xref: /openbmc/linux/drivers/rtc/rtc-ac100.c (revision 930c429a)
1 /*
2  * RTC Driver for X-Powers AC100
3  *
4  * Copyright (c) 2016 Chen-Yu Tsai
5  *
6  * Chen-Yu Tsai <wens@csie.org>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  */
17 
18 #include <linux/bcd.h>
19 #include <linux/clk-provider.h>
20 #include <linux/device.h>
21 #include <linux/interrupt.h>
22 #include <linux/kernel.h>
23 #include <linux/mfd/ac100.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/of.h>
27 #include <linux/platform_device.h>
28 #include <linux/regmap.h>
29 #include <linux/rtc.h>
30 #include <linux/types.h>
31 
32 /* Control register */
33 #define AC100_RTC_CTRL_24HOUR	BIT(0)
34 
35 /* Clock output register bits */
36 #define AC100_CLKOUT_PRE_DIV_SHIFT	5
37 #define AC100_CLKOUT_PRE_DIV_WIDTH	3
38 #define AC100_CLKOUT_MUX_SHIFT		4
39 #define AC100_CLKOUT_MUX_WIDTH		1
40 #define AC100_CLKOUT_DIV_SHIFT		1
41 #define AC100_CLKOUT_DIV_WIDTH		3
42 #define AC100_CLKOUT_EN			BIT(0)
43 
44 /* RTC */
45 #define AC100_RTC_SEC_MASK	GENMASK(6, 0)
46 #define AC100_RTC_MIN_MASK	GENMASK(6, 0)
47 #define AC100_RTC_HOU_MASK	GENMASK(5, 0)
48 #define AC100_RTC_WEE_MASK	GENMASK(2, 0)
49 #define AC100_RTC_DAY_MASK	GENMASK(5, 0)
50 #define AC100_RTC_MON_MASK	GENMASK(4, 0)
51 #define AC100_RTC_YEA_MASK	GENMASK(7, 0)
52 #define AC100_RTC_YEA_LEAP	BIT(15)
53 #define AC100_RTC_UPD_TRIGGER	BIT(15)
54 
55 /* Alarm (wall clock) */
56 #define AC100_ALM_INT_ENABLE	BIT(0)
57 
58 #define AC100_ALM_SEC_MASK	GENMASK(6, 0)
59 #define AC100_ALM_MIN_MASK	GENMASK(6, 0)
60 #define AC100_ALM_HOU_MASK	GENMASK(5, 0)
61 #define AC100_ALM_WEE_MASK	GENMASK(2, 0)
62 #define AC100_ALM_DAY_MASK	GENMASK(5, 0)
63 #define AC100_ALM_MON_MASK	GENMASK(4, 0)
64 #define AC100_ALM_YEA_MASK	GENMASK(7, 0)
65 #define AC100_ALM_ENABLE_FLAG	BIT(15)
66 #define AC100_ALM_UPD_TRIGGER	BIT(15)
67 
68 /*
69  * The year parameter passed to the driver is usually an offset relative to
70  * the year 1900. This macro is used to convert this offset to another one
71  * relative to the minimum year allowed by the hardware.
72  *
73  * The year range is 1970 - 2069. This range is selected to match Allwinner's
74  * driver.
75  */
76 #define AC100_YEAR_MIN				1970
77 #define AC100_YEAR_MAX				2069
78 #define AC100_YEAR_OFF				(AC100_YEAR_MIN - 1900)
79 
80 struct ac100_clkout {
81 	struct clk_hw hw;
82 	struct regmap *regmap;
83 	u8 offset;
84 };
85 
86 #define to_ac100_clkout(_hw) container_of(_hw, struct ac100_clkout, hw)
87 
88 #define AC100_RTC_32K_NAME	"ac100-rtc-32k"
89 #define AC100_RTC_32K_RATE	32768
90 #define AC100_CLKOUT_NUM	3
91 
92 static const char * const ac100_clkout_names[AC100_CLKOUT_NUM] = {
93 	"ac100-cko1-rtc",
94 	"ac100-cko2-rtc",
95 	"ac100-cko3-rtc",
96 };
97 
98 struct ac100_rtc_dev {
99 	struct rtc_device *rtc;
100 	struct device *dev;
101 	struct regmap *regmap;
102 	int irq;
103 	unsigned long alarm;
104 
105 	struct clk_hw *rtc_32k_clk;
106 	struct ac100_clkout clks[AC100_CLKOUT_NUM];
107 	struct clk_hw_onecell_data *clk_data;
108 };
109 
110 /**
111  * Clock controls for 3 clock output pins
112  */
113 
114 static const struct clk_div_table ac100_clkout_prediv[] = {
115 	{ .val = 0, .div = 1 },
116 	{ .val = 1, .div = 2 },
117 	{ .val = 2, .div = 4 },
118 	{ .val = 3, .div = 8 },
119 	{ .val = 4, .div = 16 },
120 	{ .val = 5, .div = 32 },
121 	{ .val = 6, .div = 64 },
122 	{ .val = 7, .div = 122 },
123 	{ },
124 };
125 
126 /* Abuse the fact that one parent is 32768 Hz, and the other is 4 MHz */
127 static unsigned long ac100_clkout_recalc_rate(struct clk_hw *hw,
128 					      unsigned long prate)
129 {
130 	struct ac100_clkout *clk = to_ac100_clkout(hw);
131 	unsigned int reg, div;
132 
133 	regmap_read(clk->regmap, clk->offset, &reg);
134 
135 	/* Handle pre-divider first */
136 	if (prate != AC100_RTC_32K_RATE) {
137 		div = (reg >> AC100_CLKOUT_PRE_DIV_SHIFT) &
138 			((1 << AC100_CLKOUT_PRE_DIV_WIDTH) - 1);
139 		prate = divider_recalc_rate(hw, prate, div,
140 					    ac100_clkout_prediv, 0,
141 					    AC100_CLKOUT_PRE_DIV_WIDTH);
142 	}
143 
144 	div = (reg >> AC100_CLKOUT_DIV_SHIFT) &
145 		(BIT(AC100_CLKOUT_DIV_WIDTH) - 1);
146 	return divider_recalc_rate(hw, prate, div, NULL,
147 				   CLK_DIVIDER_POWER_OF_TWO,
148 				   AC100_CLKOUT_DIV_WIDTH);
149 }
150 
151 static long ac100_clkout_round_rate(struct clk_hw *hw, unsigned long rate,
152 				    unsigned long prate)
153 {
154 	unsigned long best_rate = 0, tmp_rate, tmp_prate;
155 	int i;
156 
157 	if (prate == AC100_RTC_32K_RATE)
158 		return divider_round_rate(hw, rate, &prate, NULL,
159 					  AC100_CLKOUT_DIV_WIDTH,
160 					  CLK_DIVIDER_POWER_OF_TWO);
161 
162 	for (i = 0; ac100_clkout_prediv[i].div; i++) {
163 		tmp_prate = DIV_ROUND_UP(prate, ac100_clkout_prediv[i].val);
164 		tmp_rate = divider_round_rate(hw, rate, &tmp_prate, NULL,
165 					      AC100_CLKOUT_DIV_WIDTH,
166 					      CLK_DIVIDER_POWER_OF_TWO);
167 
168 		if (tmp_rate > rate)
169 			continue;
170 		if (rate - tmp_rate < best_rate - tmp_rate)
171 			best_rate = tmp_rate;
172 	}
173 
174 	return best_rate;
175 }
176 
177 static int ac100_clkout_determine_rate(struct clk_hw *hw,
178 				       struct clk_rate_request *req)
179 {
180 	struct clk_hw *best_parent;
181 	unsigned long best = 0;
182 	int i, num_parents = clk_hw_get_num_parents(hw);
183 
184 	for (i = 0; i < num_parents; i++) {
185 		struct clk_hw *parent = clk_hw_get_parent_by_index(hw, i);
186 		unsigned long tmp, prate = clk_hw_get_rate(parent);
187 
188 		tmp = ac100_clkout_round_rate(hw, req->rate, prate);
189 
190 		if (tmp > req->rate)
191 			continue;
192 		if (req->rate - tmp < req->rate - best) {
193 			best = tmp;
194 			best_parent = parent;
195 		}
196 	}
197 
198 	if (!best)
199 		return -EINVAL;
200 
201 	req->best_parent_hw = best_parent;
202 	req->best_parent_rate = best;
203 	req->rate = best;
204 
205 	return 0;
206 }
207 
208 static int ac100_clkout_set_rate(struct clk_hw *hw, unsigned long rate,
209 				 unsigned long prate)
210 {
211 	struct ac100_clkout *clk = to_ac100_clkout(hw);
212 	int div = 0, pre_div = 0;
213 
214 	do {
215 		div = divider_get_val(rate * ac100_clkout_prediv[pre_div].div,
216 				      prate, NULL, AC100_CLKOUT_DIV_WIDTH,
217 				      CLK_DIVIDER_POWER_OF_TWO);
218 		if (div >= 0)
219 			break;
220 	} while (prate != AC100_RTC_32K_RATE &&
221 		 ac100_clkout_prediv[++pre_div].div);
222 
223 	if (div < 0)
224 		return div;
225 
226 	pre_div = ac100_clkout_prediv[pre_div].val;
227 
228 	regmap_update_bits(clk->regmap, clk->offset,
229 			   ((1 << AC100_CLKOUT_DIV_WIDTH) - 1) << AC100_CLKOUT_DIV_SHIFT |
230 			   ((1 << AC100_CLKOUT_PRE_DIV_WIDTH) - 1) << AC100_CLKOUT_PRE_DIV_SHIFT,
231 			   (div - 1) << AC100_CLKOUT_DIV_SHIFT |
232 			   (pre_div - 1) << AC100_CLKOUT_PRE_DIV_SHIFT);
233 
234 	return 0;
235 }
236 
237 static int ac100_clkout_prepare(struct clk_hw *hw)
238 {
239 	struct ac100_clkout *clk = to_ac100_clkout(hw);
240 
241 	return regmap_update_bits(clk->regmap, clk->offset, AC100_CLKOUT_EN,
242 				  AC100_CLKOUT_EN);
243 }
244 
245 static void ac100_clkout_unprepare(struct clk_hw *hw)
246 {
247 	struct ac100_clkout *clk = to_ac100_clkout(hw);
248 
249 	regmap_update_bits(clk->regmap, clk->offset, AC100_CLKOUT_EN, 0);
250 }
251 
252 static int ac100_clkout_is_prepared(struct clk_hw *hw)
253 {
254 	struct ac100_clkout *clk = to_ac100_clkout(hw);
255 	unsigned int reg;
256 
257 	regmap_read(clk->regmap, clk->offset, &reg);
258 
259 	return reg & AC100_CLKOUT_EN;
260 }
261 
262 static u8 ac100_clkout_get_parent(struct clk_hw *hw)
263 {
264 	struct ac100_clkout *clk = to_ac100_clkout(hw);
265 	unsigned int reg;
266 
267 	regmap_read(clk->regmap, clk->offset, &reg);
268 
269 	return (reg >> AC100_CLKOUT_MUX_SHIFT) & 0x1;
270 }
271 
272 static int ac100_clkout_set_parent(struct clk_hw *hw, u8 index)
273 {
274 	struct ac100_clkout *clk = to_ac100_clkout(hw);
275 
276 	return regmap_update_bits(clk->regmap, clk->offset,
277 				  BIT(AC100_CLKOUT_MUX_SHIFT),
278 				  index ? BIT(AC100_CLKOUT_MUX_SHIFT) : 0);
279 }
280 
281 static const struct clk_ops ac100_clkout_ops = {
282 	.prepare	= ac100_clkout_prepare,
283 	.unprepare	= ac100_clkout_unprepare,
284 	.is_prepared	= ac100_clkout_is_prepared,
285 	.recalc_rate	= ac100_clkout_recalc_rate,
286 	.determine_rate	= ac100_clkout_determine_rate,
287 	.get_parent	= ac100_clkout_get_parent,
288 	.set_parent	= ac100_clkout_set_parent,
289 	.set_rate	= ac100_clkout_set_rate,
290 };
291 
292 static int ac100_rtc_register_clks(struct ac100_rtc_dev *chip)
293 {
294 	struct device_node *np = chip->dev->of_node;
295 	const char *parents[2] = {AC100_RTC_32K_NAME};
296 	int i, ret;
297 
298 	chip->clk_data = devm_kzalloc(chip->dev, sizeof(*chip->clk_data) +
299 						 sizeof(*chip->clk_data->hws) *
300 						 AC100_CLKOUT_NUM,
301 						 GFP_KERNEL);
302 	if (!chip->clk_data)
303 		return -ENOMEM;
304 
305 	chip->rtc_32k_clk = clk_hw_register_fixed_rate(chip->dev,
306 						       AC100_RTC_32K_NAME,
307 						       NULL, 0,
308 						       AC100_RTC_32K_RATE);
309 	if (IS_ERR(chip->rtc_32k_clk)) {
310 		ret = PTR_ERR(chip->rtc_32k_clk);
311 		dev_err(chip->dev, "Failed to register RTC-32k clock: %d\n",
312 			ret);
313 		return ret;
314 	}
315 
316 	parents[1] = of_clk_get_parent_name(np, 0);
317 	if (!parents[1]) {
318 		dev_err(chip->dev, "Failed to get ADDA 4M clock\n");
319 		return -EINVAL;
320 	}
321 
322 	for (i = 0; i < AC100_CLKOUT_NUM; i++) {
323 		struct ac100_clkout *clk = &chip->clks[i];
324 		struct clk_init_data init = {
325 			.name = ac100_clkout_names[i],
326 			.ops = &ac100_clkout_ops,
327 			.parent_names = parents,
328 			.num_parents = ARRAY_SIZE(parents),
329 			.flags = 0,
330 		};
331 
332 		of_property_read_string_index(np, "clock-output-names",
333 					      i, &init.name);
334 		clk->regmap = chip->regmap;
335 		clk->offset = AC100_CLKOUT_CTRL1 + i;
336 		clk->hw.init = &init;
337 
338 		ret = devm_clk_hw_register(chip->dev, &clk->hw);
339 		if (ret) {
340 			dev_err(chip->dev, "Failed to register clk '%s': %d\n",
341 				init.name, ret);
342 			goto err_unregister_rtc_32k;
343 		}
344 
345 		chip->clk_data->hws[i] = &clk->hw;
346 	}
347 
348 	chip->clk_data->num = i;
349 	ret = of_clk_add_hw_provider(np, of_clk_hw_onecell_get, chip->clk_data);
350 	if (ret)
351 		goto err_unregister_rtc_32k;
352 
353 	return 0;
354 
355 err_unregister_rtc_32k:
356 	clk_unregister_fixed_rate(chip->rtc_32k_clk->clk);
357 
358 	return ret;
359 }
360 
361 static void ac100_rtc_unregister_clks(struct ac100_rtc_dev *chip)
362 {
363 	of_clk_del_provider(chip->dev->of_node);
364 	clk_unregister_fixed_rate(chip->rtc_32k_clk->clk);
365 }
366 
367 /**
368  * RTC related bits
369  */
370 static int ac100_rtc_get_time(struct device *dev, struct rtc_time *rtc_tm)
371 {
372 	struct ac100_rtc_dev *chip = dev_get_drvdata(dev);
373 	struct regmap *regmap = chip->regmap;
374 	u16 reg[7];
375 	int ret;
376 
377 	ret = regmap_bulk_read(regmap, AC100_RTC_SEC, reg, 7);
378 	if (ret)
379 		return ret;
380 
381 	rtc_tm->tm_sec  = bcd2bin(reg[0] & AC100_RTC_SEC_MASK);
382 	rtc_tm->tm_min  = bcd2bin(reg[1] & AC100_RTC_MIN_MASK);
383 	rtc_tm->tm_hour = bcd2bin(reg[2] & AC100_RTC_HOU_MASK);
384 	rtc_tm->tm_wday = bcd2bin(reg[3] & AC100_RTC_WEE_MASK);
385 	rtc_tm->tm_mday = bcd2bin(reg[4] & AC100_RTC_DAY_MASK);
386 	rtc_tm->tm_mon  = bcd2bin(reg[5] & AC100_RTC_MON_MASK) - 1;
387 	rtc_tm->tm_year = bcd2bin(reg[6] & AC100_RTC_YEA_MASK) +
388 			  AC100_YEAR_OFF;
389 
390 	return rtc_valid_tm(rtc_tm);
391 }
392 
393 static int ac100_rtc_set_time(struct device *dev, struct rtc_time *rtc_tm)
394 {
395 	struct ac100_rtc_dev *chip = dev_get_drvdata(dev);
396 	struct regmap *regmap = chip->regmap;
397 	int year;
398 	u16 reg[8];
399 
400 	/* our RTC has a limited year range... */
401 	year = rtc_tm->tm_year - AC100_YEAR_OFF;
402 	if (year < 0 || year > (AC100_YEAR_MAX - 1900)) {
403 		dev_err(dev, "rtc only supports year in range %d - %d\n",
404 			AC100_YEAR_MIN, AC100_YEAR_MAX);
405 		return -EINVAL;
406 	}
407 
408 	/* convert to BCD */
409 	reg[0] = bin2bcd(rtc_tm->tm_sec)     & AC100_RTC_SEC_MASK;
410 	reg[1] = bin2bcd(rtc_tm->tm_min)     & AC100_RTC_MIN_MASK;
411 	reg[2] = bin2bcd(rtc_tm->tm_hour)    & AC100_RTC_HOU_MASK;
412 	reg[3] = bin2bcd(rtc_tm->tm_wday)    & AC100_RTC_WEE_MASK;
413 	reg[4] = bin2bcd(rtc_tm->tm_mday)    & AC100_RTC_DAY_MASK;
414 	reg[5] = bin2bcd(rtc_tm->tm_mon + 1) & AC100_RTC_MON_MASK;
415 	reg[6] = bin2bcd(year)		     & AC100_RTC_YEA_MASK;
416 	/* trigger write */
417 	reg[7] = AC100_RTC_UPD_TRIGGER;
418 
419 	/* Is it a leap year? */
420 	if (is_leap_year(year + AC100_YEAR_OFF + 1900))
421 		reg[6] |= AC100_RTC_YEA_LEAP;
422 
423 	return regmap_bulk_write(regmap, AC100_RTC_SEC, reg, 8);
424 }
425 
426 static int ac100_rtc_alarm_irq_enable(struct device *dev, unsigned int en)
427 {
428 	struct ac100_rtc_dev *chip = dev_get_drvdata(dev);
429 	struct regmap *regmap = chip->regmap;
430 	unsigned int val;
431 
432 	val = en ? AC100_ALM_INT_ENABLE : 0;
433 
434 	return regmap_write(regmap, AC100_ALM_INT_ENA, val);
435 }
436 
437 static int ac100_rtc_get_alarm(struct device *dev, struct rtc_wkalrm *alrm)
438 {
439 	struct ac100_rtc_dev *chip = dev_get_drvdata(dev);
440 	struct regmap *regmap = chip->regmap;
441 	struct rtc_time *alrm_tm = &alrm->time;
442 	u16 reg[7];
443 	unsigned int val;
444 	int ret;
445 
446 	ret = regmap_read(regmap, AC100_ALM_INT_ENA, &val);
447 	if (ret)
448 		return ret;
449 
450 	alrm->enabled = !!(val & AC100_ALM_INT_ENABLE);
451 
452 	ret = regmap_bulk_read(regmap, AC100_ALM_SEC, reg, 7);
453 	if (ret)
454 		return ret;
455 
456 	alrm_tm->tm_sec  = bcd2bin(reg[0] & AC100_ALM_SEC_MASK);
457 	alrm_tm->tm_min  = bcd2bin(reg[1] & AC100_ALM_MIN_MASK);
458 	alrm_tm->tm_hour = bcd2bin(reg[2] & AC100_ALM_HOU_MASK);
459 	alrm_tm->tm_wday = bcd2bin(reg[3] & AC100_ALM_WEE_MASK);
460 	alrm_tm->tm_mday = bcd2bin(reg[4] & AC100_ALM_DAY_MASK);
461 	alrm_tm->tm_mon  = bcd2bin(reg[5] & AC100_ALM_MON_MASK) - 1;
462 	alrm_tm->tm_year = bcd2bin(reg[6] & AC100_ALM_YEA_MASK) +
463 			   AC100_YEAR_OFF;
464 
465 	return 0;
466 }
467 
468 static int ac100_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
469 {
470 	struct ac100_rtc_dev *chip = dev_get_drvdata(dev);
471 	struct regmap *regmap = chip->regmap;
472 	struct rtc_time *alrm_tm = &alrm->time;
473 	u16 reg[8];
474 	int year;
475 	int ret;
476 
477 	/* our alarm has a limited year range... */
478 	year = alrm_tm->tm_year - AC100_YEAR_OFF;
479 	if (year < 0 || year > (AC100_YEAR_MAX - 1900)) {
480 		dev_err(dev, "alarm only supports year in range %d - %d\n",
481 			AC100_YEAR_MIN, AC100_YEAR_MAX);
482 		return -EINVAL;
483 	}
484 
485 	/* convert to BCD */
486 	reg[0] = (bin2bcd(alrm_tm->tm_sec)  & AC100_ALM_SEC_MASK) |
487 			AC100_ALM_ENABLE_FLAG;
488 	reg[1] = (bin2bcd(alrm_tm->tm_min)  & AC100_ALM_MIN_MASK) |
489 			AC100_ALM_ENABLE_FLAG;
490 	reg[2] = (bin2bcd(alrm_tm->tm_hour) & AC100_ALM_HOU_MASK) |
491 			AC100_ALM_ENABLE_FLAG;
492 	/* Do not enable weekday alarm */
493 	reg[3] = bin2bcd(alrm_tm->tm_wday) & AC100_ALM_WEE_MASK;
494 	reg[4] = (bin2bcd(alrm_tm->tm_mday) & AC100_ALM_DAY_MASK) |
495 			AC100_ALM_ENABLE_FLAG;
496 	reg[5] = (bin2bcd(alrm_tm->tm_mon + 1)  & AC100_ALM_MON_MASK) |
497 			AC100_ALM_ENABLE_FLAG;
498 	reg[6] = (bin2bcd(year) & AC100_ALM_YEA_MASK) |
499 			AC100_ALM_ENABLE_FLAG;
500 	/* trigger write */
501 	reg[7] = AC100_ALM_UPD_TRIGGER;
502 
503 	ret = regmap_bulk_write(regmap, AC100_ALM_SEC, reg, 8);
504 	if (ret)
505 		return ret;
506 
507 	return ac100_rtc_alarm_irq_enable(dev, alrm->enabled);
508 }
509 
510 static irqreturn_t ac100_rtc_irq(int irq, void *data)
511 {
512 	struct ac100_rtc_dev *chip = data;
513 	struct regmap *regmap = chip->regmap;
514 	unsigned int val = 0;
515 	int ret;
516 
517 	mutex_lock(&chip->rtc->ops_lock);
518 
519 	/* read status */
520 	ret = regmap_read(regmap, AC100_ALM_INT_STA, &val);
521 	if (ret)
522 		goto out;
523 
524 	if (val & AC100_ALM_INT_ENABLE) {
525 		/* signal rtc framework */
526 		rtc_update_irq(chip->rtc, 1, RTC_AF | RTC_IRQF);
527 
528 		/* clear status */
529 		ret = regmap_write(regmap, AC100_ALM_INT_STA, val);
530 		if (ret)
531 			goto out;
532 
533 		/* disable interrupt */
534 		ret = ac100_rtc_alarm_irq_enable(chip->dev, 0);
535 		if (ret)
536 			goto out;
537 	}
538 
539 out:
540 	mutex_unlock(&chip->rtc->ops_lock);
541 	return IRQ_HANDLED;
542 }
543 
544 static const struct rtc_class_ops ac100_rtc_ops = {
545 	.read_time	  = ac100_rtc_get_time,
546 	.set_time	  = ac100_rtc_set_time,
547 	.read_alarm	  = ac100_rtc_get_alarm,
548 	.set_alarm	  = ac100_rtc_set_alarm,
549 	.alarm_irq_enable = ac100_rtc_alarm_irq_enable,
550 };
551 
552 static int ac100_rtc_probe(struct platform_device *pdev)
553 {
554 	struct ac100_dev *ac100 = dev_get_drvdata(pdev->dev.parent);
555 	struct ac100_rtc_dev *chip;
556 	int ret;
557 
558 	chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
559 	if (!chip)
560 		return -ENOMEM;
561 
562 	platform_set_drvdata(pdev, chip);
563 	chip->dev = &pdev->dev;
564 	chip->regmap = ac100->regmap;
565 
566 	chip->irq = platform_get_irq(pdev, 0);
567 	if (chip->irq < 0) {
568 		dev_err(&pdev->dev, "No IRQ resource\n");
569 		return chip->irq;
570 	}
571 
572 	chip->rtc = devm_rtc_allocate_device(&pdev->dev);
573 	if (IS_ERR(chip->rtc))
574 		return PTR_ERR(chip->rtc);
575 
576 	chip->rtc->ops = &ac100_rtc_ops;
577 
578 	ret = devm_request_threaded_irq(&pdev->dev, chip->irq, NULL,
579 					ac100_rtc_irq,
580 					IRQF_SHARED | IRQF_ONESHOT,
581 					dev_name(&pdev->dev), chip);
582 	if (ret) {
583 		dev_err(&pdev->dev, "Could not request IRQ\n");
584 		return ret;
585 	}
586 
587 	/* always use 24 hour mode */
588 	regmap_write_bits(chip->regmap, AC100_RTC_CTRL, AC100_RTC_CTRL_24HOUR,
589 			  AC100_RTC_CTRL_24HOUR);
590 
591 	/* disable counter alarm interrupt */
592 	regmap_write(chip->regmap, AC100_ALM_INT_ENA, 0);
593 
594 	/* clear counter alarm pending interrupts */
595 	regmap_write(chip->regmap, AC100_ALM_INT_STA, AC100_ALM_INT_ENABLE);
596 
597 	ret = ac100_rtc_register_clks(chip);
598 	if (ret)
599 		return ret;
600 
601 	ret = rtc_register_device(chip->rtc);
602 	if (ret) {
603 		dev_err(&pdev->dev, "unable to register device\n");
604 		return ret;
605 	}
606 
607 	dev_info(&pdev->dev, "RTC enabled\n");
608 
609 	return 0;
610 }
611 
612 static int ac100_rtc_remove(struct platform_device *pdev)
613 {
614 	struct ac100_rtc_dev *chip = platform_get_drvdata(pdev);
615 
616 	ac100_rtc_unregister_clks(chip);
617 
618 	return 0;
619 }
620 
621 static const struct of_device_id ac100_rtc_match[] = {
622 	{ .compatible = "x-powers,ac100-rtc" },
623 	{ },
624 };
625 MODULE_DEVICE_TABLE(of, ac100_rtc_match);
626 
627 static struct platform_driver ac100_rtc_driver = {
628 	.probe		= ac100_rtc_probe,
629 	.remove		= ac100_rtc_remove,
630 	.driver		= {
631 		.name		= "ac100-rtc",
632 		.of_match_table	= of_match_ptr(ac100_rtc_match),
633 	},
634 };
635 module_platform_driver(ac100_rtc_driver);
636 
637 MODULE_DESCRIPTION("X-Powers AC100 RTC driver");
638 MODULE_AUTHOR("Chen-Yu Tsai <wens@csie.org>");
639 MODULE_LICENSE("GPL v2");
640