
451  */
452 static int __exit at91_rtc_remove(struct platform_device *pdev)
453 {
454 	/* Disable all interrupts */
455 	at91_rtc_write_idr(AT91_RTC_ACKUPD | AT91_RTC_ALARM |
456 					AT91_RTC_SECEV | AT91_RTC_TIMEV |
457 					AT91_RTC_CALEV);
458 
459 	clk_disable_unprepare(sclk);
460 
461 	return 0;
462 }
463 
464 static void at91_rtc_shutdown(struct platform_device *pdev)
465 {
466 	/* Disable all interrupts */
467 	at91_rtc_write(AT91_RTC_IDR, AT91_RTC_ACKUPD | AT91_RTC_ALARM |
468 					AT91_RTC_SECEV | AT91_RTC_TIMEV |
469 					AT91_RTC_CALEV);
470 }
471 
472 #ifdef CONFIG_PM_SLEEP
473 
474 /* AT91RM9200 RTC Power management control */
475 
476 static int at91_rtc_suspend(struct device *dev)
477 {
478 	/* this IRQ is shared with DBGU and other hardware which isn't
479 	 * necessarily doing PM like we are...
480 	 */
481 	at91_rtc_write(AT91_RTC_SCCR, AT91_RTC_ALARM);
482 
483 	at91_rtc_imr = at91_rtc_read_imr()
484 			& (AT91_RTC_ALARM|AT91_RTC_SECEV);
485 	if (at91_rtc_imr) {
486 		if (device_may_wakeup(dev)) {
487 			unsigned long flags;
488 
489 			enable_irq_wake(irq);
490 
491 			spin_lock_irqsave(&suspended_lock, flags);
492 			suspended = true;
493 			spin_unlock_irqrestore(&suspended_lock, flags);
494 		} else {
495 			at91_rtc_write_idr(at91_rtc_imr);
496 		}
497 	}
498 	return 0;
499 }
500 
501 static int at91_rtc_resume(struct device *dev)
502 {
503 	struct rtc_device *rtc = dev_get_drvdata(dev);
504 
505 	if (at91_rtc_imr) {
506 		if (device_may_wakeup(dev)) {
507 			unsigned long flags;
508 
509 			spin_lock_irqsave(&suspended_lock, flags);
510 
511 			if (cached_events) {
512 				rtc_update_irq(rtc, 1, cached_events);
513 				cached_events = 0;
514 			}
515 
516 			suspended = false;
517 			spin_unlock_irqrestore(&suspended_lock, flags);
518 
519 			disable_irq_wake(irq);
520 		}
521 		at91_rtc_write_ier(at91_rtc_imr);
522 	}
523 	return 0;
524 }
525 #endif
526 
527 static SIMPLE_DEV_PM_OPS(at91_rtc_pm_ops, at91_rtc_suspend, at91_rtc_resume);
528 
529 static struct platform_driver at91_rtc_driver = {
530 	.remove		= __exit_p(at91_rtc_remove),
531 	.shutdown	= at91_rtc_shutdown,
532 	.driver		= {
533 		.name	= "at91_rtc",
534 		.pm	= &at91_rtc_pm_ops,
535 		.of_match_table = of_match_ptr(at91_rtc_dt_ids),
536 	},
537 };
538 
539 module_platform_driver_probe(at91_rtc_driver, at91_rtc_probe);
540 
541 MODULE_AUTHOR("Rick Bronson");
542 MODULE_DESCRIPTION("RTC driver for Atmel AT91RM9200");
543 MODULE_LICENSE("GPL");
544 MODULE_ALIAS("platform:at91_rtc");
545