1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * RTC driver for the Armada 38x Marvell SoCs 4 * 5 * Copyright (C) 2015 Marvell 6 * 7 * Gregory Clement <gregory.clement@free-electrons.com> 8 */ 9 10 #include <linux/delay.h> 11 #include <linux/io.h> 12 #include <linux/module.h> 13 #include <linux/of.h> 14 #include <linux/of_device.h> 15 #include <linux/platform_device.h> 16 #include <linux/rtc.h> 17 18 #define RTC_STATUS 0x0 19 #define RTC_STATUS_ALARM1 BIT(0) 20 #define RTC_STATUS_ALARM2 BIT(1) 21 #define RTC_IRQ1_CONF 0x4 22 #define RTC_IRQ2_CONF 0x8 23 #define RTC_IRQ_AL_EN BIT(0) 24 #define RTC_IRQ_FREQ_EN BIT(1) 25 #define RTC_IRQ_FREQ_1HZ BIT(2) 26 #define RTC_CCR 0x18 27 #define RTC_CCR_MODE BIT(15) 28 #define RTC_CONF_TEST 0x1C 29 #define RTC_NOMINAL_TIMING BIT(13) 30 31 #define RTC_TIME 0xC 32 #define RTC_ALARM1 0x10 33 #define RTC_ALARM2 0x14 34 35 /* Armada38x SoC registers */ 36 #define RTC_38X_BRIDGE_TIMING_CTL 0x0 37 #define RTC_38X_PERIOD_OFFS 0 38 #define RTC_38X_PERIOD_MASK (0x3FF << RTC_38X_PERIOD_OFFS) 39 #define RTC_38X_READ_DELAY_OFFS 26 40 #define RTC_38X_READ_DELAY_MASK (0x1F << RTC_38X_READ_DELAY_OFFS) 41 42 /* Armada 7K/8K registers */ 43 #define RTC_8K_BRIDGE_TIMING_CTL0 0x0 44 #define RTC_8K_WRCLK_PERIOD_OFFS 0 45 #define RTC_8K_WRCLK_PERIOD_MASK (0xFFFF << RTC_8K_WRCLK_PERIOD_OFFS) 46 #define RTC_8K_WRCLK_SETUP_OFFS 16 47 #define RTC_8K_WRCLK_SETUP_MASK (0xFFFF << RTC_8K_WRCLK_SETUP_OFFS) 48 #define RTC_8K_BRIDGE_TIMING_CTL1 0x4 49 #define RTC_8K_READ_DELAY_OFFS 0 50 #define RTC_8K_READ_DELAY_MASK (0xFFFF << RTC_8K_READ_DELAY_OFFS) 51 52 #define RTC_8K_ISR 0x10 53 #define RTC_8K_IMR 0x14 54 #define RTC_8K_ALARM2 BIT(0) 55 56 #define SOC_RTC_INTERRUPT 0x8 57 #define SOC_RTC_ALARM1 BIT(0) 58 #define SOC_RTC_ALARM2 BIT(1) 59 #define SOC_RTC_ALARM1_MASK BIT(2) 60 #define SOC_RTC_ALARM2_MASK BIT(3) 61 62 #define SAMPLE_NR 100 63 64 struct value_to_freq { 65 u32 value; 66 u8 freq; 67 }; 68 69 struct armada38x_rtc { 70 struct rtc_device *rtc_dev; 71 void __iomem *regs; 72 void __iomem *regs_soc; 73 spinlock_t lock; 74 int irq; 75 bool initialized; 76 struct value_to_freq *val_to_freq; 77 struct armada38x_rtc_data *data; 78 }; 79 80 #define ALARM1 0 81 #define ALARM2 1 82 83 #define ALARM_REG(base, alarm) ((base) + (alarm) * sizeof(u32)) 84 85 struct armada38x_rtc_data { 86 /* Initialize the RTC-MBUS bridge timing */ 87 void (*update_mbus_timing)(struct armada38x_rtc *rtc); 88 u32 (*read_rtc_reg)(struct armada38x_rtc *rtc, u8 rtc_reg); 89 void (*clear_isr)(struct armada38x_rtc *rtc); 90 void (*unmask_interrupt)(struct armada38x_rtc *rtc); 91 u32 alarm; 92 }; 93 94 /* 95 * According to the datasheet, the OS should wait 5us after every 96 * register write to the RTC hard macro so that the required update 97 * can occur without holding off the system bus 98 * According to errata RES-3124064, Write to any RTC register 99 * may fail. As a workaround, before writing to RTC 100 * register, issue a dummy write of 0x0 twice to RTC Status 101 * register. 102 */ 103 104 static void rtc_delayed_write(u32 val, struct armada38x_rtc *rtc, int offset) 105 { 106 writel(0, rtc->regs + RTC_STATUS); 107 writel(0, rtc->regs + RTC_STATUS); 108 writel(val, rtc->regs + offset); 109 udelay(5); 110 } 111 112 /* Update RTC-MBUS bridge timing parameters */ 113 static void rtc_update_38x_mbus_timing_params(struct armada38x_rtc *rtc) 114 { 115 u32 reg; 116 117 reg = readl(rtc->regs_soc + RTC_38X_BRIDGE_TIMING_CTL); 118 reg &= ~RTC_38X_PERIOD_MASK; 119 reg |= 0x3FF << RTC_38X_PERIOD_OFFS; /* Maximum value */ 120 reg &= ~RTC_38X_READ_DELAY_MASK; 121 reg |= 0x1F << RTC_38X_READ_DELAY_OFFS; /* Maximum value */ 122 writel(reg, rtc->regs_soc + RTC_38X_BRIDGE_TIMING_CTL); 123 } 124 125 static void rtc_update_8k_mbus_timing_params(struct armada38x_rtc *rtc) 126 { 127 u32 reg; 128 129 reg = readl(rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL0); 130 reg &= ~RTC_8K_WRCLK_PERIOD_MASK; 131 reg |= 0x3FF << RTC_8K_WRCLK_PERIOD_OFFS; 132 reg &= ~RTC_8K_WRCLK_SETUP_MASK; 133 reg |= 0x29 << RTC_8K_WRCLK_SETUP_OFFS; 134 writel(reg, rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL0); 135 136 reg = readl(rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL1); 137 reg &= ~RTC_8K_READ_DELAY_MASK; 138 reg |= 0x3F << RTC_8K_READ_DELAY_OFFS; 139 writel(reg, rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL1); 140 } 141 142 static u32 read_rtc_register(struct armada38x_rtc *rtc, u8 rtc_reg) 143 { 144 return readl(rtc->regs + rtc_reg); 145 } 146 147 static u32 read_rtc_register_38x_wa(struct armada38x_rtc *rtc, u8 rtc_reg) 148 { 149 int i, index_max = 0, max = 0; 150 151 for (i = 0; i < SAMPLE_NR; i++) { 152 rtc->val_to_freq[i].value = readl(rtc->regs + rtc_reg); 153 rtc->val_to_freq[i].freq = 0; 154 } 155 156 for (i = 0; i < SAMPLE_NR; i++) { 157 int j = 0; 158 u32 value = rtc->val_to_freq[i].value; 159 160 while (rtc->val_to_freq[j].freq) { 161 if (rtc->val_to_freq[j].value == value) { 162 rtc->val_to_freq[j].freq++; 163 break; 164 } 165 j++; 166 } 167 168 if (!rtc->val_to_freq[j].freq) { 169 rtc->val_to_freq[j].value = value; 170 rtc->val_to_freq[j].freq = 1; 171 } 172 173 if (rtc->val_to_freq[j].freq > max) { 174 index_max = j; 175 max = rtc->val_to_freq[j].freq; 176 } 177 178 /* 179 * If a value already has half of the sample this is the most 180 * frequent one and we can stop the research right now 181 */ 182 if (max > SAMPLE_NR / 2) 183 break; 184 } 185 186 return rtc->val_to_freq[index_max].value; 187 } 188 189 static void armada38x_clear_isr(struct armada38x_rtc *rtc) 190 { 191 u32 val = readl(rtc->regs_soc + SOC_RTC_INTERRUPT); 192 193 writel(val & ~SOC_RTC_ALARM1, rtc->regs_soc + SOC_RTC_INTERRUPT); 194 } 195 196 static void armada38x_unmask_interrupt(struct armada38x_rtc *rtc) 197 { 198 u32 val = readl(rtc->regs_soc + SOC_RTC_INTERRUPT); 199 200 writel(val | SOC_RTC_ALARM1_MASK, rtc->regs_soc + SOC_RTC_INTERRUPT); 201 } 202 203 static void armada8k_clear_isr(struct armada38x_rtc *rtc) 204 { 205 writel(RTC_8K_ALARM2, rtc->regs_soc + RTC_8K_ISR); 206 } 207 208 static void armada8k_unmask_interrupt(struct armada38x_rtc *rtc) 209 { 210 writel(RTC_8K_ALARM2, rtc->regs_soc + RTC_8K_IMR); 211 } 212 213 static int armada38x_rtc_read_time(struct device *dev, struct rtc_time *tm) 214 { 215 struct armada38x_rtc *rtc = dev_get_drvdata(dev); 216 unsigned long time, flags; 217 218 spin_lock_irqsave(&rtc->lock, flags); 219 time = rtc->data->read_rtc_reg(rtc, RTC_TIME); 220 spin_unlock_irqrestore(&rtc->lock, flags); 221 222 rtc_time64_to_tm(time, tm); 223 224 return 0; 225 } 226 227 static void armada38x_rtc_reset(struct armada38x_rtc *rtc) 228 { 229 u32 reg; 230 231 reg = rtc->data->read_rtc_reg(rtc, RTC_CONF_TEST); 232 /* If bits [7:0] are non-zero, assume RTC was uninitialized */ 233 if (reg & 0xff) { 234 rtc_delayed_write(0, rtc, RTC_CONF_TEST); 235 msleep(500); /* Oscillator startup time */ 236 rtc_delayed_write(0, rtc, RTC_TIME); 237 rtc_delayed_write(SOC_RTC_ALARM1 | SOC_RTC_ALARM2, rtc, 238 RTC_STATUS); 239 rtc_delayed_write(RTC_NOMINAL_TIMING, rtc, RTC_CCR); 240 } 241 rtc->initialized = true; 242 } 243 244 static int armada38x_rtc_set_time(struct device *dev, struct rtc_time *tm) 245 { 246 struct armada38x_rtc *rtc = dev_get_drvdata(dev); 247 unsigned long time, flags; 248 249 time = rtc_tm_to_time64(tm); 250 251 if (!rtc->initialized) 252 armada38x_rtc_reset(rtc); 253 254 spin_lock_irqsave(&rtc->lock, flags); 255 rtc_delayed_write(time, rtc, RTC_TIME); 256 spin_unlock_irqrestore(&rtc->lock, flags); 257 258 return 0; 259 } 260 261 static int armada38x_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) 262 { 263 struct armada38x_rtc *rtc = dev_get_drvdata(dev); 264 unsigned long time, flags; 265 u32 reg = ALARM_REG(RTC_ALARM1, rtc->data->alarm); 266 u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm); 267 u32 val; 268 269 spin_lock_irqsave(&rtc->lock, flags); 270 271 time = rtc->data->read_rtc_reg(rtc, reg); 272 val = rtc->data->read_rtc_reg(rtc, reg_irq) & RTC_IRQ_AL_EN; 273 274 spin_unlock_irqrestore(&rtc->lock, flags); 275 276 alrm->enabled = val ? 1 : 0; 277 rtc_time64_to_tm(time, &alrm->time); 278 279 return 0; 280 } 281 282 static int armada38x_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) 283 { 284 struct armada38x_rtc *rtc = dev_get_drvdata(dev); 285 u32 reg = ALARM_REG(RTC_ALARM1, rtc->data->alarm); 286 u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm); 287 unsigned long time, flags; 288 289 time = rtc_tm_to_time64(&alrm->time); 290 291 spin_lock_irqsave(&rtc->lock, flags); 292 293 rtc_delayed_write(time, rtc, reg); 294 295 if (alrm->enabled) { 296 rtc_delayed_write(RTC_IRQ_AL_EN, rtc, reg_irq); 297 rtc->data->unmask_interrupt(rtc); 298 } 299 300 spin_unlock_irqrestore(&rtc->lock, flags); 301 302 return 0; 303 } 304 305 static int armada38x_rtc_alarm_irq_enable(struct device *dev, 306 unsigned int enabled) 307 { 308 struct armada38x_rtc *rtc = dev_get_drvdata(dev); 309 u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm); 310 unsigned long flags; 311 312 spin_lock_irqsave(&rtc->lock, flags); 313 314 if (enabled) 315 rtc_delayed_write(RTC_IRQ_AL_EN, rtc, reg_irq); 316 else 317 rtc_delayed_write(0, rtc, reg_irq); 318 319 spin_unlock_irqrestore(&rtc->lock, flags); 320 321 return 0; 322 } 323 324 static irqreturn_t armada38x_rtc_alarm_irq(int irq, void *data) 325 { 326 struct armada38x_rtc *rtc = data; 327 u32 val; 328 int event = RTC_IRQF | RTC_AF; 329 u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm); 330 331 dev_dbg(&rtc->rtc_dev->dev, "%s:irq(%d)\n", __func__, irq); 332 333 spin_lock(&rtc->lock); 334 335 rtc->data->clear_isr(rtc); 336 val = rtc->data->read_rtc_reg(rtc, reg_irq); 337 /* disable all the interrupts for alarm*/ 338 rtc_delayed_write(0, rtc, reg_irq); 339 /* Ack the event */ 340 rtc_delayed_write(1 << rtc->data->alarm, rtc, RTC_STATUS); 341 342 spin_unlock(&rtc->lock); 343 344 if (val & RTC_IRQ_FREQ_EN) { 345 if (val & RTC_IRQ_FREQ_1HZ) 346 event |= RTC_UF; 347 else 348 event |= RTC_PF; 349 } 350 351 rtc_update_irq(rtc->rtc_dev, 1, event); 352 353 return IRQ_HANDLED; 354 } 355 356 /* 357 * The information given in the Armada 388 functional spec is complex. 358 * They give two different formulas for calculating the offset value, 359 * but when considering "Offset" as an 8-bit signed integer, they both 360 * reduce down to (we shall rename "Offset" as "val" here): 361 * 362 * val = (f_ideal / f_measured - 1) / resolution where f_ideal = 32768 363 * 364 * Converting to time, f = 1/t: 365 * val = (t_measured / t_ideal - 1) / resolution where t_ideal = 1/32768 366 * 367 * => t_measured / t_ideal = val * resolution + 1 368 * 369 * "offset" in the RTC interface is defined as: 370 * t = t0 * (1 + offset * 1e-9) 371 * where t is the desired period, t0 is the measured period with a zero 372 * offset, which is t_measured above. With t0 = t_measured and t = t_ideal, 373 * offset = (t_ideal / t_measured - 1) / 1e-9 374 * 375 * => t_ideal / t_measured = offset * 1e-9 + 1 376 * 377 * so: 378 * 379 * offset * 1e-9 + 1 = 1 / (val * resolution + 1) 380 * 381 * We want "resolution" to be an integer, so resolution = R * 1e-9, giving 382 * offset = 1e18 / (val * R + 1e9) - 1e9 383 * val = (1e18 / (offset + 1e9) - 1e9) / R 384 * with a common transformation: 385 * f(x) = 1e18 / (x + 1e9) - 1e9 386 * offset = f(val * R) 387 * val = f(offset) / R 388 * 389 * Armada 38x supports two modes, fine mode (954ppb) and coarse mode (3815ppb). 390 */ 391 static long armada38x_ppb_convert(long ppb) 392 { 393 long div = ppb + 1000000000L; 394 395 return div_s64(1000000000000000000LL + div / 2, div) - 1000000000L; 396 } 397 398 static int armada38x_rtc_read_offset(struct device *dev, long *offset) 399 { 400 struct armada38x_rtc *rtc = dev_get_drvdata(dev); 401 unsigned long ccr, flags; 402 long ppb_cor; 403 404 spin_lock_irqsave(&rtc->lock, flags); 405 ccr = rtc->data->read_rtc_reg(rtc, RTC_CCR); 406 spin_unlock_irqrestore(&rtc->lock, flags); 407 408 ppb_cor = (ccr & RTC_CCR_MODE ? 3815 : 954) * (s8)ccr; 409 /* ppb_cor + 1000000000L can never be zero */ 410 *offset = armada38x_ppb_convert(ppb_cor); 411 412 return 0; 413 } 414 415 static int armada38x_rtc_set_offset(struct device *dev, long offset) 416 { 417 struct armada38x_rtc *rtc = dev_get_drvdata(dev); 418 unsigned long ccr = 0; 419 long ppb_cor, off; 420 421 /* 422 * The maximum ppb_cor is -128 * 3815 .. 127 * 3815, but we 423 * need to clamp the input. This equates to -484270 .. 488558. 424 * Not only is this to stop out of range "off" but also to 425 * avoid the division by zero in armada38x_ppb_convert(). 426 */ 427 offset = clamp(offset, -484270L, 488558L); 428 429 ppb_cor = armada38x_ppb_convert(offset); 430 431 /* 432 * Use low update mode where possible, which gives a better 433 * resolution of correction. 434 */ 435 off = DIV_ROUND_CLOSEST(ppb_cor, 954); 436 if (off > 127 || off < -128) { 437 ccr = RTC_CCR_MODE; 438 off = DIV_ROUND_CLOSEST(ppb_cor, 3815); 439 } 440 441 /* 442 * Armada 388 requires a bit pattern in bits 14..8 depending on 443 * the sign bit: { 0, ~S, S, S, S, S, S } 444 */ 445 ccr |= (off & 0x3fff) ^ 0x2000; 446 rtc_delayed_write(ccr, rtc, RTC_CCR); 447 448 return 0; 449 } 450 451 static const struct rtc_class_ops armada38x_rtc_ops = { 452 .read_time = armada38x_rtc_read_time, 453 .set_time = armada38x_rtc_set_time, 454 .read_alarm = armada38x_rtc_read_alarm, 455 .set_alarm = armada38x_rtc_set_alarm, 456 .alarm_irq_enable = armada38x_rtc_alarm_irq_enable, 457 .read_offset = armada38x_rtc_read_offset, 458 .set_offset = armada38x_rtc_set_offset, 459 }; 460 461 static const struct rtc_class_ops armada38x_rtc_ops_noirq = { 462 .read_time = armada38x_rtc_read_time, 463 .set_time = armada38x_rtc_set_time, 464 .read_alarm = armada38x_rtc_read_alarm, 465 .read_offset = armada38x_rtc_read_offset, 466 .set_offset = armada38x_rtc_set_offset, 467 }; 468 469 static const struct armada38x_rtc_data armada38x_data = { 470 .update_mbus_timing = rtc_update_38x_mbus_timing_params, 471 .read_rtc_reg = read_rtc_register_38x_wa, 472 .clear_isr = armada38x_clear_isr, 473 .unmask_interrupt = armada38x_unmask_interrupt, 474 .alarm = ALARM1, 475 }; 476 477 static const struct armada38x_rtc_data armada8k_data = { 478 .update_mbus_timing = rtc_update_8k_mbus_timing_params, 479 .read_rtc_reg = read_rtc_register, 480 .clear_isr = armada8k_clear_isr, 481 .unmask_interrupt = armada8k_unmask_interrupt, 482 .alarm = ALARM2, 483 }; 484 485 #ifdef CONFIG_OF 486 static const struct of_device_id armada38x_rtc_of_match_table[] = { 487 { 488 .compatible = "marvell,armada-380-rtc", 489 .data = &armada38x_data, 490 }, 491 { 492 .compatible = "marvell,armada-8k-rtc", 493 .data = &armada8k_data, 494 }, 495 {} 496 }; 497 MODULE_DEVICE_TABLE(of, armada38x_rtc_of_match_table); 498 #endif 499 500 static __init int armada38x_rtc_probe(struct platform_device *pdev) 501 { 502 struct resource *res; 503 struct armada38x_rtc *rtc; 504 const struct of_device_id *match; 505 int ret; 506 507 match = of_match_device(armada38x_rtc_of_match_table, &pdev->dev); 508 if (!match) 509 return -ENODEV; 510 511 rtc = devm_kzalloc(&pdev->dev, sizeof(struct armada38x_rtc), 512 GFP_KERNEL); 513 if (!rtc) 514 return -ENOMEM; 515 516 rtc->val_to_freq = devm_kcalloc(&pdev->dev, SAMPLE_NR, 517 sizeof(struct value_to_freq), GFP_KERNEL); 518 if (!rtc->val_to_freq) 519 return -ENOMEM; 520 521 spin_lock_init(&rtc->lock); 522 523 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rtc"); 524 rtc->regs = devm_ioremap_resource(&pdev->dev, res); 525 if (IS_ERR(rtc->regs)) 526 return PTR_ERR(rtc->regs); 527 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rtc-soc"); 528 rtc->regs_soc = devm_ioremap_resource(&pdev->dev, res); 529 if (IS_ERR(rtc->regs_soc)) 530 return PTR_ERR(rtc->regs_soc); 531 532 rtc->irq = platform_get_irq(pdev, 0); 533 534 if (rtc->irq < 0) { 535 dev_err(&pdev->dev, "no irq\n"); 536 return rtc->irq; 537 } 538 539 rtc->rtc_dev = devm_rtc_allocate_device(&pdev->dev); 540 if (IS_ERR(rtc->rtc_dev)) 541 return PTR_ERR(rtc->rtc_dev); 542 543 if (devm_request_irq(&pdev->dev, rtc->irq, armada38x_rtc_alarm_irq, 544 0, pdev->name, rtc) < 0) { 545 dev_warn(&pdev->dev, "Interrupt not available.\n"); 546 rtc->irq = -1; 547 } 548 platform_set_drvdata(pdev, rtc); 549 550 if (rtc->irq != -1) { 551 device_init_wakeup(&pdev->dev, 1); 552 rtc->rtc_dev->ops = &armada38x_rtc_ops; 553 } else { 554 /* 555 * If there is no interrupt available then we can't 556 * use the alarm 557 */ 558 rtc->rtc_dev->ops = &armada38x_rtc_ops_noirq; 559 } 560 rtc->data = (struct armada38x_rtc_data *)match->data; 561 562 /* Update RTC-MBUS bridge timing parameters */ 563 rtc->data->update_mbus_timing(rtc); 564 565 rtc->rtc_dev->range_max = U32_MAX; 566 567 ret = rtc_register_device(rtc->rtc_dev); 568 if (ret) 569 dev_err(&pdev->dev, "Failed to register RTC device: %d\n", ret); 570 571 return ret; 572 } 573 574 #ifdef CONFIG_PM_SLEEP 575 static int armada38x_rtc_suspend(struct device *dev) 576 { 577 if (device_may_wakeup(dev)) { 578 struct armada38x_rtc *rtc = dev_get_drvdata(dev); 579 580 return enable_irq_wake(rtc->irq); 581 } 582 583 return 0; 584 } 585 586 static int armada38x_rtc_resume(struct device *dev) 587 { 588 if (device_may_wakeup(dev)) { 589 struct armada38x_rtc *rtc = dev_get_drvdata(dev); 590 591 /* Update RTC-MBUS bridge timing parameters */ 592 rtc->data->update_mbus_timing(rtc); 593 594 return disable_irq_wake(rtc->irq); 595 } 596 597 return 0; 598 } 599 #endif 600 601 static SIMPLE_DEV_PM_OPS(armada38x_rtc_pm_ops, 602 armada38x_rtc_suspend, armada38x_rtc_resume); 603 604 static struct platform_driver armada38x_rtc_driver = { 605 .driver = { 606 .name = "armada38x-rtc", 607 .pm = &armada38x_rtc_pm_ops, 608 .of_match_table = of_match_ptr(armada38x_rtc_of_match_table), 609 }, 610 }; 611 612 module_platform_driver_probe(armada38x_rtc_driver, armada38x_rtc_probe); 613 614 MODULE_DESCRIPTION("Marvell Armada 38x RTC driver"); 615 MODULE_AUTHOR("Gregory CLEMENT <gregory.clement@free-electrons.com>"); 616 MODULE_LICENSE("GPL"); 617