xref: /openbmc/linux/drivers/rtc/rtc-armada38x.c (revision 6f4eaea2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * RTC driver for the Armada 38x Marvell SoCs
4  *
5  * Copyright (C) 2015 Marvell
6  *
7  * Gregory Clement <gregory.clement@free-electrons.com>
8  */
9 
10 #include <linux/delay.h>
11 #include <linux/io.h>
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/of_device.h>
15 #include <linux/platform_device.h>
16 #include <linux/rtc.h>
17 
18 #define RTC_STATUS	    0x0
19 #define RTC_STATUS_ALARM1	    BIT(0)
20 #define RTC_STATUS_ALARM2	    BIT(1)
21 #define RTC_IRQ1_CONF	    0x4
22 #define RTC_IRQ2_CONF	    0x8
23 #define RTC_IRQ_AL_EN		    BIT(0)
24 #define RTC_IRQ_FREQ_EN		    BIT(1)
25 #define RTC_IRQ_FREQ_1HZ	    BIT(2)
26 #define RTC_CCR		    0x18
27 #define RTC_CCR_MODE		    BIT(15)
28 #define RTC_CONF_TEST	    0x1C
29 #define RTC_NOMINAL_TIMING	    BIT(13)
30 
31 #define RTC_TIME	    0xC
32 #define RTC_ALARM1	    0x10
33 #define RTC_ALARM2	    0x14
34 
35 /* Armada38x SoC registers  */
36 #define RTC_38X_BRIDGE_TIMING_CTL   0x0
37 #define RTC_38X_PERIOD_OFFS		0
38 #define RTC_38X_PERIOD_MASK		(0x3FF << RTC_38X_PERIOD_OFFS)
39 #define RTC_38X_READ_DELAY_OFFS		26
40 #define RTC_38X_READ_DELAY_MASK		(0x1F << RTC_38X_READ_DELAY_OFFS)
41 
42 /* Armada 7K/8K registers  */
43 #define RTC_8K_BRIDGE_TIMING_CTL0    0x0
44 #define RTC_8K_WRCLK_PERIOD_OFFS	0
45 #define RTC_8K_WRCLK_PERIOD_MASK	(0xFFFF << RTC_8K_WRCLK_PERIOD_OFFS)
46 #define RTC_8K_WRCLK_SETUP_OFFS		16
47 #define RTC_8K_WRCLK_SETUP_MASK		(0xFFFF << RTC_8K_WRCLK_SETUP_OFFS)
48 #define RTC_8K_BRIDGE_TIMING_CTL1   0x4
49 #define RTC_8K_READ_DELAY_OFFS		0
50 #define RTC_8K_READ_DELAY_MASK		(0xFFFF << RTC_8K_READ_DELAY_OFFS)
51 
52 #define RTC_8K_ISR		    0x10
53 #define RTC_8K_IMR		    0x14
54 #define RTC_8K_ALARM2			BIT(0)
55 
56 #define SOC_RTC_INTERRUPT	    0x8
57 #define SOC_RTC_ALARM1			BIT(0)
58 #define SOC_RTC_ALARM2			BIT(1)
59 #define SOC_RTC_ALARM1_MASK		BIT(2)
60 #define SOC_RTC_ALARM2_MASK		BIT(3)
61 
62 #define SAMPLE_NR 100
63 
64 struct value_to_freq {
65 	u32 value;
66 	u8 freq;
67 };
68 
69 struct armada38x_rtc {
70 	struct rtc_device   *rtc_dev;
71 	void __iomem	    *regs;
72 	void __iomem	    *regs_soc;
73 	spinlock_t	    lock;
74 	int		    irq;
75 	bool		    initialized;
76 	struct value_to_freq *val_to_freq;
77 	const struct armada38x_rtc_data *data;
78 };
79 
80 #define ALARM1	0
81 #define ALARM2	1
82 
83 #define ALARM_REG(base, alarm)	 ((base) + (alarm) * sizeof(u32))
84 
85 struct armada38x_rtc_data {
86 	/* Initialize the RTC-MBUS bridge timing */
87 	void (*update_mbus_timing)(struct armada38x_rtc *rtc);
88 	u32 (*read_rtc_reg)(struct armada38x_rtc *rtc, u8 rtc_reg);
89 	void (*clear_isr)(struct armada38x_rtc *rtc);
90 	void (*unmask_interrupt)(struct armada38x_rtc *rtc);
91 	u32 alarm;
92 };
93 
94 /*
95  * According to the datasheet, the OS should wait 5us after every
96  * register write to the RTC hard macro so that the required update
97  * can occur without holding off the system bus
98  * According to errata RES-3124064, Write to any RTC register
99  * may fail. As a workaround, before writing to RTC
100  * register, issue a dummy write of 0x0 twice to RTC Status
101  * register.
102  */
103 
104 static void rtc_delayed_write(u32 val, struct armada38x_rtc *rtc, int offset)
105 {
106 	writel(0, rtc->regs + RTC_STATUS);
107 	writel(0, rtc->regs + RTC_STATUS);
108 	writel(val, rtc->regs + offset);
109 	udelay(5);
110 }
111 
112 /* Update RTC-MBUS bridge timing parameters */
113 static void rtc_update_38x_mbus_timing_params(struct armada38x_rtc *rtc)
114 {
115 	u32 reg;
116 
117 	reg = readl(rtc->regs_soc + RTC_38X_BRIDGE_TIMING_CTL);
118 	reg &= ~RTC_38X_PERIOD_MASK;
119 	reg |= 0x3FF << RTC_38X_PERIOD_OFFS; /* Maximum value */
120 	reg &= ~RTC_38X_READ_DELAY_MASK;
121 	reg |= 0x1F << RTC_38X_READ_DELAY_OFFS; /* Maximum value */
122 	writel(reg, rtc->regs_soc + RTC_38X_BRIDGE_TIMING_CTL);
123 }
124 
125 static void rtc_update_8k_mbus_timing_params(struct armada38x_rtc *rtc)
126 {
127 	u32 reg;
128 
129 	reg = readl(rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL0);
130 	reg &= ~RTC_8K_WRCLK_PERIOD_MASK;
131 	reg |= 0x3FF << RTC_8K_WRCLK_PERIOD_OFFS;
132 	reg &= ~RTC_8K_WRCLK_SETUP_MASK;
133 	reg |= 0x29 << RTC_8K_WRCLK_SETUP_OFFS;
134 	writel(reg, rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL0);
135 
136 	reg = readl(rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL1);
137 	reg &= ~RTC_8K_READ_DELAY_MASK;
138 	reg |= 0x3F << RTC_8K_READ_DELAY_OFFS;
139 	writel(reg, rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL1);
140 }
141 
142 static u32 read_rtc_register(struct armada38x_rtc *rtc, u8 rtc_reg)
143 {
144 	return readl(rtc->regs + rtc_reg);
145 }
146 
147 static u32 read_rtc_register_38x_wa(struct armada38x_rtc *rtc, u8 rtc_reg)
148 {
149 	int i, index_max = 0, max = 0;
150 
151 	for (i = 0; i < SAMPLE_NR; i++) {
152 		rtc->val_to_freq[i].value = readl(rtc->regs + rtc_reg);
153 		rtc->val_to_freq[i].freq = 0;
154 	}
155 
156 	for (i = 0; i < SAMPLE_NR; i++) {
157 		int j = 0;
158 		u32 value = rtc->val_to_freq[i].value;
159 
160 		while (rtc->val_to_freq[j].freq) {
161 			if (rtc->val_to_freq[j].value == value) {
162 				rtc->val_to_freq[j].freq++;
163 				break;
164 			}
165 			j++;
166 		}
167 
168 		if (!rtc->val_to_freq[j].freq) {
169 			rtc->val_to_freq[j].value = value;
170 			rtc->val_to_freq[j].freq = 1;
171 		}
172 
173 		if (rtc->val_to_freq[j].freq > max) {
174 			index_max = j;
175 			max = rtc->val_to_freq[j].freq;
176 		}
177 
178 		/*
179 		 * If a value already has half of the sample this is the most
180 		 * frequent one and we can stop the research right now
181 		 */
182 		if (max > SAMPLE_NR / 2)
183 			break;
184 	}
185 
186 	return rtc->val_to_freq[index_max].value;
187 }
188 
189 static void armada38x_clear_isr(struct armada38x_rtc *rtc)
190 {
191 	u32 val = readl(rtc->regs_soc + SOC_RTC_INTERRUPT);
192 
193 	writel(val & ~SOC_RTC_ALARM1, rtc->regs_soc + SOC_RTC_INTERRUPT);
194 }
195 
196 static void armada38x_unmask_interrupt(struct armada38x_rtc *rtc)
197 {
198 	u32 val = readl(rtc->regs_soc + SOC_RTC_INTERRUPT);
199 
200 	writel(val | SOC_RTC_ALARM1_MASK, rtc->regs_soc + SOC_RTC_INTERRUPT);
201 }
202 
203 static void armada8k_clear_isr(struct armada38x_rtc *rtc)
204 {
205 	writel(RTC_8K_ALARM2, rtc->regs_soc + RTC_8K_ISR);
206 }
207 
208 static void armada8k_unmask_interrupt(struct armada38x_rtc *rtc)
209 {
210 	writel(RTC_8K_ALARM2, rtc->regs_soc + RTC_8K_IMR);
211 }
212 
213 static int armada38x_rtc_read_time(struct device *dev, struct rtc_time *tm)
214 {
215 	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
216 	unsigned long time, flags;
217 
218 	spin_lock_irqsave(&rtc->lock, flags);
219 	time = rtc->data->read_rtc_reg(rtc, RTC_TIME);
220 	spin_unlock_irqrestore(&rtc->lock, flags);
221 
222 	rtc_time64_to_tm(time, tm);
223 
224 	return 0;
225 }
226 
227 static void armada38x_rtc_reset(struct armada38x_rtc *rtc)
228 {
229 	u32 reg;
230 
231 	reg = rtc->data->read_rtc_reg(rtc, RTC_CONF_TEST);
232 	/* If bits [7:0] are non-zero, assume RTC was uninitialized */
233 	if (reg & 0xff) {
234 		rtc_delayed_write(0, rtc, RTC_CONF_TEST);
235 		msleep(500); /* Oscillator startup time */
236 		rtc_delayed_write(0, rtc, RTC_TIME);
237 		rtc_delayed_write(SOC_RTC_ALARM1 | SOC_RTC_ALARM2, rtc,
238 				  RTC_STATUS);
239 		rtc_delayed_write(RTC_NOMINAL_TIMING, rtc, RTC_CCR);
240 	}
241 	rtc->initialized = true;
242 }
243 
244 static int armada38x_rtc_set_time(struct device *dev, struct rtc_time *tm)
245 {
246 	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
247 	unsigned long time, flags;
248 
249 	time = rtc_tm_to_time64(tm);
250 
251 	if (!rtc->initialized)
252 		armada38x_rtc_reset(rtc);
253 
254 	spin_lock_irqsave(&rtc->lock, flags);
255 	rtc_delayed_write(time, rtc, RTC_TIME);
256 	spin_unlock_irqrestore(&rtc->lock, flags);
257 
258 	return 0;
259 }
260 
261 static int armada38x_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
262 {
263 	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
264 	unsigned long time, flags;
265 	u32 reg = ALARM_REG(RTC_ALARM1, rtc->data->alarm);
266 	u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
267 	u32 val;
268 
269 	spin_lock_irqsave(&rtc->lock, flags);
270 
271 	time = rtc->data->read_rtc_reg(rtc, reg);
272 	val = rtc->data->read_rtc_reg(rtc, reg_irq) & RTC_IRQ_AL_EN;
273 
274 	spin_unlock_irqrestore(&rtc->lock, flags);
275 
276 	alrm->enabled = val ? 1 : 0;
277 	rtc_time64_to_tm(time,  &alrm->time);
278 
279 	return 0;
280 }
281 
282 static int armada38x_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
283 {
284 	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
285 	u32 reg = ALARM_REG(RTC_ALARM1, rtc->data->alarm);
286 	u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
287 	unsigned long time, flags;
288 
289 	time = rtc_tm_to_time64(&alrm->time);
290 
291 	spin_lock_irqsave(&rtc->lock, flags);
292 
293 	rtc_delayed_write(time, rtc, reg);
294 
295 	if (alrm->enabled) {
296 		rtc_delayed_write(RTC_IRQ_AL_EN, rtc, reg_irq);
297 		rtc->data->unmask_interrupt(rtc);
298 	}
299 
300 	spin_unlock_irqrestore(&rtc->lock, flags);
301 
302 	return 0;
303 }
304 
305 static int armada38x_rtc_alarm_irq_enable(struct device *dev,
306 					 unsigned int enabled)
307 {
308 	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
309 	u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
310 	unsigned long flags;
311 
312 	spin_lock_irqsave(&rtc->lock, flags);
313 
314 	if (enabled)
315 		rtc_delayed_write(RTC_IRQ_AL_EN, rtc, reg_irq);
316 	else
317 		rtc_delayed_write(0, rtc, reg_irq);
318 
319 	spin_unlock_irqrestore(&rtc->lock, flags);
320 
321 	return 0;
322 }
323 
324 static irqreturn_t armada38x_rtc_alarm_irq(int irq, void *data)
325 {
326 	struct armada38x_rtc *rtc = data;
327 	u32 val;
328 	int event = RTC_IRQF | RTC_AF;
329 	u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
330 
331 	dev_dbg(&rtc->rtc_dev->dev, "%s:irq(%d)\n", __func__, irq);
332 
333 	spin_lock(&rtc->lock);
334 
335 	rtc->data->clear_isr(rtc);
336 	val = rtc->data->read_rtc_reg(rtc, reg_irq);
337 	/* disable all the interrupts for alarm*/
338 	rtc_delayed_write(0, rtc, reg_irq);
339 	/* Ack the event */
340 	rtc_delayed_write(1 << rtc->data->alarm, rtc, RTC_STATUS);
341 
342 	spin_unlock(&rtc->lock);
343 
344 	if (val & RTC_IRQ_FREQ_EN) {
345 		if (val & RTC_IRQ_FREQ_1HZ)
346 			event |= RTC_UF;
347 		else
348 			event |= RTC_PF;
349 	}
350 
351 	rtc_update_irq(rtc->rtc_dev, 1, event);
352 
353 	return IRQ_HANDLED;
354 }
355 
356 /*
357  * The information given in the Armada 388 functional spec is complex.
358  * They give two different formulas for calculating the offset value,
359  * but when considering "Offset" as an 8-bit signed integer, they both
360  * reduce down to (we shall rename "Offset" as "val" here):
361  *
362  *   val = (f_ideal / f_measured - 1) / resolution   where f_ideal = 32768
363  *
364  * Converting to time, f = 1/t:
365  *   val = (t_measured / t_ideal - 1) / resolution   where t_ideal = 1/32768
366  *
367  *   =>  t_measured / t_ideal = val * resolution + 1
368  *
369  * "offset" in the RTC interface is defined as:
370  *   t = t0 * (1 + offset * 1e-9)
371  * where t is the desired period, t0 is the measured period with a zero
372  * offset, which is t_measured above. With t0 = t_measured and t = t_ideal,
373  *   offset = (t_ideal / t_measured - 1) / 1e-9
374  *
375  *   => t_ideal / t_measured = offset * 1e-9 + 1
376  *
377  * so:
378  *
379  *   offset * 1e-9 + 1 = 1 / (val * resolution + 1)
380  *
381  * We want "resolution" to be an integer, so resolution = R * 1e-9, giving
382  *   offset = 1e18 / (val * R + 1e9) - 1e9
383  *   val = (1e18 / (offset + 1e9) - 1e9) / R
384  * with a common transformation:
385  *   f(x) = 1e18 / (x + 1e9) - 1e9
386  *   offset = f(val * R)
387  *   val = f(offset) / R
388  *
389  * Armada 38x supports two modes, fine mode (954ppb) and coarse mode (3815ppb).
390  */
391 static long armada38x_ppb_convert(long ppb)
392 {
393 	long div = ppb + 1000000000L;
394 
395 	return div_s64(1000000000000000000LL + div / 2, div) - 1000000000L;
396 }
397 
398 static int armada38x_rtc_read_offset(struct device *dev, long *offset)
399 {
400 	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
401 	unsigned long ccr, flags;
402 	long ppb_cor;
403 
404 	spin_lock_irqsave(&rtc->lock, flags);
405 	ccr = rtc->data->read_rtc_reg(rtc, RTC_CCR);
406 	spin_unlock_irqrestore(&rtc->lock, flags);
407 
408 	ppb_cor = (ccr & RTC_CCR_MODE ? 3815 : 954) * (s8)ccr;
409 	/* ppb_cor + 1000000000L can never be zero */
410 	*offset = armada38x_ppb_convert(ppb_cor);
411 
412 	return 0;
413 }
414 
415 static int armada38x_rtc_set_offset(struct device *dev, long offset)
416 {
417 	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
418 	unsigned long ccr = 0;
419 	long ppb_cor, off;
420 
421 	/*
422 	 * The maximum ppb_cor is -128 * 3815 .. 127 * 3815, but we
423 	 * need to clamp the input.  This equates to -484270 .. 488558.
424 	 * Not only is this to stop out of range "off" but also to
425 	 * avoid the division by zero in armada38x_ppb_convert().
426 	 */
427 	offset = clamp(offset, -484270L, 488558L);
428 
429 	ppb_cor = armada38x_ppb_convert(offset);
430 
431 	/*
432 	 * Use low update mode where possible, which gives a better
433 	 * resolution of correction.
434 	 */
435 	off = DIV_ROUND_CLOSEST(ppb_cor, 954);
436 	if (off > 127 || off < -128) {
437 		ccr = RTC_CCR_MODE;
438 		off = DIV_ROUND_CLOSEST(ppb_cor, 3815);
439 	}
440 
441 	/*
442 	 * Armada 388 requires a bit pattern in bits 14..8 depending on
443 	 * the sign bit: { 0, ~S, S, S, S, S, S }
444 	 */
445 	ccr |= (off & 0x3fff) ^ 0x2000;
446 	rtc_delayed_write(ccr, rtc, RTC_CCR);
447 
448 	return 0;
449 }
450 
451 static const struct rtc_class_ops armada38x_rtc_ops = {
452 	.read_time = armada38x_rtc_read_time,
453 	.set_time = armada38x_rtc_set_time,
454 	.read_alarm = armada38x_rtc_read_alarm,
455 	.set_alarm = armada38x_rtc_set_alarm,
456 	.alarm_irq_enable = armada38x_rtc_alarm_irq_enable,
457 	.read_offset = armada38x_rtc_read_offset,
458 	.set_offset = armada38x_rtc_set_offset,
459 };
460 
461 static const struct armada38x_rtc_data armada38x_data = {
462 	.update_mbus_timing = rtc_update_38x_mbus_timing_params,
463 	.read_rtc_reg = read_rtc_register_38x_wa,
464 	.clear_isr = armada38x_clear_isr,
465 	.unmask_interrupt = armada38x_unmask_interrupt,
466 	.alarm = ALARM1,
467 };
468 
469 static const struct armada38x_rtc_data armada8k_data = {
470 	.update_mbus_timing = rtc_update_8k_mbus_timing_params,
471 	.read_rtc_reg = read_rtc_register,
472 	.clear_isr = armada8k_clear_isr,
473 	.unmask_interrupt = armada8k_unmask_interrupt,
474 	.alarm = ALARM2,
475 };
476 
477 #ifdef CONFIG_OF
478 static const struct of_device_id armada38x_rtc_of_match_table[] = {
479 	{
480 		.compatible = "marvell,armada-380-rtc",
481 		.data = &armada38x_data,
482 	},
483 	{
484 		.compatible = "marvell,armada-8k-rtc",
485 		.data = &armada8k_data,
486 	},
487 	{}
488 };
489 MODULE_DEVICE_TABLE(of, armada38x_rtc_of_match_table);
490 #endif
491 
492 static __init int armada38x_rtc_probe(struct platform_device *pdev)
493 {
494 	struct resource *res;
495 	struct armada38x_rtc *rtc;
496 
497 	rtc = devm_kzalloc(&pdev->dev, sizeof(struct armada38x_rtc),
498 			    GFP_KERNEL);
499 	if (!rtc)
500 		return -ENOMEM;
501 
502 	rtc->data = of_device_get_match_data(&pdev->dev);
503 
504 	rtc->val_to_freq = devm_kcalloc(&pdev->dev, SAMPLE_NR,
505 				sizeof(struct value_to_freq), GFP_KERNEL);
506 	if (!rtc->val_to_freq)
507 		return -ENOMEM;
508 
509 	spin_lock_init(&rtc->lock);
510 
511 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rtc");
512 	rtc->regs = devm_ioremap_resource(&pdev->dev, res);
513 	if (IS_ERR(rtc->regs))
514 		return PTR_ERR(rtc->regs);
515 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rtc-soc");
516 	rtc->regs_soc = devm_ioremap_resource(&pdev->dev, res);
517 	if (IS_ERR(rtc->regs_soc))
518 		return PTR_ERR(rtc->regs_soc);
519 
520 	rtc->irq = platform_get_irq(pdev, 0);
521 	if (rtc->irq < 0)
522 		return rtc->irq;
523 
524 	rtc->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
525 	if (IS_ERR(rtc->rtc_dev))
526 		return PTR_ERR(rtc->rtc_dev);
527 
528 	if (devm_request_irq(&pdev->dev, rtc->irq, armada38x_rtc_alarm_irq,
529 				0, pdev->name, rtc) < 0) {
530 		dev_warn(&pdev->dev, "Interrupt not available.\n");
531 		rtc->irq = -1;
532 	}
533 	platform_set_drvdata(pdev, rtc);
534 
535 	if (rtc->irq != -1)
536 		device_init_wakeup(&pdev->dev, 1);
537 	else
538 		clear_bit(RTC_FEATURE_ALARM, rtc->rtc_dev->features);
539 
540 	/* Update RTC-MBUS bridge timing parameters */
541 	rtc->data->update_mbus_timing(rtc);
542 
543 	rtc->rtc_dev->ops = &armada38x_rtc_ops;
544 	rtc->rtc_dev->range_max = U32_MAX;
545 
546 	return devm_rtc_register_device(rtc->rtc_dev);
547 }
548 
549 #ifdef CONFIG_PM_SLEEP
550 static int armada38x_rtc_suspend(struct device *dev)
551 {
552 	if (device_may_wakeup(dev)) {
553 		struct armada38x_rtc *rtc = dev_get_drvdata(dev);
554 
555 		return enable_irq_wake(rtc->irq);
556 	}
557 
558 	return 0;
559 }
560 
561 static int armada38x_rtc_resume(struct device *dev)
562 {
563 	if (device_may_wakeup(dev)) {
564 		struct armada38x_rtc *rtc = dev_get_drvdata(dev);
565 
566 		/* Update RTC-MBUS bridge timing parameters */
567 		rtc->data->update_mbus_timing(rtc);
568 
569 		return disable_irq_wake(rtc->irq);
570 	}
571 
572 	return 0;
573 }
574 #endif
575 
576 static SIMPLE_DEV_PM_OPS(armada38x_rtc_pm_ops,
577 			 armada38x_rtc_suspend, armada38x_rtc_resume);
578 
579 static struct platform_driver armada38x_rtc_driver = {
580 	.driver		= {
581 		.name	= "armada38x-rtc",
582 		.pm	= &armada38x_rtc_pm_ops,
583 		.of_match_table = of_match_ptr(armada38x_rtc_of_match_table),
584 	},
585 };
586 
587 module_platform_driver_probe(armada38x_rtc_driver, armada38x_rtc_probe);
588 
589 MODULE_DESCRIPTION("Marvell Armada 38x RTC driver");
590 MODULE_AUTHOR("Gregory CLEMENT <gregory.clement@free-electrons.com>");
591 MODULE_LICENSE("GPL");
592