xref: /openbmc/linux/drivers/rtc/rtc-ab-b5ze-s3.c (revision e33bbe69149b802c0c77bfb822685772f85388ca)
1 /*
2  * rtc-ab-b5ze-s3 - Driver for Abracon AB-RTCMC-32.768Khz-B5ZE-S3
3  *                  I2C RTC / Alarm chip
4  *
5  * Copyright (C) 2014, Arnaud EBALARD <arno@natisbad.org>
6  *
7  * Detailed datasheet of the chip is available here:
8  *
9  *  http://www.abracon.com/realtimeclock/AB-RTCMC-32.768kHz-B5ZE-S3-Application-Manual.pdf
10  *
11  * This work is based on ISL12057 driver (drivers/rtc/rtc-isl12057.c).
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/rtc.h>
27 #include <linux/i2c.h>
28 #include <linux/bcd.h>
29 #include <linux/of.h>
30 #include <linux/regmap.h>
31 #include <linux/interrupt.h>
32 
33 #define DRV_NAME "rtc-ab-b5ze-s3"
34 
35 /* Control section */
36 #define ABB5ZES3_REG_CTRL1	   0x00	   /* Control 1 register */
37 #define ABB5ZES3_REG_CTRL1_CIE	   BIT(0)  /* Pulse interrupt enable */
38 #define ABB5ZES3_REG_CTRL1_AIE	   BIT(1)  /* Alarm interrupt enable */
39 #define ABB5ZES3_REG_CTRL1_SIE	   BIT(2)  /* Second interrupt enable */
40 #define ABB5ZES3_REG_CTRL1_PM	   BIT(3)  /* 24h/12h mode */
41 #define ABB5ZES3_REG_CTRL1_SR	   BIT(4)  /* Software reset */
42 #define ABB5ZES3_REG_CTRL1_STOP	   BIT(5)  /* RTC circuit enable */
43 #define ABB5ZES3_REG_CTRL1_CAP	   BIT(7)
44 
45 #define ABB5ZES3_REG_CTRL2	   0x01	   /* Control 2 register */
46 #define ABB5ZES3_REG_CTRL2_CTBIE   BIT(0)  /* Countdown timer B int. enable */
47 #define ABB5ZES3_REG_CTRL2_CTAIE   BIT(1)  /* Countdown timer A int. enable */
48 #define ABB5ZES3_REG_CTRL2_WTAIE   BIT(2)  /* Watchdog timer A int. enable */
49 #define ABB5ZES3_REG_CTRL2_AF	   BIT(3)  /* Alarm interrupt status */
50 #define ABB5ZES3_REG_CTRL2_SF	   BIT(4)  /* Second interrupt status */
51 #define ABB5ZES3_REG_CTRL2_CTBF	   BIT(5)  /* Countdown timer B int. status */
52 #define ABB5ZES3_REG_CTRL2_CTAF	   BIT(6)  /* Countdown timer A int. status */
53 #define ABB5ZES3_REG_CTRL2_WTAF	   BIT(7)  /* Watchdog timer A int. status */
54 
55 #define ABB5ZES3_REG_CTRL3	   0x02	   /* Control 3 register */
56 #define ABB5ZES3_REG_CTRL3_PM2	   BIT(7)  /* Power Management bit 2 */
57 #define ABB5ZES3_REG_CTRL3_PM1	   BIT(6)  /* Power Management bit 1 */
58 #define ABB5ZES3_REG_CTRL3_PM0	   BIT(5)  /* Power Management bit 0 */
59 #define ABB5ZES3_REG_CTRL3_BSF	   BIT(3)  /* Battery switchover int. status */
60 #define ABB5ZES3_REG_CTRL3_BLF	   BIT(2)  /* Battery low int. status */
61 #define ABB5ZES3_REG_CTRL3_BSIE	   BIT(1)  /* Battery switchover int. enable */
62 #define ABB5ZES3_REG_CTRL3_BLIE	   BIT(0)  /* Battery low int. enable */
63 
64 #define ABB5ZES3_CTRL_SEC_LEN	   3
65 
66 /* RTC section */
67 #define ABB5ZES3_REG_RTC_SC	   0x03	   /* RTC Seconds register */
68 #define ABB5ZES3_REG_RTC_SC_OSC	   BIT(7)  /* Clock integrity status */
69 #define ABB5ZES3_REG_RTC_MN	   0x04	   /* RTC Minutes register */
70 #define ABB5ZES3_REG_RTC_HR	   0x05	   /* RTC Hours register */
71 #define ABB5ZES3_REG_RTC_HR_PM	   BIT(5)  /* RTC Hours PM bit */
72 #define ABB5ZES3_REG_RTC_DT	   0x06	   /* RTC Date register */
73 #define ABB5ZES3_REG_RTC_DW	   0x07	   /* RTC Day of the week register */
74 #define ABB5ZES3_REG_RTC_MO	   0x08	   /* RTC Month register */
75 #define ABB5ZES3_REG_RTC_YR	   0x09	   /* RTC Year register */
76 
77 #define ABB5ZES3_RTC_SEC_LEN	   7
78 
79 /* Alarm section (enable bits are all active low) */
80 #define ABB5ZES3_REG_ALRM_MN	   0x0A	   /* Alarm - minute register */
81 #define ABB5ZES3_REG_ALRM_MN_AE	   BIT(7)  /* Minute enable */
82 #define ABB5ZES3_REG_ALRM_HR	   0x0B	   /* Alarm - hours register */
83 #define ABB5ZES3_REG_ALRM_HR_AE	   BIT(7)  /* Hour enable */
84 #define ABB5ZES3_REG_ALRM_DT	   0x0C	   /* Alarm - date register */
85 #define ABB5ZES3_REG_ALRM_DT_AE	   BIT(7)  /* Date (day of the month) enable */
86 #define ABB5ZES3_REG_ALRM_DW	   0x0D	   /* Alarm - day of the week reg. */
87 #define ABB5ZES3_REG_ALRM_DW_AE	   BIT(7)  /* Day of the week enable */
88 
89 #define ABB5ZES3_ALRM_SEC_LEN	   4
90 
91 /* Frequency offset section */
92 #define ABB5ZES3_REG_FREQ_OF	   0x0E	   /* Frequency offset register */
93 #define ABB5ZES3_REG_FREQ_OF_MODE  0x0E	   /* Offset mode: 2 hours / minute */
94 
95 /* CLOCKOUT section */
96 #define ABB5ZES3_REG_TIM_CLK	   0x0F	   /* Timer & Clockout register */
97 #define ABB5ZES3_REG_TIM_CLK_TAM   BIT(7)  /* Permanent/pulsed timer A/int. 2 */
98 #define ABB5ZES3_REG_TIM_CLK_TBM   BIT(6)  /* Permanent/pulsed timer B */
99 #define ABB5ZES3_REG_TIM_CLK_COF2  BIT(5)  /* Clkout Freq bit 2 */
100 #define ABB5ZES3_REG_TIM_CLK_COF1  BIT(4)  /* Clkout Freq bit 1 */
101 #define ABB5ZES3_REG_TIM_CLK_COF0  BIT(3)  /* Clkout Freq bit 0 */
102 #define ABB5ZES3_REG_TIM_CLK_TAC1  BIT(2)  /* Timer A: - 01 : countdown */
103 #define ABB5ZES3_REG_TIM_CLK_TAC0  BIT(1)  /*	       - 10 : timer	*/
104 #define ABB5ZES3_REG_TIM_CLK_TBC   BIT(0)  /* Timer B enable */
105 
106 /* Timer A Section */
107 #define ABB5ZES3_REG_TIMA_CLK	   0x10	   /* Timer A clock register */
108 #define ABB5ZES3_REG_TIMA_CLK_TAQ2 BIT(2)  /* Freq bit 2 */
109 #define ABB5ZES3_REG_TIMA_CLK_TAQ1 BIT(1)  /* Freq bit 1 */
110 #define ABB5ZES3_REG_TIMA_CLK_TAQ0 BIT(0)  /* Freq bit 0 */
111 #define ABB5ZES3_REG_TIMA	   0x11	   /* Timer A register */
112 
113 #define ABB5ZES3_TIMA_SEC_LEN	   2
114 
115 /* Timer B Section */
116 #define ABB5ZES3_REG_TIMB_CLK	   0x12	   /* Timer B clock register */
117 #define ABB5ZES3_REG_TIMB_CLK_TBW2 BIT(6)
118 #define ABB5ZES3_REG_TIMB_CLK_TBW1 BIT(5)
119 #define ABB5ZES3_REG_TIMB_CLK_TBW0 BIT(4)
120 #define ABB5ZES3_REG_TIMB_CLK_TAQ2 BIT(2)
121 #define ABB5ZES3_REG_TIMB_CLK_TAQ1 BIT(1)
122 #define ABB5ZES3_REG_TIMB_CLK_TAQ0 BIT(0)
123 #define ABB5ZES3_REG_TIMB	   0x13	   /* Timer B register */
124 #define ABB5ZES3_TIMB_SEC_LEN	   2
125 
126 #define ABB5ZES3_MEM_MAP_LEN	   0x14
127 
128 struct abb5zes3_rtc_data {
129 	struct rtc_device *rtc;
130 	struct regmap *regmap;
131 	struct mutex lock;
132 
133 	int irq;
134 
135 	bool battery_low;
136 	bool timer_alarm; /* current alarm is via timer A */
137 };
138 
139 /*
140  * Try and match register bits w/ fixed null values to see whether we
141  * are dealing with an ABB5ZES3. Note: this function is called early
142  * during init and hence does need mutex protection.
143  */
144 static int abb5zes3_i2c_validate_chip(struct regmap *regmap)
145 {
146 	u8 regs[ABB5ZES3_MEM_MAP_LEN];
147 	static const u8 mask[ABB5ZES3_MEM_MAP_LEN] = { 0x00, 0x00, 0x10, 0x00,
148 						       0x80, 0xc0, 0xc0, 0xf8,
149 						       0xe0, 0x00, 0x00, 0x40,
150 						       0x40, 0x78, 0x00, 0x00,
151 						       0xf8, 0x00, 0x88, 0x00 };
152 	int ret, i;
153 
154 	ret = regmap_bulk_read(regmap, 0, regs, ABB5ZES3_MEM_MAP_LEN);
155 	if (ret)
156 		return ret;
157 
158 	for (i = 0; i < ABB5ZES3_MEM_MAP_LEN; ++i) {
159 		if (regs[i] & mask[i]) /* check if bits are cleared */
160 			return -ENODEV;
161 	}
162 
163 	return 0;
164 }
165 
166 /* Clear alarm status bit. */
167 static int _abb5zes3_rtc_clear_alarm(struct device *dev)
168 {
169 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
170 	int ret;
171 
172 	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2,
173 				 ABB5ZES3_REG_CTRL2_AF, 0);
174 	if (ret)
175 		dev_err(dev, "%s: clearing alarm failed (%d)\n", __func__, ret);
176 
177 	return ret;
178 }
179 
180 /* Enable or disable alarm (i.e. alarm interrupt generation) */
181 static int _abb5zes3_rtc_update_alarm(struct device *dev, bool enable)
182 {
183 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
184 	int ret;
185 
186 	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL1,
187 				 ABB5ZES3_REG_CTRL1_AIE,
188 				 enable ? ABB5ZES3_REG_CTRL1_AIE : 0);
189 	if (ret)
190 		dev_err(dev, "%s: writing alarm INT failed (%d)\n",
191 			__func__, ret);
192 
193 	return ret;
194 }
195 
196 /* Enable or disable timer (watchdog timer A interrupt generation) */
197 static int _abb5zes3_rtc_update_timer(struct device *dev, bool enable)
198 {
199 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
200 	int ret;
201 
202 	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2,
203 				 ABB5ZES3_REG_CTRL2_WTAIE,
204 				 enable ? ABB5ZES3_REG_CTRL2_WTAIE : 0);
205 	if (ret)
206 		dev_err(dev, "%s: writing timer INT failed (%d)\n",
207 			__func__, ret);
208 
209 	return ret;
210 }
211 
212 /*
213  * Note: we only read, so regmap inner lock protection is sufficient, i.e.
214  * we do not need driver's main lock protection.
215  */
216 static int _abb5zes3_rtc_read_time(struct device *dev, struct rtc_time *tm)
217 {
218 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
219 	u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
220 	int ret = 0;
221 
222 	/*
223 	 * As we need to read CTRL1 register anyway to access 24/12h
224 	 * mode bit, we do a single bulk read of both control and RTC
225 	 * sections (they are consecutive). This also ease indexing
226 	 * of register values after bulk read.
227 	 */
228 	ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_CTRL1, regs,
229 			       sizeof(regs));
230 	if (ret) {
231 		dev_err(dev, "%s: reading RTC time failed (%d)\n",
232 			__func__, ret);
233 		goto err;
234 	}
235 
236 	/* If clock integrity is not guaranteed, do not return a time value */
237 	if (regs[ABB5ZES3_REG_RTC_SC] & ABB5ZES3_REG_RTC_SC_OSC) {
238 		ret = -ENODATA;
239 		goto err;
240 	}
241 
242 	tm->tm_sec = bcd2bin(regs[ABB5ZES3_REG_RTC_SC] & 0x7F);
243 	tm->tm_min = bcd2bin(regs[ABB5ZES3_REG_RTC_MN]);
244 
245 	if (regs[ABB5ZES3_REG_CTRL1] & ABB5ZES3_REG_CTRL1_PM) { /* 12hr mode */
246 		tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR] & 0x1f);
247 		if (regs[ABB5ZES3_REG_RTC_HR] & ABB5ZES3_REG_RTC_HR_PM) /* PM */
248 			tm->tm_hour += 12;
249 	} else {						/* 24hr mode */
250 		tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR]);
251 	}
252 
253 	tm->tm_mday = bcd2bin(regs[ABB5ZES3_REG_RTC_DT]);
254 	tm->tm_wday = bcd2bin(regs[ABB5ZES3_REG_RTC_DW]);
255 	tm->tm_mon  = bcd2bin(regs[ABB5ZES3_REG_RTC_MO]) - 1; /* starts at 1 */
256 	tm->tm_year = bcd2bin(regs[ABB5ZES3_REG_RTC_YR]) + 100;
257 
258 err:
259 	return ret;
260 }
261 
262 static int abb5zes3_rtc_set_time(struct device *dev, struct rtc_time *tm)
263 {
264 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
265 	u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
266 	int ret;
267 
268 	/*
269 	 * Year register is 8-bit wide and bcd-coded, i.e records values
270 	 * between 0 and 99. tm_year is an offset from 1900 and we are
271 	 * interested in the 2000-2099 range, so any value less than 100
272 	 * is invalid.
273 	 */
274 	if (tm->tm_year < 100)
275 		return -EINVAL;
276 
277 	regs[ABB5ZES3_REG_RTC_SC] = bin2bcd(tm->tm_sec); /* MSB=0 clears OSC */
278 	regs[ABB5ZES3_REG_RTC_MN] = bin2bcd(tm->tm_min);
279 	regs[ABB5ZES3_REG_RTC_HR] = bin2bcd(tm->tm_hour); /* 24-hour format */
280 	regs[ABB5ZES3_REG_RTC_DT] = bin2bcd(tm->tm_mday);
281 	regs[ABB5ZES3_REG_RTC_DW] = bin2bcd(tm->tm_wday);
282 	regs[ABB5ZES3_REG_RTC_MO] = bin2bcd(tm->tm_mon + 1);
283 	regs[ABB5ZES3_REG_RTC_YR] = bin2bcd(tm->tm_year - 100);
284 
285 	mutex_lock(&data->lock);
286 	ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_RTC_SC,
287 				regs + ABB5ZES3_REG_RTC_SC,
288 				ABB5ZES3_RTC_SEC_LEN);
289 	mutex_unlock(&data->lock);
290 
291 
292 	return ret;
293 }
294 
295 /*
296  * Set provided TAQ and Timer A registers (TIMA_CLK and TIMA) based on
297  * given number of seconds.
298  */
299 static inline void sec_to_timer_a(u8 secs, u8 *taq, u8 *timer_a)
300 {
301 	*taq = ABB5ZES3_REG_TIMA_CLK_TAQ1; /* 1Hz */
302 	*timer_a = secs;
303 }
304 
305 /*
306  * Return current number of seconds in Timer A. As we only use
307  * timer A with a 1Hz freq, this is what we expect to have.
308  */
309 static inline int sec_from_timer_a(u8 *secs, u8 taq, u8 timer_a)
310 {
311 	if (taq != ABB5ZES3_REG_TIMA_CLK_TAQ1) /* 1Hz */
312 		return -EINVAL;
313 
314 	*secs = timer_a;
315 
316 	return 0;
317 }
318 
319 /*
320  * Read alarm currently configured via a watchdog timer using timer A. This
321  * is done by reading current RTC time and adding remaining timer time.
322  */
323 static int _abb5zes3_rtc_read_timer(struct device *dev,
324 				    struct rtc_wkalrm *alarm)
325 {
326 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
327 	struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
328 	u8 regs[ABB5ZES3_TIMA_SEC_LEN + 1];
329 	unsigned long rtc_secs;
330 	unsigned int reg;
331 	u8 timer_secs;
332 	int ret;
333 
334 	/*
335 	 * Instead of doing two separate calls, because they are consecutive,
336 	 * we grab both clockout register and Timer A section. The latter is
337 	 * used to decide if timer A is enabled (as a watchdog timer).
338 	 */
339 	ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_TIM_CLK, regs,
340 			       ABB5ZES3_TIMA_SEC_LEN + 1);
341 	if (ret) {
342 		dev_err(dev, "%s: reading Timer A section failed (%d)\n",
343 			__func__, ret);
344 		goto err;
345 	}
346 
347 	/* get current time ... */
348 	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
349 	if (ret)
350 		goto err;
351 
352 	/* ... convert to seconds ... */
353 	ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
354 	if (ret)
355 		goto err;
356 
357 	/* ... add remaining timer A time ... */
358 	ret = sec_from_timer_a(&timer_secs, regs[1], regs[2]);
359 	if (ret)
360 		goto err;
361 
362 	/* ... and convert back. */
363 	rtc_time_to_tm(rtc_secs + timer_secs, alarm_tm);
364 
365 	ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL2, &reg);
366 	if (ret) {
367 		dev_err(dev, "%s: reading ctrl reg failed (%d)\n",
368 			__func__, ret);
369 		goto err;
370 	}
371 
372 	alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL2_WTAIE);
373 
374 err:
375 	return ret;
376 }
377 
378 /* Read alarm currently configured via a RTC alarm registers. */
379 static int _abb5zes3_rtc_read_alarm(struct device *dev,
380 				    struct rtc_wkalrm *alarm)
381 {
382 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
383 	struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
384 	unsigned long rtc_secs, alarm_secs;
385 	u8 regs[ABB5ZES3_ALRM_SEC_LEN];
386 	unsigned int reg;
387 	int ret;
388 
389 	ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
390 			       ABB5ZES3_ALRM_SEC_LEN);
391 	if (ret) {
392 		dev_err(dev, "%s: reading alarm section failed (%d)\n",
393 			__func__, ret);
394 		goto err;
395 	}
396 
397 	alarm_tm->tm_sec  = 0;
398 	alarm_tm->tm_min  = bcd2bin(regs[0] & 0x7f);
399 	alarm_tm->tm_hour = bcd2bin(regs[1] & 0x3f);
400 	alarm_tm->tm_mday = bcd2bin(regs[2] & 0x3f);
401 	alarm_tm->tm_wday = -1;
402 
403 	/*
404 	 * The alarm section does not store year/month. We use the ones in rtc
405 	 * section as a basis and increment month and then year if needed to get
406 	 * alarm after current time.
407 	 */
408 	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
409 	if (ret)
410 		goto err;
411 
412 	alarm_tm->tm_year = rtc_tm.tm_year;
413 	alarm_tm->tm_mon = rtc_tm.tm_mon;
414 
415 	ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
416 	if (ret)
417 		goto err;
418 
419 	ret = rtc_tm_to_time(alarm_tm, &alarm_secs);
420 	if (ret)
421 		goto err;
422 
423 	if (alarm_secs < rtc_secs) {
424 		if (alarm_tm->tm_mon == 11) {
425 			alarm_tm->tm_mon = 0;
426 			alarm_tm->tm_year += 1;
427 		} else {
428 			alarm_tm->tm_mon += 1;
429 		}
430 	}
431 
432 	ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL1, &reg);
433 	if (ret) {
434 		dev_err(dev, "%s: reading ctrl reg failed (%d)\n",
435 			__func__, ret);
436 		goto err;
437 	}
438 
439 	alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL1_AIE);
440 
441 err:
442 	return ret;
443 }
444 
445 /*
446  * As the Alarm mechanism supported by the chip is only accurate to the
447  * minute, we use the watchdog timer mechanism provided by timer A
448  * (up to 256 seconds w/ a second accuracy) for low alarm values (below
449  * 4 minutes). Otherwise, we use the common alarm mechanism provided
450  * by the chip. In order for that to work, we keep track of currently
451  * configured timer type via 'timer_alarm' flag in our private data
452  * structure.
453  */
454 static int abb5zes3_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
455 {
456 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
457 	int ret;
458 
459 	mutex_lock(&data->lock);
460 	if (data->timer_alarm)
461 		ret = _abb5zes3_rtc_read_timer(dev, alarm);
462 	else
463 		ret = _abb5zes3_rtc_read_alarm(dev, alarm);
464 	mutex_unlock(&data->lock);
465 
466 	return ret;
467 }
468 
469 /*
470  * Set alarm using chip alarm mechanism. It is only accurate to the
471  * minute (not the second). The function expects alarm interrupt to
472  * be disabled.
473  */
474 static int _abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
475 {
476 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
477 	struct rtc_time *alarm_tm = &alarm->time;
478 	unsigned long rtc_secs, alarm_secs;
479 	u8 regs[ABB5ZES3_ALRM_SEC_LEN];
480 	struct rtc_time rtc_tm;
481 	int ret, enable = 1;
482 
483 	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
484 	if (ret)
485 		goto err;
486 
487 	ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
488 	if (ret)
489 		goto err;
490 
491 	ret = rtc_tm_to_time(alarm_tm, &alarm_secs);
492 	if (ret)
493 		goto err;
494 
495 	/* If alarm time is before current time, disable the alarm */
496 	if (!alarm->enabled || alarm_secs <= rtc_secs) {
497 		enable = 0;
498 	} else {
499 		/*
500 		 * Chip only support alarms up to one month in the future. Let's
501 		 * return an error if we get something after that limit.
502 		 * Comparison is done by incrementing rtc_tm month field by one
503 		 * and checking alarm value is still below.
504 		 */
505 		if (rtc_tm.tm_mon == 11) { /* handle year wrapping */
506 			rtc_tm.tm_mon = 0;
507 			rtc_tm.tm_year += 1;
508 		} else {
509 			rtc_tm.tm_mon += 1;
510 		}
511 
512 		ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
513 		if (ret)
514 			goto err;
515 
516 		if (alarm_secs > rtc_secs) {
517 			dev_err(dev, "%s: alarm maximum is one month in the "
518 				"future (%d)\n", __func__, ret);
519 			ret = -EINVAL;
520 			goto err;
521 		}
522 	}
523 
524 	/*
525 	 * Program all alarm registers but DW one. For each register, setting
526 	 * MSB to 0 enables associated alarm.
527 	 */
528 	regs[0] = bin2bcd(alarm_tm->tm_min) & 0x7f;
529 	regs[1] = bin2bcd(alarm_tm->tm_hour) & 0x3f;
530 	regs[2] = bin2bcd(alarm_tm->tm_mday) & 0x3f;
531 	regs[3] = ABB5ZES3_REG_ALRM_DW_AE; /* do not match day of the week */
532 
533 	ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
534 				ABB5ZES3_ALRM_SEC_LEN);
535 	if (ret < 0) {
536 		dev_err(dev, "%s: writing ALARM section failed (%d)\n",
537 			__func__, ret);
538 		goto err;
539 	}
540 
541 	/* Record currently configured alarm is not a timer */
542 	data->timer_alarm = 0;
543 
544 	/* Enable or disable alarm interrupt generation */
545 	ret = _abb5zes3_rtc_update_alarm(dev, enable);
546 
547 err:
548 	return ret;
549 }
550 
551 /*
552  * Set alarm using timer watchdog (via timer A) mechanism. The function expects
553  * timer A interrupt to be disabled.
554  */
555 static int _abb5zes3_rtc_set_timer(struct device *dev, struct rtc_wkalrm *alarm,
556 				   u8 secs)
557 {
558 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
559 	u8 regs[ABB5ZES3_TIMA_SEC_LEN];
560 	u8 mask = ABB5ZES3_REG_TIM_CLK_TAC0 | ABB5ZES3_REG_TIM_CLK_TAC1;
561 	int ret = 0;
562 
563 	/* Program given number of seconds to Timer A registers */
564 	sec_to_timer_a(secs, &regs[0], &regs[1]);
565 	ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_TIMA_CLK, regs,
566 				ABB5ZES3_TIMA_SEC_LEN);
567 	if (ret < 0) {
568 		dev_err(dev, "%s: writing timer section failed\n", __func__);
569 		goto err;
570 	}
571 
572 	/* Configure Timer A as a watchdog timer */
573 	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_TIM_CLK,
574 				 mask, ABB5ZES3_REG_TIM_CLK_TAC1);
575 	if (ret)
576 		dev_err(dev, "%s: failed to update timer\n", __func__);
577 
578 	/* Record currently configured alarm is a timer */
579 	data->timer_alarm = 1;
580 
581 	/* Enable or disable timer interrupt generation */
582 	ret = _abb5zes3_rtc_update_timer(dev, alarm->enabled);
583 
584 err:
585 	return ret;
586 }
587 
588 /*
589  * The chip has an alarm which is only accurate to the minute. In order to
590  * handle alarms below that limit, we use the watchdog timer function of
591  * timer A. More precisely, the timer method is used for alarms below 240
592  * seconds.
593  */
594 static int abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
595 {
596 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
597 	struct rtc_time *alarm_tm = &alarm->time;
598 	unsigned long rtc_secs, alarm_secs;
599 	struct rtc_time rtc_tm;
600 	int ret;
601 
602 	mutex_lock(&data->lock);
603 	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
604 	if (ret)
605 		goto err;
606 
607 	ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
608 	if (ret)
609 		goto err;
610 
611 	ret = rtc_tm_to_time(alarm_tm, &alarm_secs);
612 	if (ret)
613 		goto err;
614 
615 	/* Let's first disable both the alarm and the timer interrupts */
616 	ret = _abb5zes3_rtc_update_alarm(dev, false);
617 	if (ret < 0) {
618 		dev_err(dev, "%s: unable to disable alarm (%d)\n", __func__,
619 			ret);
620 		goto err;
621 	}
622 	ret = _abb5zes3_rtc_update_timer(dev, false);
623 	if (ret < 0) {
624 		dev_err(dev, "%s: unable to disable timer (%d)\n", __func__,
625 			ret);
626 		goto err;
627 	}
628 
629 	data->timer_alarm = 0;
630 
631 	/*
632 	 * Let's now configure the alarm; if we are expected to ring in
633 	 * more than 240s, then we setup an alarm. Otherwise, a timer.
634 	 */
635 	if ((alarm_secs > rtc_secs) && ((alarm_secs - rtc_secs) <= 240))
636 		ret = _abb5zes3_rtc_set_timer(dev, alarm,
637 					      alarm_secs - rtc_secs);
638 	else
639 		ret = _abb5zes3_rtc_set_alarm(dev, alarm);
640 
641  err:
642 	mutex_unlock(&data->lock);
643 
644 	if (ret)
645 		dev_err(dev, "%s: unable to configure alarm (%d)\n", __func__,
646 			ret);
647 
648 	return ret;
649 }
650 
651 /* Enable or disable battery low irq generation */
652 static inline int _abb5zes3_rtc_battery_low_irq_enable(struct regmap *regmap,
653 						       bool enable)
654 {
655 	return regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3,
656 				  ABB5ZES3_REG_CTRL3_BLIE,
657 				  enable ? ABB5ZES3_REG_CTRL3_BLIE : 0);
658 }
659 
660 /*
661  * Check current RTC status and enable/disable what needs to be. Return 0 if
662  * everything went ok and a negative value upon error. Note: this function
663  * is called early during init and hence does need mutex protection.
664  */
665 static int abb5zes3_rtc_check_setup(struct device *dev)
666 {
667 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
668 	struct regmap *regmap = data->regmap;
669 	unsigned int reg;
670 	int ret;
671 	u8 mask;
672 
673 	/*
674 	 * By default, the devices generates a 32.768KHz signal on IRQ#1 pin. It
675 	 * is disabled here to prevent polluting the interrupt line and
676 	 * uselessly triggering the IRQ handler we install for alarm and battery
677 	 * low events. Note: this is done before clearing int. status below
678 	 * in this function.
679 	 * We also disable all timers and set timer interrupt to permanent (not
680 	 * pulsed).
681 	 */
682 	mask = (ABB5ZES3_REG_TIM_CLK_TBC | ABB5ZES3_REG_TIM_CLK_TAC0 |
683 		ABB5ZES3_REG_TIM_CLK_TAC1 | ABB5ZES3_REG_TIM_CLK_COF0 |
684 		ABB5ZES3_REG_TIM_CLK_COF1 | ABB5ZES3_REG_TIM_CLK_COF2 |
685 		ABB5ZES3_REG_TIM_CLK_TBM | ABB5ZES3_REG_TIM_CLK_TAM);
686 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_TIM_CLK, mask,
687 		ABB5ZES3_REG_TIM_CLK_COF0 | ABB5ZES3_REG_TIM_CLK_COF1 |
688 		ABB5ZES3_REG_TIM_CLK_COF2);
689 	if (ret < 0) {
690 		dev_err(dev, "%s: unable to initialize clkout register (%d)\n",
691 			__func__, ret);
692 		return ret;
693 	}
694 
695 	/*
696 	 * Each component of the alarm (MN, HR, DT, DW) can be enabled/disabled
697 	 * individually by clearing/setting MSB of each associated register. So,
698 	 * we set all alarm enable bits to disable current alarm setting.
699 	 */
700 	mask = (ABB5ZES3_REG_ALRM_MN_AE | ABB5ZES3_REG_ALRM_HR_AE |
701 		ABB5ZES3_REG_ALRM_DT_AE | ABB5ZES3_REG_ALRM_DW_AE);
702 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, mask);
703 	if (ret < 0) {
704 		dev_err(dev, "%s: unable to disable alarm setting (%d)\n",
705 			__func__, ret);
706 		return ret;
707 	}
708 
709 	/* Set Control 1 register (RTC enabled, 24hr mode, all int. disabled) */
710 	mask = (ABB5ZES3_REG_CTRL1_CIE | ABB5ZES3_REG_CTRL1_AIE |
711 		ABB5ZES3_REG_CTRL1_SIE | ABB5ZES3_REG_CTRL1_PM |
712 		ABB5ZES3_REG_CTRL1_CAP | ABB5ZES3_REG_CTRL1_STOP);
713 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL1, mask, 0);
714 	if (ret < 0) {
715 		dev_err(dev, "%s: unable to initialize CTRL1 register (%d)\n",
716 			__func__, ret);
717 		return ret;
718 	}
719 
720 	/*
721 	 * Set Control 2 register (timer int. disabled, alarm status cleared).
722 	 * WTAF is read-only and cleared automatically by reading the register.
723 	 */
724 	mask = (ABB5ZES3_REG_CTRL2_CTBIE | ABB5ZES3_REG_CTRL2_CTAIE |
725 		ABB5ZES3_REG_CTRL2_WTAIE | ABB5ZES3_REG_CTRL2_AF |
726 		ABB5ZES3_REG_CTRL2_SF | ABB5ZES3_REG_CTRL2_CTBF |
727 		ABB5ZES3_REG_CTRL2_CTAF);
728 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, 0);
729 	if (ret < 0) {
730 		dev_err(dev, "%s: unable to initialize CTRL2 register (%d)\n",
731 			__func__, ret);
732 		return ret;
733 	}
734 
735 	/*
736 	 * Enable battery low detection function and battery switchover function
737 	 * (standard mode). Disable associated interrupts. Clear battery
738 	 * switchover flag but not battery low flag. The latter is checked
739 	 * later below.
740 	 */
741 	mask = (ABB5ZES3_REG_CTRL3_PM0 | ABB5ZES3_REG_CTRL3_PM1 |
742 		ABB5ZES3_REG_CTRL3_PM2 | ABB5ZES3_REG_CTRL3_BLIE |
743 		ABB5ZES3_REG_CTRL3_BSIE| ABB5ZES3_REG_CTRL3_BSF);
744 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3, mask, 0);
745 	if (ret < 0) {
746 		dev_err(dev, "%s: unable to initialize CTRL3 register (%d)\n",
747 			__func__, ret);
748 		return ret;
749 	}
750 
751 	/* Check oscillator integrity flag */
752 	ret = regmap_read(regmap, ABB5ZES3_REG_RTC_SC, &reg);
753 	if (ret < 0) {
754 		dev_err(dev, "%s: unable to read osc. integrity flag (%d)\n",
755 			__func__, ret);
756 		return ret;
757 	}
758 
759 	if (reg & ABB5ZES3_REG_RTC_SC_OSC) {
760 		dev_err(dev, "clock integrity not guaranteed. Osc. has stopped "
761 			"or has been interrupted.\n");
762 		dev_err(dev, "change battery (if not already done) and  "
763 			"then set time to reset osc. failure flag.\n");
764 	}
765 
766 	/*
767 	 * Check battery low flag at startup: this allows reporting battery
768 	 * is low at startup when IRQ line is not connected. Note: we record
769 	 * current status to avoid reenabling this interrupt later in probe
770 	 * function if battery is low.
771 	 */
772 	ret = regmap_read(regmap, ABB5ZES3_REG_CTRL3, &reg);
773 	if (ret < 0) {
774 		dev_err(dev, "%s: unable to read battery low flag (%d)\n",
775 			__func__, ret);
776 		return ret;
777 	}
778 
779 	data->battery_low = reg & ABB5ZES3_REG_CTRL3_BLF;
780 	if (data->battery_low) {
781 		dev_err(dev, "RTC battery is low; please, consider "
782 			"changing it!\n");
783 
784 		ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, false);
785 		if (ret)
786 			dev_err(dev, "%s: disabling battery low interrupt "
787 				"generation failed (%d)\n", __func__, ret);
788 	}
789 
790 	return ret;
791 }
792 
793 static int abb5zes3_rtc_alarm_irq_enable(struct device *dev,
794 					 unsigned int enable)
795 {
796 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
797 	int ret = 0;
798 
799 	if (rtc_data->irq) {
800 		mutex_lock(&rtc_data->lock);
801 		if (rtc_data->timer_alarm)
802 			ret = _abb5zes3_rtc_update_timer(dev, enable);
803 		else
804 			ret = _abb5zes3_rtc_update_alarm(dev, enable);
805 		mutex_unlock(&rtc_data->lock);
806 	}
807 
808 	return ret;
809 }
810 
811 static irqreturn_t _abb5zes3_rtc_interrupt(int irq, void *data)
812 {
813 	struct i2c_client *client = data;
814 	struct device *dev = &client->dev;
815 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
816 	struct rtc_device *rtc = rtc_data->rtc;
817 	u8 regs[ABB5ZES3_CTRL_SEC_LEN];
818 	int ret, handled = IRQ_NONE;
819 
820 	ret = regmap_bulk_read(rtc_data->regmap, 0, regs,
821 			       ABB5ZES3_CTRL_SEC_LEN);
822 	if (ret) {
823 		dev_err(dev, "%s: unable to read control section (%d)!\n",
824 			__func__, ret);
825 		return handled;
826 	}
827 
828 	/*
829 	 * Check battery low detection flag and disable battery low interrupt
830 	 * generation if flag is set (interrupt can only be cleared when
831 	 * battery is replaced).
832 	 */
833 	if (regs[ABB5ZES3_REG_CTRL3] & ABB5ZES3_REG_CTRL3_BLF) {
834 		dev_err(dev, "RTC battery is low; please change it!\n");
835 
836 		_abb5zes3_rtc_battery_low_irq_enable(rtc_data->regmap, false);
837 
838 		handled = IRQ_HANDLED;
839 	}
840 
841 	/* Check alarm flag */
842 	if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_AF) {
843 		dev_dbg(dev, "RTC alarm!\n");
844 
845 		rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
846 
847 		/* Acknowledge and disable the alarm */
848 		_abb5zes3_rtc_clear_alarm(dev);
849 		_abb5zes3_rtc_update_alarm(dev, 0);
850 
851 		handled = IRQ_HANDLED;
852 	}
853 
854 	/* Check watchdog Timer A flag */
855 	if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_WTAF) {
856 		dev_dbg(dev, "RTC timer!\n");
857 
858 		rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
859 
860 		/*
861 		 * Acknowledge and disable the alarm. Note: WTAF
862 		 * flag had been cleared when reading CTRL2
863 		 */
864 		_abb5zes3_rtc_update_timer(dev, 0);
865 
866 		rtc_data->timer_alarm = 0;
867 
868 		handled = IRQ_HANDLED;
869 	}
870 
871 	return handled;
872 }
873 
874 static const struct rtc_class_ops rtc_ops = {
875 	.read_time = _abb5zes3_rtc_read_time,
876 	.set_time = abb5zes3_rtc_set_time,
877 	.read_alarm = abb5zes3_rtc_read_alarm,
878 	.set_alarm = abb5zes3_rtc_set_alarm,
879 	.alarm_irq_enable = abb5zes3_rtc_alarm_irq_enable,
880 };
881 
882 static const struct regmap_config abb5zes3_rtc_regmap_config = {
883 	.reg_bits = 8,
884 	.val_bits = 8,
885 };
886 
887 static int abb5zes3_probe(struct i2c_client *client,
888 			  const struct i2c_device_id *id)
889 {
890 	struct abb5zes3_rtc_data *data = NULL;
891 	struct device *dev = &client->dev;
892 	struct regmap *regmap;
893 	int ret;
894 
895 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C |
896 				     I2C_FUNC_SMBUS_BYTE_DATA |
897 				     I2C_FUNC_SMBUS_I2C_BLOCK)) {
898 		ret = -ENODEV;
899 		goto err;
900 	}
901 
902 	regmap = devm_regmap_init_i2c(client, &abb5zes3_rtc_regmap_config);
903 	if (IS_ERR(regmap)) {
904 		ret = PTR_ERR(regmap);
905 		dev_err(dev, "%s: regmap allocation failed: %d\n",
906 			__func__, ret);
907 		goto err;
908 	}
909 
910 	ret = abb5zes3_i2c_validate_chip(regmap);
911 	if (ret)
912 		goto err;
913 
914 	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
915 	if (!data) {
916 		ret = -ENOMEM;
917 		goto err;
918 	}
919 
920 	mutex_init(&data->lock);
921 	data->regmap = regmap;
922 	dev_set_drvdata(dev, data);
923 
924 	ret = abb5zes3_rtc_check_setup(dev);
925 	if (ret)
926 		goto err;
927 
928 	if (client->irq > 0) {
929 		ret = devm_request_threaded_irq(dev, client->irq, NULL,
930 						_abb5zes3_rtc_interrupt,
931 						IRQF_SHARED|IRQF_ONESHOT,
932 						DRV_NAME, client);
933 		if (!ret) {
934 			device_init_wakeup(dev, true);
935 			data->irq = client->irq;
936 			dev_dbg(dev, "%s: irq %d used by RTC\n", __func__,
937 				client->irq);
938 		} else {
939 			dev_err(dev, "%s: irq %d unavailable (%d)\n",
940 				__func__, client->irq, ret);
941 			goto err;
942 		}
943 	}
944 
945 	data->rtc = devm_rtc_device_register(dev, DRV_NAME, &rtc_ops,
946 					     THIS_MODULE);
947 	ret = PTR_ERR_OR_ZERO(data->rtc);
948 	if (ret) {
949 		dev_err(dev, "%s: unable to register RTC device (%d)\n",
950 			__func__, ret);
951 		goto err;
952 	}
953 
954 	/* Enable battery low detection interrupt if battery not already low */
955 	if (!data->battery_low && data->irq) {
956 		ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, true);
957 		if (ret) {
958 			dev_err(dev, "%s: enabling battery low interrupt "
959 				"generation failed (%d)\n", __func__, ret);
960 			goto err;
961 		}
962 	}
963 
964 err:
965 	if (ret && data && data->irq)
966 		device_init_wakeup(dev, false);
967 	return ret;
968 }
969 
970 static int abb5zes3_remove(struct i2c_client *client)
971 {
972 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(&client->dev);
973 
974 	if (rtc_data->irq > 0)
975 		device_init_wakeup(&client->dev, false);
976 
977 	return 0;
978 }
979 
980 #ifdef CONFIG_PM_SLEEP
981 static int abb5zes3_rtc_suspend(struct device *dev)
982 {
983 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
984 
985 	if (device_may_wakeup(dev))
986 		return enable_irq_wake(rtc_data->irq);
987 
988 	return 0;
989 }
990 
991 static int abb5zes3_rtc_resume(struct device *dev)
992 {
993 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
994 
995 	if (device_may_wakeup(dev))
996 		return disable_irq_wake(rtc_data->irq);
997 
998 	return 0;
999 }
1000 #endif
1001 
1002 static SIMPLE_DEV_PM_OPS(abb5zes3_rtc_pm_ops, abb5zes3_rtc_suspend,
1003 			 abb5zes3_rtc_resume);
1004 
1005 #ifdef CONFIG_OF
1006 static const struct of_device_id abb5zes3_dt_match[] = {
1007 	{ .compatible = "abracon,abb5zes3" },
1008 	{ },
1009 };
1010 MODULE_DEVICE_TABLE(of, abb5zes3_dt_match);
1011 #endif
1012 
1013 static const struct i2c_device_id abb5zes3_id[] = {
1014 	{ "abb5zes3", 0 },
1015 	{ }
1016 };
1017 MODULE_DEVICE_TABLE(i2c, abb5zes3_id);
1018 
1019 static struct i2c_driver abb5zes3_driver = {
1020 	.driver = {
1021 		.name = DRV_NAME,
1022 		.pm = &abb5zes3_rtc_pm_ops,
1023 		.of_match_table = of_match_ptr(abb5zes3_dt_match),
1024 	},
1025 	.probe	  = abb5zes3_probe,
1026 	.remove	  = abb5zes3_remove,
1027 	.id_table = abb5zes3_id,
1028 };
1029 module_i2c_driver(abb5zes3_driver);
1030 
1031 MODULE_AUTHOR("Arnaud EBALARD <arno@natisbad.org>");
1032 MODULE_DESCRIPTION("Abracon AB-RTCMC-32.768kHz-B5ZE-S3 RTC/Alarm driver");
1033 MODULE_LICENSE("GPL");
1034