xref: /openbmc/linux/drivers/rtc/rtc-ac100.c (revision f79e4d5f92a129a1159c973735007d4ddc8541f3)
1 /*
2  * RTC Driver for X-Powers AC100
3  *
4  * Copyright (c) 2016 Chen-Yu Tsai
5  *
6  * Chen-Yu Tsai <wens@csie.org>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  */
17 
18 #include <linux/bcd.h>
19 #include <linux/clk-provider.h>
20 #include <linux/device.h>
21 #include <linux/interrupt.h>
22 #include <linux/kernel.h>
23 #include <linux/mfd/ac100.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/of.h>
27 #include <linux/platform_device.h>
28 #include <linux/regmap.h>
29 #include <linux/rtc.h>
30 #include <linux/types.h>
31 
32 /* Control register */
33 #define AC100_RTC_CTRL_24HOUR	BIT(0)
34 
35 /* Clock output register bits */
36 #define AC100_CLKOUT_PRE_DIV_SHIFT	5
37 #define AC100_CLKOUT_PRE_DIV_WIDTH	3
38 #define AC100_CLKOUT_MUX_SHIFT		4
39 #define AC100_CLKOUT_MUX_WIDTH		1
40 #define AC100_CLKOUT_DIV_SHIFT		1
41 #define AC100_CLKOUT_DIV_WIDTH		3
42 #define AC100_CLKOUT_EN			BIT(0)
43 
44 /* RTC */
45 #define AC100_RTC_SEC_MASK	GENMASK(6, 0)
46 #define AC100_RTC_MIN_MASK	GENMASK(6, 0)
47 #define AC100_RTC_HOU_MASK	GENMASK(5, 0)
48 #define AC100_RTC_WEE_MASK	GENMASK(2, 0)
49 #define AC100_RTC_DAY_MASK	GENMASK(5, 0)
50 #define AC100_RTC_MON_MASK	GENMASK(4, 0)
51 #define AC100_RTC_YEA_MASK	GENMASK(7, 0)
52 #define AC100_RTC_YEA_LEAP	BIT(15)
53 #define AC100_RTC_UPD_TRIGGER	BIT(15)
54 
55 /* Alarm (wall clock) */
56 #define AC100_ALM_INT_ENABLE	BIT(0)
57 
58 #define AC100_ALM_SEC_MASK	GENMASK(6, 0)
59 #define AC100_ALM_MIN_MASK	GENMASK(6, 0)
60 #define AC100_ALM_HOU_MASK	GENMASK(5, 0)
61 #define AC100_ALM_WEE_MASK	GENMASK(2, 0)
62 #define AC100_ALM_DAY_MASK	GENMASK(5, 0)
63 #define AC100_ALM_MON_MASK	GENMASK(4, 0)
64 #define AC100_ALM_YEA_MASK	GENMASK(7, 0)
65 #define AC100_ALM_ENABLE_FLAG	BIT(15)
66 #define AC100_ALM_UPD_TRIGGER	BIT(15)
67 
68 /*
69  * The year parameter passed to the driver is usually an offset relative to
70  * the year 1900. This macro is used to convert this offset to another one
71  * relative to the minimum year allowed by the hardware.
72  *
73  * The year range is 1970 - 2069. This range is selected to match Allwinner's
74  * driver.
75  */
76 #define AC100_YEAR_MIN				1970
77 #define AC100_YEAR_MAX				2069
78 #define AC100_YEAR_OFF				(AC100_YEAR_MIN - 1900)
79 
80 struct ac100_clkout {
81 	struct clk_hw hw;
82 	struct regmap *regmap;
83 	u8 offset;
84 };
85 
86 #define to_ac100_clkout(_hw) container_of(_hw, struct ac100_clkout, hw)
87 
88 #define AC100_RTC_32K_NAME	"ac100-rtc-32k"
89 #define AC100_RTC_32K_RATE	32768
90 #define AC100_CLKOUT_NUM	3
91 
92 static const char * const ac100_clkout_names[AC100_CLKOUT_NUM] = {
93 	"ac100-cko1-rtc",
94 	"ac100-cko2-rtc",
95 	"ac100-cko3-rtc",
96 };
97 
98 struct ac100_rtc_dev {
99 	struct rtc_device *rtc;
100 	struct device *dev;
101 	struct regmap *regmap;
102 	int irq;
103 	unsigned long alarm;
104 
105 	struct clk_hw *rtc_32k_clk;
106 	struct ac100_clkout clks[AC100_CLKOUT_NUM];
107 	struct clk_hw_onecell_data *clk_data;
108 };
109 
110 /**
111  * Clock controls for 3 clock output pins
112  */
113 
114 static const struct clk_div_table ac100_clkout_prediv[] = {
115 	{ .val = 0, .div = 1 },
116 	{ .val = 1, .div = 2 },
117 	{ .val = 2, .div = 4 },
118 	{ .val = 3, .div = 8 },
119 	{ .val = 4, .div = 16 },
120 	{ .val = 5, .div = 32 },
121 	{ .val = 6, .div = 64 },
122 	{ .val = 7, .div = 122 },
123 	{ },
124 };
125 
126 /* Abuse the fact that one parent is 32768 Hz, and the other is 4 MHz */
127 static unsigned long ac100_clkout_recalc_rate(struct clk_hw *hw,
128 					      unsigned long prate)
129 {
130 	struct ac100_clkout *clk = to_ac100_clkout(hw);
131 	unsigned int reg, div;
132 
133 	regmap_read(clk->regmap, clk->offset, &reg);
134 
135 	/* Handle pre-divider first */
136 	if (prate != AC100_RTC_32K_RATE) {
137 		div = (reg >> AC100_CLKOUT_PRE_DIV_SHIFT) &
138 			((1 << AC100_CLKOUT_PRE_DIV_WIDTH) - 1);
139 		prate = divider_recalc_rate(hw, prate, div,
140 					    ac100_clkout_prediv, 0,
141 					    AC100_CLKOUT_PRE_DIV_WIDTH);
142 	}
143 
144 	div = (reg >> AC100_CLKOUT_DIV_SHIFT) &
145 		(BIT(AC100_CLKOUT_DIV_WIDTH) - 1);
146 	return divider_recalc_rate(hw, prate, div, NULL,
147 				   CLK_DIVIDER_POWER_OF_TWO,
148 				   AC100_CLKOUT_DIV_WIDTH);
149 }
150 
151 static long ac100_clkout_round_rate(struct clk_hw *hw, unsigned long rate,
152 				    unsigned long prate)
153 {
154 	unsigned long best_rate = 0, tmp_rate, tmp_prate;
155 	int i;
156 
157 	if (prate == AC100_RTC_32K_RATE)
158 		return divider_round_rate(hw, rate, &prate, NULL,
159 					  AC100_CLKOUT_DIV_WIDTH,
160 					  CLK_DIVIDER_POWER_OF_TWO);
161 
162 	for (i = 0; ac100_clkout_prediv[i].div; i++) {
163 		tmp_prate = DIV_ROUND_UP(prate, ac100_clkout_prediv[i].val);
164 		tmp_rate = divider_round_rate(hw, rate, &tmp_prate, NULL,
165 					      AC100_CLKOUT_DIV_WIDTH,
166 					      CLK_DIVIDER_POWER_OF_TWO);
167 
168 		if (tmp_rate > rate)
169 			continue;
170 		if (rate - tmp_rate < best_rate - tmp_rate)
171 			best_rate = tmp_rate;
172 	}
173 
174 	return best_rate;
175 }
176 
177 static int ac100_clkout_determine_rate(struct clk_hw *hw,
178 				       struct clk_rate_request *req)
179 {
180 	struct clk_hw *best_parent;
181 	unsigned long best = 0;
182 	int i, num_parents = clk_hw_get_num_parents(hw);
183 
184 	for (i = 0; i < num_parents; i++) {
185 		struct clk_hw *parent = clk_hw_get_parent_by_index(hw, i);
186 		unsigned long tmp, prate;
187 
188 		/*
189 		 * The clock has two parents, one is a fixed clock which is
190 		 * internally registered by the ac100 driver. The other parent
191 		 * is a clock from the codec side of the chip, which we
192 		 * properly declare and reference in the devicetree and is
193 		 * not implemented in any driver right now.
194 		 * If the clock core looks for the parent of that second
195 		 * missing clock, it can't find one that is registered and
196 		 * returns NULL.
197 		 * So we end up in a situation where clk_hw_get_num_parents
198 		 * returns the amount of clocks we can be parented to, but
199 		 * clk_hw_get_parent_by_index will not return the orphan
200 		 * clocks.
201 		 * Thus we need to check if the parent exists before
202 		 * we get the parent rate, so we could use the RTC
203 		 * without waiting for the codec to be supported.
204 		 */
205 		if (!parent)
206 			continue;
207 
208 		prate = clk_hw_get_rate(parent);
209 
210 		tmp = ac100_clkout_round_rate(hw, req->rate, prate);
211 
212 		if (tmp > req->rate)
213 			continue;
214 		if (req->rate - tmp < req->rate - best) {
215 			best = tmp;
216 			best_parent = parent;
217 		}
218 	}
219 
220 	if (!best)
221 		return -EINVAL;
222 
223 	req->best_parent_hw = best_parent;
224 	req->best_parent_rate = best;
225 	req->rate = best;
226 
227 	return 0;
228 }
229 
230 static int ac100_clkout_set_rate(struct clk_hw *hw, unsigned long rate,
231 				 unsigned long prate)
232 {
233 	struct ac100_clkout *clk = to_ac100_clkout(hw);
234 	int div = 0, pre_div = 0;
235 
236 	do {
237 		div = divider_get_val(rate * ac100_clkout_prediv[pre_div].div,
238 				      prate, NULL, AC100_CLKOUT_DIV_WIDTH,
239 				      CLK_DIVIDER_POWER_OF_TWO);
240 		if (div >= 0)
241 			break;
242 	} while (prate != AC100_RTC_32K_RATE &&
243 		 ac100_clkout_prediv[++pre_div].div);
244 
245 	if (div < 0)
246 		return div;
247 
248 	pre_div = ac100_clkout_prediv[pre_div].val;
249 
250 	regmap_update_bits(clk->regmap, clk->offset,
251 			   ((1 << AC100_CLKOUT_DIV_WIDTH) - 1) << AC100_CLKOUT_DIV_SHIFT |
252 			   ((1 << AC100_CLKOUT_PRE_DIV_WIDTH) - 1) << AC100_CLKOUT_PRE_DIV_SHIFT,
253 			   (div - 1) << AC100_CLKOUT_DIV_SHIFT |
254 			   (pre_div - 1) << AC100_CLKOUT_PRE_DIV_SHIFT);
255 
256 	return 0;
257 }
258 
259 static int ac100_clkout_prepare(struct clk_hw *hw)
260 {
261 	struct ac100_clkout *clk = to_ac100_clkout(hw);
262 
263 	return regmap_update_bits(clk->regmap, clk->offset, AC100_CLKOUT_EN,
264 				  AC100_CLKOUT_EN);
265 }
266 
267 static void ac100_clkout_unprepare(struct clk_hw *hw)
268 {
269 	struct ac100_clkout *clk = to_ac100_clkout(hw);
270 
271 	regmap_update_bits(clk->regmap, clk->offset, AC100_CLKOUT_EN, 0);
272 }
273 
274 static int ac100_clkout_is_prepared(struct clk_hw *hw)
275 {
276 	struct ac100_clkout *clk = to_ac100_clkout(hw);
277 	unsigned int reg;
278 
279 	regmap_read(clk->regmap, clk->offset, &reg);
280 
281 	return reg & AC100_CLKOUT_EN;
282 }
283 
284 static u8 ac100_clkout_get_parent(struct clk_hw *hw)
285 {
286 	struct ac100_clkout *clk = to_ac100_clkout(hw);
287 	unsigned int reg;
288 
289 	regmap_read(clk->regmap, clk->offset, &reg);
290 
291 	return (reg >> AC100_CLKOUT_MUX_SHIFT) & 0x1;
292 }
293 
294 static int ac100_clkout_set_parent(struct clk_hw *hw, u8 index)
295 {
296 	struct ac100_clkout *clk = to_ac100_clkout(hw);
297 
298 	return regmap_update_bits(clk->regmap, clk->offset,
299 				  BIT(AC100_CLKOUT_MUX_SHIFT),
300 				  index ? BIT(AC100_CLKOUT_MUX_SHIFT) : 0);
301 }
302 
303 static const struct clk_ops ac100_clkout_ops = {
304 	.prepare	= ac100_clkout_prepare,
305 	.unprepare	= ac100_clkout_unprepare,
306 	.is_prepared	= ac100_clkout_is_prepared,
307 	.recalc_rate	= ac100_clkout_recalc_rate,
308 	.determine_rate	= ac100_clkout_determine_rate,
309 	.get_parent	= ac100_clkout_get_parent,
310 	.set_parent	= ac100_clkout_set_parent,
311 	.set_rate	= ac100_clkout_set_rate,
312 };
313 
314 static int ac100_rtc_register_clks(struct ac100_rtc_dev *chip)
315 {
316 	struct device_node *np = chip->dev->of_node;
317 	const char *parents[2] = {AC100_RTC_32K_NAME};
318 	int i, ret;
319 
320 	chip->clk_data = devm_kzalloc(chip->dev,
321 				      struct_size(chip->clk_data, hws,
322 						  AC100_CLKOUT_NUM),
323 				      GFP_KERNEL);
324 	if (!chip->clk_data)
325 		return -ENOMEM;
326 
327 	chip->rtc_32k_clk = clk_hw_register_fixed_rate(chip->dev,
328 						       AC100_RTC_32K_NAME,
329 						       NULL, 0,
330 						       AC100_RTC_32K_RATE);
331 	if (IS_ERR(chip->rtc_32k_clk)) {
332 		ret = PTR_ERR(chip->rtc_32k_clk);
333 		dev_err(chip->dev, "Failed to register RTC-32k clock: %d\n",
334 			ret);
335 		return ret;
336 	}
337 
338 	parents[1] = of_clk_get_parent_name(np, 0);
339 	if (!parents[1]) {
340 		dev_err(chip->dev, "Failed to get ADDA 4M clock\n");
341 		return -EINVAL;
342 	}
343 
344 	for (i = 0; i < AC100_CLKOUT_NUM; i++) {
345 		struct ac100_clkout *clk = &chip->clks[i];
346 		struct clk_init_data init = {
347 			.name = ac100_clkout_names[i],
348 			.ops = &ac100_clkout_ops,
349 			.parent_names = parents,
350 			.num_parents = ARRAY_SIZE(parents),
351 			.flags = 0,
352 		};
353 
354 		of_property_read_string_index(np, "clock-output-names",
355 					      i, &init.name);
356 		clk->regmap = chip->regmap;
357 		clk->offset = AC100_CLKOUT_CTRL1 + i;
358 		clk->hw.init = &init;
359 
360 		ret = devm_clk_hw_register(chip->dev, &clk->hw);
361 		if (ret) {
362 			dev_err(chip->dev, "Failed to register clk '%s': %d\n",
363 				init.name, ret);
364 			goto err_unregister_rtc_32k;
365 		}
366 
367 		chip->clk_data->hws[i] = &clk->hw;
368 	}
369 
370 	chip->clk_data->num = i;
371 	ret = of_clk_add_hw_provider(np, of_clk_hw_onecell_get, chip->clk_data);
372 	if (ret)
373 		goto err_unregister_rtc_32k;
374 
375 	return 0;
376 
377 err_unregister_rtc_32k:
378 	clk_unregister_fixed_rate(chip->rtc_32k_clk->clk);
379 
380 	return ret;
381 }
382 
383 static void ac100_rtc_unregister_clks(struct ac100_rtc_dev *chip)
384 {
385 	of_clk_del_provider(chip->dev->of_node);
386 	clk_unregister_fixed_rate(chip->rtc_32k_clk->clk);
387 }
388 
389 /**
390  * RTC related bits
391  */
392 static int ac100_rtc_get_time(struct device *dev, struct rtc_time *rtc_tm)
393 {
394 	struct ac100_rtc_dev *chip = dev_get_drvdata(dev);
395 	struct regmap *regmap = chip->regmap;
396 	u16 reg[7];
397 	int ret;
398 
399 	ret = regmap_bulk_read(regmap, AC100_RTC_SEC, reg, 7);
400 	if (ret)
401 		return ret;
402 
403 	rtc_tm->tm_sec  = bcd2bin(reg[0] & AC100_RTC_SEC_MASK);
404 	rtc_tm->tm_min  = bcd2bin(reg[1] & AC100_RTC_MIN_MASK);
405 	rtc_tm->tm_hour = bcd2bin(reg[2] & AC100_RTC_HOU_MASK);
406 	rtc_tm->tm_wday = bcd2bin(reg[3] & AC100_RTC_WEE_MASK);
407 	rtc_tm->tm_mday = bcd2bin(reg[4] & AC100_RTC_DAY_MASK);
408 	rtc_tm->tm_mon  = bcd2bin(reg[5] & AC100_RTC_MON_MASK) - 1;
409 	rtc_tm->tm_year = bcd2bin(reg[6] & AC100_RTC_YEA_MASK) +
410 			  AC100_YEAR_OFF;
411 
412 	return 0;
413 }
414 
415 static int ac100_rtc_set_time(struct device *dev, struct rtc_time *rtc_tm)
416 {
417 	struct ac100_rtc_dev *chip = dev_get_drvdata(dev);
418 	struct regmap *regmap = chip->regmap;
419 	int year;
420 	u16 reg[8];
421 
422 	/* our RTC has a limited year range... */
423 	year = rtc_tm->tm_year - AC100_YEAR_OFF;
424 	if (year < 0 || year > (AC100_YEAR_MAX - 1900)) {
425 		dev_err(dev, "rtc only supports year in range %d - %d\n",
426 			AC100_YEAR_MIN, AC100_YEAR_MAX);
427 		return -EINVAL;
428 	}
429 
430 	/* convert to BCD */
431 	reg[0] = bin2bcd(rtc_tm->tm_sec)     & AC100_RTC_SEC_MASK;
432 	reg[1] = bin2bcd(rtc_tm->tm_min)     & AC100_RTC_MIN_MASK;
433 	reg[2] = bin2bcd(rtc_tm->tm_hour)    & AC100_RTC_HOU_MASK;
434 	reg[3] = bin2bcd(rtc_tm->tm_wday)    & AC100_RTC_WEE_MASK;
435 	reg[4] = bin2bcd(rtc_tm->tm_mday)    & AC100_RTC_DAY_MASK;
436 	reg[5] = bin2bcd(rtc_tm->tm_mon + 1) & AC100_RTC_MON_MASK;
437 	reg[6] = bin2bcd(year)		     & AC100_RTC_YEA_MASK;
438 	/* trigger write */
439 	reg[7] = AC100_RTC_UPD_TRIGGER;
440 
441 	/* Is it a leap year? */
442 	if (is_leap_year(year + AC100_YEAR_OFF + 1900))
443 		reg[6] |= AC100_RTC_YEA_LEAP;
444 
445 	return regmap_bulk_write(regmap, AC100_RTC_SEC, reg, 8);
446 }
447 
448 static int ac100_rtc_alarm_irq_enable(struct device *dev, unsigned int en)
449 {
450 	struct ac100_rtc_dev *chip = dev_get_drvdata(dev);
451 	struct regmap *regmap = chip->regmap;
452 	unsigned int val;
453 
454 	val = en ? AC100_ALM_INT_ENABLE : 0;
455 
456 	return regmap_write(regmap, AC100_ALM_INT_ENA, val);
457 }
458 
459 static int ac100_rtc_get_alarm(struct device *dev, struct rtc_wkalrm *alrm)
460 {
461 	struct ac100_rtc_dev *chip = dev_get_drvdata(dev);
462 	struct regmap *regmap = chip->regmap;
463 	struct rtc_time *alrm_tm = &alrm->time;
464 	u16 reg[7];
465 	unsigned int val;
466 	int ret;
467 
468 	ret = regmap_read(regmap, AC100_ALM_INT_ENA, &val);
469 	if (ret)
470 		return ret;
471 
472 	alrm->enabled = !!(val & AC100_ALM_INT_ENABLE);
473 
474 	ret = regmap_bulk_read(regmap, AC100_ALM_SEC, reg, 7);
475 	if (ret)
476 		return ret;
477 
478 	alrm_tm->tm_sec  = bcd2bin(reg[0] & AC100_ALM_SEC_MASK);
479 	alrm_tm->tm_min  = bcd2bin(reg[1] & AC100_ALM_MIN_MASK);
480 	alrm_tm->tm_hour = bcd2bin(reg[2] & AC100_ALM_HOU_MASK);
481 	alrm_tm->tm_wday = bcd2bin(reg[3] & AC100_ALM_WEE_MASK);
482 	alrm_tm->tm_mday = bcd2bin(reg[4] & AC100_ALM_DAY_MASK);
483 	alrm_tm->tm_mon  = bcd2bin(reg[5] & AC100_ALM_MON_MASK) - 1;
484 	alrm_tm->tm_year = bcd2bin(reg[6] & AC100_ALM_YEA_MASK) +
485 			   AC100_YEAR_OFF;
486 
487 	return 0;
488 }
489 
490 static int ac100_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
491 {
492 	struct ac100_rtc_dev *chip = dev_get_drvdata(dev);
493 	struct regmap *regmap = chip->regmap;
494 	struct rtc_time *alrm_tm = &alrm->time;
495 	u16 reg[8];
496 	int year;
497 	int ret;
498 
499 	/* our alarm has a limited year range... */
500 	year = alrm_tm->tm_year - AC100_YEAR_OFF;
501 	if (year < 0 || year > (AC100_YEAR_MAX - 1900)) {
502 		dev_err(dev, "alarm only supports year in range %d - %d\n",
503 			AC100_YEAR_MIN, AC100_YEAR_MAX);
504 		return -EINVAL;
505 	}
506 
507 	/* convert to BCD */
508 	reg[0] = (bin2bcd(alrm_tm->tm_sec)  & AC100_ALM_SEC_MASK) |
509 			AC100_ALM_ENABLE_FLAG;
510 	reg[1] = (bin2bcd(alrm_tm->tm_min)  & AC100_ALM_MIN_MASK) |
511 			AC100_ALM_ENABLE_FLAG;
512 	reg[2] = (bin2bcd(alrm_tm->tm_hour) & AC100_ALM_HOU_MASK) |
513 			AC100_ALM_ENABLE_FLAG;
514 	/* Do not enable weekday alarm */
515 	reg[3] = bin2bcd(alrm_tm->tm_wday) & AC100_ALM_WEE_MASK;
516 	reg[4] = (bin2bcd(alrm_tm->tm_mday) & AC100_ALM_DAY_MASK) |
517 			AC100_ALM_ENABLE_FLAG;
518 	reg[5] = (bin2bcd(alrm_tm->tm_mon + 1)  & AC100_ALM_MON_MASK) |
519 			AC100_ALM_ENABLE_FLAG;
520 	reg[6] = (bin2bcd(year) & AC100_ALM_YEA_MASK) |
521 			AC100_ALM_ENABLE_FLAG;
522 	/* trigger write */
523 	reg[7] = AC100_ALM_UPD_TRIGGER;
524 
525 	ret = regmap_bulk_write(regmap, AC100_ALM_SEC, reg, 8);
526 	if (ret)
527 		return ret;
528 
529 	return ac100_rtc_alarm_irq_enable(dev, alrm->enabled);
530 }
531 
532 static irqreturn_t ac100_rtc_irq(int irq, void *data)
533 {
534 	struct ac100_rtc_dev *chip = data;
535 	struct regmap *regmap = chip->regmap;
536 	unsigned int val = 0;
537 	int ret;
538 
539 	mutex_lock(&chip->rtc->ops_lock);
540 
541 	/* read status */
542 	ret = regmap_read(regmap, AC100_ALM_INT_STA, &val);
543 	if (ret)
544 		goto out;
545 
546 	if (val & AC100_ALM_INT_ENABLE) {
547 		/* signal rtc framework */
548 		rtc_update_irq(chip->rtc, 1, RTC_AF | RTC_IRQF);
549 
550 		/* clear status */
551 		ret = regmap_write(regmap, AC100_ALM_INT_STA, val);
552 		if (ret)
553 			goto out;
554 
555 		/* disable interrupt */
556 		ret = ac100_rtc_alarm_irq_enable(chip->dev, 0);
557 		if (ret)
558 			goto out;
559 	}
560 
561 out:
562 	mutex_unlock(&chip->rtc->ops_lock);
563 	return IRQ_HANDLED;
564 }
565 
566 static const struct rtc_class_ops ac100_rtc_ops = {
567 	.read_time	  = ac100_rtc_get_time,
568 	.set_time	  = ac100_rtc_set_time,
569 	.read_alarm	  = ac100_rtc_get_alarm,
570 	.set_alarm	  = ac100_rtc_set_alarm,
571 	.alarm_irq_enable = ac100_rtc_alarm_irq_enable,
572 };
573 
574 static int ac100_rtc_probe(struct platform_device *pdev)
575 {
576 	struct ac100_dev *ac100 = dev_get_drvdata(pdev->dev.parent);
577 	struct ac100_rtc_dev *chip;
578 	int ret;
579 
580 	chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
581 	if (!chip)
582 		return -ENOMEM;
583 
584 	platform_set_drvdata(pdev, chip);
585 	chip->dev = &pdev->dev;
586 	chip->regmap = ac100->regmap;
587 
588 	chip->irq = platform_get_irq(pdev, 0);
589 	if (chip->irq < 0) {
590 		dev_err(&pdev->dev, "No IRQ resource\n");
591 		return chip->irq;
592 	}
593 
594 	chip->rtc = devm_rtc_allocate_device(&pdev->dev);
595 	if (IS_ERR(chip->rtc))
596 		return PTR_ERR(chip->rtc);
597 
598 	chip->rtc->ops = &ac100_rtc_ops;
599 
600 	ret = devm_request_threaded_irq(&pdev->dev, chip->irq, NULL,
601 					ac100_rtc_irq,
602 					IRQF_SHARED | IRQF_ONESHOT,
603 					dev_name(&pdev->dev), chip);
604 	if (ret) {
605 		dev_err(&pdev->dev, "Could not request IRQ\n");
606 		return ret;
607 	}
608 
609 	/* always use 24 hour mode */
610 	regmap_write_bits(chip->regmap, AC100_RTC_CTRL, AC100_RTC_CTRL_24HOUR,
611 			  AC100_RTC_CTRL_24HOUR);
612 
613 	/* disable counter alarm interrupt */
614 	regmap_write(chip->regmap, AC100_ALM_INT_ENA, 0);
615 
616 	/* clear counter alarm pending interrupts */
617 	regmap_write(chip->regmap, AC100_ALM_INT_STA, AC100_ALM_INT_ENABLE);
618 
619 	ret = ac100_rtc_register_clks(chip);
620 	if (ret)
621 		return ret;
622 
623 	ret = rtc_register_device(chip->rtc);
624 	if (ret) {
625 		dev_err(&pdev->dev, "unable to register device\n");
626 		return ret;
627 	}
628 
629 	dev_info(&pdev->dev, "RTC enabled\n");
630 
631 	return 0;
632 }
633 
634 static int ac100_rtc_remove(struct platform_device *pdev)
635 {
636 	struct ac100_rtc_dev *chip = platform_get_drvdata(pdev);
637 
638 	ac100_rtc_unregister_clks(chip);
639 
640 	return 0;
641 }
642 
643 static const struct of_device_id ac100_rtc_match[] = {
644 	{ .compatible = "x-powers,ac100-rtc" },
645 	{ },
646 };
647 MODULE_DEVICE_TABLE(of, ac100_rtc_match);
648 
649 static struct platform_driver ac100_rtc_driver = {
650 	.probe		= ac100_rtc_probe,
651 	.remove		= ac100_rtc_remove,
652 	.driver		= {
653 		.name		= "ac100-rtc",
654 		.of_match_table	= of_match_ptr(ac100_rtc_match),
655 	},
656 };
657 module_platform_driver(ac100_rtc_driver);
658 
659 MODULE_DESCRIPTION("X-Powers AC100 RTC driver");
660 MODULE_AUTHOR("Chen-Yu Tsai <wens@csie.org>");
661 MODULE_LICENSE("GPL v2");
662