xref: /openbmc/linux/drivers/rtc/rtc-ab-b5ze-s3.c (revision 77423a62)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * rtc-ab-b5ze-s3 - Driver for Abracon AB-RTCMC-32.768Khz-B5ZE-S3
4  *                  I2C RTC / Alarm chip
5  *
6  * Copyright (C) 2014, Arnaud EBALARD <arno@natisbad.org>
7  *
8  * Detailed datasheet of the chip is available here:
9  *
10  *  https://www.abracon.com/realtimeclock/AB-RTCMC-32.768kHz-B5ZE-S3-Application-Manual.pdf
11  *
12  * This work is based on ISL12057 driver (drivers/rtc/rtc-isl12057.c).
13  *
14  */
15 
16 #include <linux/module.h>
17 #include <linux/rtc.h>
18 #include <linux/i2c.h>
19 #include <linux/bcd.h>
20 #include <linux/of.h>
21 #include <linux/regmap.h>
22 #include <linux/interrupt.h>
23 
24 #define DRV_NAME "rtc-ab-b5ze-s3"
25 
26 /* Control section */
27 #define ABB5ZES3_REG_CTRL1	   0x00	   /* Control 1 register */
28 #define ABB5ZES3_REG_CTRL1_CIE	   BIT(0)  /* Pulse interrupt enable */
29 #define ABB5ZES3_REG_CTRL1_AIE	   BIT(1)  /* Alarm interrupt enable */
30 #define ABB5ZES3_REG_CTRL1_SIE	   BIT(2)  /* Second interrupt enable */
31 #define ABB5ZES3_REG_CTRL1_PM	   BIT(3)  /* 24h/12h mode */
32 #define ABB5ZES3_REG_CTRL1_SR	   BIT(4)  /* Software reset */
33 #define ABB5ZES3_REG_CTRL1_STOP	   BIT(5)  /* RTC circuit enable */
34 #define ABB5ZES3_REG_CTRL1_CAP	   BIT(7)
35 
36 #define ABB5ZES3_REG_CTRL2	   0x01	   /* Control 2 register */
37 #define ABB5ZES3_REG_CTRL2_CTBIE   BIT(0)  /* Countdown timer B int. enable */
38 #define ABB5ZES3_REG_CTRL2_CTAIE   BIT(1)  /* Countdown timer A int. enable */
39 #define ABB5ZES3_REG_CTRL2_WTAIE   BIT(2)  /* Watchdog timer A int. enable */
40 #define ABB5ZES3_REG_CTRL2_AF	   BIT(3)  /* Alarm interrupt status */
41 #define ABB5ZES3_REG_CTRL2_SF	   BIT(4)  /* Second interrupt status */
42 #define ABB5ZES3_REG_CTRL2_CTBF	   BIT(5)  /* Countdown timer B int. status */
43 #define ABB5ZES3_REG_CTRL2_CTAF	   BIT(6)  /* Countdown timer A int. status */
44 #define ABB5ZES3_REG_CTRL2_WTAF	   BIT(7)  /* Watchdog timer A int. status */
45 
46 #define ABB5ZES3_REG_CTRL3	   0x02	   /* Control 3 register */
47 #define ABB5ZES3_REG_CTRL3_PM2	   BIT(7)  /* Power Management bit 2 */
48 #define ABB5ZES3_REG_CTRL3_PM1	   BIT(6)  /* Power Management bit 1 */
49 #define ABB5ZES3_REG_CTRL3_PM0	   BIT(5)  /* Power Management bit 0 */
50 #define ABB5ZES3_REG_CTRL3_BSF	   BIT(3)  /* Battery switchover int. status */
51 #define ABB5ZES3_REG_CTRL3_BLF	   BIT(2)  /* Battery low int. status */
52 #define ABB5ZES3_REG_CTRL3_BSIE	   BIT(1)  /* Battery switchover int. enable */
53 #define ABB5ZES3_REG_CTRL3_BLIE	   BIT(0)  /* Battery low int. enable */
54 
55 #define ABB5ZES3_CTRL_SEC_LEN	   3
56 
57 /* RTC section */
58 #define ABB5ZES3_REG_RTC_SC	   0x03	   /* RTC Seconds register */
59 #define ABB5ZES3_REG_RTC_SC_OSC	   BIT(7)  /* Clock integrity status */
60 #define ABB5ZES3_REG_RTC_MN	   0x04	   /* RTC Minutes register */
61 #define ABB5ZES3_REG_RTC_HR	   0x05	   /* RTC Hours register */
62 #define ABB5ZES3_REG_RTC_HR_PM	   BIT(5)  /* RTC Hours PM bit */
63 #define ABB5ZES3_REG_RTC_DT	   0x06	   /* RTC Date register */
64 #define ABB5ZES3_REG_RTC_DW	   0x07	   /* RTC Day of the week register */
65 #define ABB5ZES3_REG_RTC_MO	   0x08	   /* RTC Month register */
66 #define ABB5ZES3_REG_RTC_YR	   0x09	   /* RTC Year register */
67 
68 #define ABB5ZES3_RTC_SEC_LEN	   7
69 
70 /* Alarm section (enable bits are all active low) */
71 #define ABB5ZES3_REG_ALRM_MN	   0x0A	   /* Alarm - minute register */
72 #define ABB5ZES3_REG_ALRM_MN_AE	   BIT(7)  /* Minute enable */
73 #define ABB5ZES3_REG_ALRM_HR	   0x0B	   /* Alarm - hours register */
74 #define ABB5ZES3_REG_ALRM_HR_AE	   BIT(7)  /* Hour enable */
75 #define ABB5ZES3_REG_ALRM_DT	   0x0C	   /* Alarm - date register */
76 #define ABB5ZES3_REG_ALRM_DT_AE	   BIT(7)  /* Date (day of the month) enable */
77 #define ABB5ZES3_REG_ALRM_DW	   0x0D	   /* Alarm - day of the week reg. */
78 #define ABB5ZES3_REG_ALRM_DW_AE	   BIT(7)  /* Day of the week enable */
79 
80 #define ABB5ZES3_ALRM_SEC_LEN	   4
81 
82 /* Frequency offset section */
83 #define ABB5ZES3_REG_FREQ_OF	   0x0E	   /* Frequency offset register */
84 #define ABB5ZES3_REG_FREQ_OF_MODE  0x0E	   /* Offset mode: 2 hours / minute */
85 
86 /* CLOCKOUT section */
87 #define ABB5ZES3_REG_TIM_CLK	   0x0F	   /* Timer & Clockout register */
88 #define ABB5ZES3_REG_TIM_CLK_TAM   BIT(7)  /* Permanent/pulsed timer A/int. 2 */
89 #define ABB5ZES3_REG_TIM_CLK_TBM   BIT(6)  /* Permanent/pulsed timer B */
90 #define ABB5ZES3_REG_TIM_CLK_COF2  BIT(5)  /* Clkout Freq bit 2 */
91 #define ABB5ZES3_REG_TIM_CLK_COF1  BIT(4)  /* Clkout Freq bit 1 */
92 #define ABB5ZES3_REG_TIM_CLK_COF0  BIT(3)  /* Clkout Freq bit 0 */
93 #define ABB5ZES3_REG_TIM_CLK_TAC1  BIT(2)  /* Timer A: - 01 : countdown */
94 #define ABB5ZES3_REG_TIM_CLK_TAC0  BIT(1)  /*	       - 10 : timer	*/
95 #define ABB5ZES3_REG_TIM_CLK_TBC   BIT(0)  /* Timer B enable */
96 
97 /* Timer A Section */
98 #define ABB5ZES3_REG_TIMA_CLK	   0x10	   /* Timer A clock register */
99 #define ABB5ZES3_REG_TIMA_CLK_TAQ2 BIT(2)  /* Freq bit 2 */
100 #define ABB5ZES3_REG_TIMA_CLK_TAQ1 BIT(1)  /* Freq bit 1 */
101 #define ABB5ZES3_REG_TIMA_CLK_TAQ0 BIT(0)  /* Freq bit 0 */
102 #define ABB5ZES3_REG_TIMA	   0x11	   /* Timer A register */
103 
104 #define ABB5ZES3_TIMA_SEC_LEN	   2
105 
106 /* Timer B Section */
107 #define ABB5ZES3_REG_TIMB_CLK	   0x12	   /* Timer B clock register */
108 #define ABB5ZES3_REG_TIMB_CLK_TBW2 BIT(6)
109 #define ABB5ZES3_REG_TIMB_CLK_TBW1 BIT(5)
110 #define ABB5ZES3_REG_TIMB_CLK_TBW0 BIT(4)
111 #define ABB5ZES3_REG_TIMB_CLK_TAQ2 BIT(2)
112 #define ABB5ZES3_REG_TIMB_CLK_TAQ1 BIT(1)
113 #define ABB5ZES3_REG_TIMB_CLK_TAQ0 BIT(0)
114 #define ABB5ZES3_REG_TIMB	   0x13	   /* Timer B register */
115 #define ABB5ZES3_TIMB_SEC_LEN	   2
116 
117 #define ABB5ZES3_MEM_MAP_LEN	   0x14
118 
119 struct abb5zes3_rtc_data {
120 	struct rtc_device *rtc;
121 	struct regmap *regmap;
122 
123 	int irq;
124 
125 	bool battery_low;
126 	bool timer_alarm; /* current alarm is via timer A */
127 };
128 
129 /*
130  * Try and match register bits w/ fixed null values to see whether we
131  * are dealing with an ABB5ZES3.
132  */
133 static int abb5zes3_i2c_validate_chip(struct regmap *regmap)
134 {
135 	u8 regs[ABB5ZES3_MEM_MAP_LEN];
136 	static const u8 mask[ABB5ZES3_MEM_MAP_LEN] = { 0x00, 0x00, 0x10, 0x00,
137 						       0x80, 0xc0, 0xc0, 0xf8,
138 						       0xe0, 0x00, 0x00, 0x40,
139 						       0x40, 0x78, 0x00, 0x00,
140 						       0xf8, 0x00, 0x88, 0x00 };
141 	int ret, i;
142 
143 	ret = regmap_bulk_read(regmap, 0, regs, ABB5ZES3_MEM_MAP_LEN);
144 	if (ret)
145 		return ret;
146 
147 	for (i = 0; i < ABB5ZES3_MEM_MAP_LEN; ++i) {
148 		if (regs[i] & mask[i]) /* check if bits are cleared */
149 			return -ENODEV;
150 	}
151 
152 	return 0;
153 }
154 
155 /* Clear alarm status bit. */
156 static int _abb5zes3_rtc_clear_alarm(struct device *dev)
157 {
158 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
159 	int ret;
160 
161 	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2,
162 				 ABB5ZES3_REG_CTRL2_AF, 0);
163 	if (ret)
164 		dev_err(dev, "%s: clearing alarm failed (%d)\n", __func__, ret);
165 
166 	return ret;
167 }
168 
169 /* Enable or disable alarm (i.e. alarm interrupt generation) */
170 static int _abb5zes3_rtc_update_alarm(struct device *dev, bool enable)
171 {
172 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
173 	int ret;
174 
175 	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL1,
176 				 ABB5ZES3_REG_CTRL1_AIE,
177 				 enable ? ABB5ZES3_REG_CTRL1_AIE : 0);
178 	if (ret)
179 		dev_err(dev, "%s: writing alarm INT failed (%d)\n",
180 			__func__, ret);
181 
182 	return ret;
183 }
184 
185 /* Enable or disable timer (watchdog timer A interrupt generation) */
186 static int _abb5zes3_rtc_update_timer(struct device *dev, bool enable)
187 {
188 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
189 	int ret;
190 
191 	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2,
192 				 ABB5ZES3_REG_CTRL2_WTAIE,
193 				 enable ? ABB5ZES3_REG_CTRL2_WTAIE : 0);
194 	if (ret)
195 		dev_err(dev, "%s: writing timer INT failed (%d)\n",
196 			__func__, ret);
197 
198 	return ret;
199 }
200 
201 /*
202  * Note: we only read, so regmap inner lock protection is sufficient, i.e.
203  * we do not need driver's main lock protection.
204  */
205 static int _abb5zes3_rtc_read_time(struct device *dev, struct rtc_time *tm)
206 {
207 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
208 	u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
209 	int ret = 0;
210 
211 	/*
212 	 * As we need to read CTRL1 register anyway to access 24/12h
213 	 * mode bit, we do a single bulk read of both control and RTC
214 	 * sections (they are consecutive). This also ease indexing
215 	 * of register values after bulk read.
216 	 */
217 	ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_CTRL1, regs,
218 			       sizeof(regs));
219 	if (ret) {
220 		dev_err(dev, "%s: reading RTC time failed (%d)\n",
221 			__func__, ret);
222 		return ret;
223 	}
224 
225 	/* If clock integrity is not guaranteed, do not return a time value */
226 	if (regs[ABB5ZES3_REG_RTC_SC] & ABB5ZES3_REG_RTC_SC_OSC)
227 		return -ENODATA;
228 
229 	tm->tm_sec = bcd2bin(regs[ABB5ZES3_REG_RTC_SC] & 0x7F);
230 	tm->tm_min = bcd2bin(regs[ABB5ZES3_REG_RTC_MN]);
231 
232 	if (regs[ABB5ZES3_REG_CTRL1] & ABB5ZES3_REG_CTRL1_PM) { /* 12hr mode */
233 		tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR] & 0x1f);
234 		if (regs[ABB5ZES3_REG_RTC_HR] & ABB5ZES3_REG_RTC_HR_PM) /* PM */
235 			tm->tm_hour += 12;
236 	} else {						/* 24hr mode */
237 		tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR]);
238 	}
239 
240 	tm->tm_mday = bcd2bin(regs[ABB5ZES3_REG_RTC_DT]);
241 	tm->tm_wday = bcd2bin(regs[ABB5ZES3_REG_RTC_DW]);
242 	tm->tm_mon  = bcd2bin(regs[ABB5ZES3_REG_RTC_MO]) - 1; /* starts at 1 */
243 	tm->tm_year = bcd2bin(regs[ABB5ZES3_REG_RTC_YR]) + 100;
244 
245 	return ret;
246 }
247 
248 static int abb5zes3_rtc_set_time(struct device *dev, struct rtc_time *tm)
249 {
250 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
251 	u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
252 	int ret;
253 
254 	regs[ABB5ZES3_REG_RTC_SC] = bin2bcd(tm->tm_sec); /* MSB=0 clears OSC */
255 	regs[ABB5ZES3_REG_RTC_MN] = bin2bcd(tm->tm_min);
256 	regs[ABB5ZES3_REG_RTC_HR] = bin2bcd(tm->tm_hour); /* 24-hour format */
257 	regs[ABB5ZES3_REG_RTC_DT] = bin2bcd(tm->tm_mday);
258 	regs[ABB5ZES3_REG_RTC_DW] = bin2bcd(tm->tm_wday);
259 	regs[ABB5ZES3_REG_RTC_MO] = bin2bcd(tm->tm_mon + 1);
260 	regs[ABB5ZES3_REG_RTC_YR] = bin2bcd(tm->tm_year - 100);
261 
262 	ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_RTC_SC,
263 				regs + ABB5ZES3_REG_RTC_SC,
264 				ABB5ZES3_RTC_SEC_LEN);
265 
266 	return ret;
267 }
268 
269 /*
270  * Set provided TAQ and Timer A registers (TIMA_CLK and TIMA) based on
271  * given number of seconds.
272  */
273 static inline void sec_to_timer_a(u8 secs, u8 *taq, u8 *timer_a)
274 {
275 	*taq = ABB5ZES3_REG_TIMA_CLK_TAQ1; /* 1Hz */
276 	*timer_a = secs;
277 }
278 
279 /*
280  * Return current number of seconds in Timer A. As we only use
281  * timer A with a 1Hz freq, this is what we expect to have.
282  */
283 static inline int sec_from_timer_a(u8 *secs, u8 taq, u8 timer_a)
284 {
285 	if (taq != ABB5ZES3_REG_TIMA_CLK_TAQ1) /* 1Hz */
286 		return -EINVAL;
287 
288 	*secs = timer_a;
289 
290 	return 0;
291 }
292 
293 /*
294  * Read alarm currently configured via a watchdog timer using timer A. This
295  * is done by reading current RTC time and adding remaining timer time.
296  */
297 static int _abb5zes3_rtc_read_timer(struct device *dev,
298 				    struct rtc_wkalrm *alarm)
299 {
300 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
301 	struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
302 	u8 regs[ABB5ZES3_TIMA_SEC_LEN + 1];
303 	unsigned long rtc_secs;
304 	unsigned int reg;
305 	u8 timer_secs;
306 	int ret;
307 
308 	/*
309 	 * Instead of doing two separate calls, because they are consecutive,
310 	 * we grab both clockout register and Timer A section. The latter is
311 	 * used to decide if timer A is enabled (as a watchdog timer).
312 	 */
313 	ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_TIM_CLK, regs,
314 			       ABB5ZES3_TIMA_SEC_LEN + 1);
315 	if (ret) {
316 		dev_err(dev, "%s: reading Timer A section failed (%d)\n",
317 			__func__, ret);
318 		return ret;
319 	}
320 
321 	/* get current time ... */
322 	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
323 	if (ret)
324 		return ret;
325 
326 	/* ... convert to seconds ... */
327 	rtc_secs = rtc_tm_to_time64(&rtc_tm);
328 
329 	/* ... add remaining timer A time ... */
330 	ret = sec_from_timer_a(&timer_secs, regs[1], regs[2]);
331 	if (ret)
332 		return ret;
333 
334 	/* ... and convert back. */
335 	rtc_time64_to_tm(rtc_secs + timer_secs, alarm_tm);
336 
337 	ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL2, &reg);
338 	if (ret) {
339 		dev_err(dev, "%s: reading ctrl reg failed (%d)\n",
340 			__func__, ret);
341 		return ret;
342 	}
343 
344 	alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL2_WTAIE);
345 
346 	return 0;
347 }
348 
349 /* Read alarm currently configured via a RTC alarm registers. */
350 static int _abb5zes3_rtc_read_alarm(struct device *dev,
351 				    struct rtc_wkalrm *alarm)
352 {
353 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
354 	struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
355 	unsigned long rtc_secs, alarm_secs;
356 	u8 regs[ABB5ZES3_ALRM_SEC_LEN];
357 	unsigned int reg;
358 	int ret;
359 
360 	ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
361 			       ABB5ZES3_ALRM_SEC_LEN);
362 	if (ret) {
363 		dev_err(dev, "%s: reading alarm section failed (%d)\n",
364 			__func__, ret);
365 		return ret;
366 	}
367 
368 	alarm_tm->tm_sec  = 0;
369 	alarm_tm->tm_min  = bcd2bin(regs[0] & 0x7f);
370 	alarm_tm->tm_hour = bcd2bin(regs[1] & 0x3f);
371 	alarm_tm->tm_mday = bcd2bin(regs[2] & 0x3f);
372 	alarm_tm->tm_wday = -1;
373 
374 	/*
375 	 * The alarm section does not store year/month. We use the ones in rtc
376 	 * section as a basis and increment month and then year if needed to get
377 	 * alarm after current time.
378 	 */
379 	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
380 	if (ret)
381 		return ret;
382 
383 	alarm_tm->tm_year = rtc_tm.tm_year;
384 	alarm_tm->tm_mon = rtc_tm.tm_mon;
385 
386 	rtc_secs = rtc_tm_to_time64(&rtc_tm);
387 	alarm_secs = rtc_tm_to_time64(alarm_tm);
388 
389 	if (alarm_secs < rtc_secs) {
390 		if (alarm_tm->tm_mon == 11) {
391 			alarm_tm->tm_mon = 0;
392 			alarm_tm->tm_year += 1;
393 		} else {
394 			alarm_tm->tm_mon += 1;
395 		}
396 	}
397 
398 	ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL1, &reg);
399 	if (ret) {
400 		dev_err(dev, "%s: reading ctrl reg failed (%d)\n",
401 			__func__, ret);
402 		return ret;
403 	}
404 
405 	alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL1_AIE);
406 
407 	return 0;
408 }
409 
410 /*
411  * As the Alarm mechanism supported by the chip is only accurate to the
412  * minute, we use the watchdog timer mechanism provided by timer A
413  * (up to 256 seconds w/ a second accuracy) for low alarm values (below
414  * 4 minutes). Otherwise, we use the common alarm mechanism provided
415  * by the chip. In order for that to work, we keep track of currently
416  * configured timer type via 'timer_alarm' flag in our private data
417  * structure.
418  */
419 static int abb5zes3_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
420 {
421 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
422 	int ret;
423 
424 	if (data->timer_alarm)
425 		ret = _abb5zes3_rtc_read_timer(dev, alarm);
426 	else
427 		ret = _abb5zes3_rtc_read_alarm(dev, alarm);
428 
429 	return ret;
430 }
431 
432 /*
433  * Set alarm using chip alarm mechanism. It is only accurate to the
434  * minute (not the second). The function expects alarm interrupt to
435  * be disabled.
436  */
437 static int _abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
438 {
439 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
440 	struct rtc_time *alarm_tm = &alarm->time;
441 	u8 regs[ABB5ZES3_ALRM_SEC_LEN];
442 	struct rtc_time rtc_tm;
443 	int ret, enable = 1;
444 
445 	if (!alarm->enabled) {
446 		enable = 0;
447 	} else {
448 		unsigned long rtc_secs, alarm_secs;
449 
450 		/*
451 		 * Chip only support alarms up to one month in the future. Let's
452 		 * return an error if we get something after that limit.
453 		 * Comparison is done by incrementing rtc_tm month field by one
454 		 * and checking alarm value is still below.
455 		 */
456 		ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
457 		if (ret)
458 			return ret;
459 
460 		if (rtc_tm.tm_mon == 11) { /* handle year wrapping */
461 			rtc_tm.tm_mon = 0;
462 			rtc_tm.tm_year += 1;
463 		} else {
464 			rtc_tm.tm_mon += 1;
465 		}
466 
467 		rtc_secs = rtc_tm_to_time64(&rtc_tm);
468 		alarm_secs = rtc_tm_to_time64(alarm_tm);
469 
470 		if (alarm_secs > rtc_secs) {
471 			dev_err(dev, "%s: alarm maximum is one month in the future (%d)\n",
472 				__func__, ret);
473 			return -EINVAL;
474 		}
475 	}
476 
477 	/*
478 	 * Program all alarm registers but DW one. For each register, setting
479 	 * MSB to 0 enables associated alarm.
480 	 */
481 	regs[0] = bin2bcd(alarm_tm->tm_min) & 0x7f;
482 	regs[1] = bin2bcd(alarm_tm->tm_hour) & 0x3f;
483 	regs[2] = bin2bcd(alarm_tm->tm_mday) & 0x3f;
484 	regs[3] = ABB5ZES3_REG_ALRM_DW_AE; /* do not match day of the week */
485 
486 	ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
487 				ABB5ZES3_ALRM_SEC_LEN);
488 	if (ret < 0) {
489 		dev_err(dev, "%s: writing ALARM section failed (%d)\n",
490 			__func__, ret);
491 		return ret;
492 	}
493 
494 	/* Record currently configured alarm is not a timer */
495 	data->timer_alarm = 0;
496 
497 	/* Enable or disable alarm interrupt generation */
498 	return _abb5zes3_rtc_update_alarm(dev, enable);
499 }
500 
501 /*
502  * Set alarm using timer watchdog (via timer A) mechanism. The function expects
503  * timer A interrupt to be disabled.
504  */
505 static int _abb5zes3_rtc_set_timer(struct device *dev, struct rtc_wkalrm *alarm,
506 				   u8 secs)
507 {
508 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
509 	u8 regs[ABB5ZES3_TIMA_SEC_LEN];
510 	u8 mask = ABB5ZES3_REG_TIM_CLK_TAC0 | ABB5ZES3_REG_TIM_CLK_TAC1;
511 	int ret = 0;
512 
513 	/* Program given number of seconds to Timer A registers */
514 	sec_to_timer_a(secs, &regs[0], &regs[1]);
515 	ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_TIMA_CLK, regs,
516 				ABB5ZES3_TIMA_SEC_LEN);
517 	if (ret < 0) {
518 		dev_err(dev, "%s: writing timer section failed\n", __func__);
519 		return ret;
520 	}
521 
522 	/* Configure Timer A as a watchdog timer */
523 	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_TIM_CLK,
524 				 mask, ABB5ZES3_REG_TIM_CLK_TAC1);
525 	if (ret)
526 		dev_err(dev, "%s: failed to update timer\n", __func__);
527 
528 	/* Record currently configured alarm is a timer */
529 	data->timer_alarm = 1;
530 
531 	/* Enable or disable timer interrupt generation */
532 	return _abb5zes3_rtc_update_timer(dev, alarm->enabled);
533 }
534 
535 /*
536  * The chip has an alarm which is only accurate to the minute. In order to
537  * handle alarms below that limit, we use the watchdog timer function of
538  * timer A. More precisely, the timer method is used for alarms below 240
539  * seconds.
540  */
541 static int abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
542 {
543 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
544 	struct rtc_time *alarm_tm = &alarm->time;
545 	unsigned long rtc_secs, alarm_secs;
546 	struct rtc_time rtc_tm;
547 	int ret;
548 
549 	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
550 	if (ret)
551 		return ret;
552 
553 	rtc_secs = rtc_tm_to_time64(&rtc_tm);
554 	alarm_secs = rtc_tm_to_time64(alarm_tm);
555 
556 	/* Let's first disable both the alarm and the timer interrupts */
557 	ret = _abb5zes3_rtc_update_alarm(dev, false);
558 	if (ret < 0) {
559 		dev_err(dev, "%s: unable to disable alarm (%d)\n", __func__,
560 			ret);
561 		return ret;
562 	}
563 	ret = _abb5zes3_rtc_update_timer(dev, false);
564 	if (ret < 0) {
565 		dev_err(dev, "%s: unable to disable timer (%d)\n", __func__,
566 			ret);
567 		return ret;
568 	}
569 
570 	data->timer_alarm = 0;
571 
572 	/*
573 	 * Let's now configure the alarm; if we are expected to ring in
574 	 * more than 240s, then we setup an alarm. Otherwise, a timer.
575 	 */
576 	if ((alarm_secs > rtc_secs) && ((alarm_secs - rtc_secs) <= 240))
577 		ret = _abb5zes3_rtc_set_timer(dev, alarm,
578 					      alarm_secs - rtc_secs);
579 	else
580 		ret = _abb5zes3_rtc_set_alarm(dev, alarm);
581 
582 	if (ret)
583 		dev_err(dev, "%s: unable to configure alarm (%d)\n", __func__,
584 			ret);
585 
586 	return ret;
587 }
588 
589 /* Enable or disable battery low irq generation */
590 static inline int _abb5zes3_rtc_battery_low_irq_enable(struct regmap *regmap,
591 						       bool enable)
592 {
593 	return regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3,
594 				  ABB5ZES3_REG_CTRL3_BLIE,
595 				  enable ? ABB5ZES3_REG_CTRL3_BLIE : 0);
596 }
597 
598 /*
599  * Check current RTC status and enable/disable what needs to be. Return 0 if
600  * everything went ok and a negative value upon error.
601  */
602 static int abb5zes3_rtc_check_setup(struct device *dev)
603 {
604 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
605 	struct regmap *regmap = data->regmap;
606 	unsigned int reg;
607 	int ret;
608 	u8 mask;
609 
610 	/*
611 	 * By default, the devices generates a 32.768KHz signal on IRQ#1 pin. It
612 	 * is disabled here to prevent polluting the interrupt line and
613 	 * uselessly triggering the IRQ handler we install for alarm and battery
614 	 * low events. Note: this is done before clearing int. status below
615 	 * in this function.
616 	 * We also disable all timers and set timer interrupt to permanent (not
617 	 * pulsed).
618 	 */
619 	mask = (ABB5ZES3_REG_TIM_CLK_TBC | ABB5ZES3_REG_TIM_CLK_TAC0 |
620 		ABB5ZES3_REG_TIM_CLK_TAC1 | ABB5ZES3_REG_TIM_CLK_COF0 |
621 		ABB5ZES3_REG_TIM_CLK_COF1 | ABB5ZES3_REG_TIM_CLK_COF2 |
622 		ABB5ZES3_REG_TIM_CLK_TBM | ABB5ZES3_REG_TIM_CLK_TAM);
623 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_TIM_CLK, mask,
624 				 ABB5ZES3_REG_TIM_CLK_COF0 |
625 				 ABB5ZES3_REG_TIM_CLK_COF1 |
626 				 ABB5ZES3_REG_TIM_CLK_COF2);
627 	if (ret < 0) {
628 		dev_err(dev, "%s: unable to initialize clkout register (%d)\n",
629 			__func__, ret);
630 		return ret;
631 	}
632 
633 	/*
634 	 * Each component of the alarm (MN, HR, DT, DW) can be enabled/disabled
635 	 * individually by clearing/setting MSB of each associated register. So,
636 	 * we set all alarm enable bits to disable current alarm setting.
637 	 */
638 	mask = (ABB5ZES3_REG_ALRM_MN_AE | ABB5ZES3_REG_ALRM_HR_AE |
639 		ABB5ZES3_REG_ALRM_DT_AE | ABB5ZES3_REG_ALRM_DW_AE);
640 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, mask);
641 	if (ret < 0) {
642 		dev_err(dev, "%s: unable to disable alarm setting (%d)\n",
643 			__func__, ret);
644 		return ret;
645 	}
646 
647 	/* Set Control 1 register (RTC enabled, 24hr mode, all int. disabled) */
648 	mask = (ABB5ZES3_REG_CTRL1_CIE | ABB5ZES3_REG_CTRL1_AIE |
649 		ABB5ZES3_REG_CTRL1_SIE | ABB5ZES3_REG_CTRL1_PM |
650 		ABB5ZES3_REG_CTRL1_CAP | ABB5ZES3_REG_CTRL1_STOP);
651 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL1, mask, 0);
652 	if (ret < 0) {
653 		dev_err(dev, "%s: unable to initialize CTRL1 register (%d)\n",
654 			__func__, ret);
655 		return ret;
656 	}
657 
658 	/*
659 	 * Set Control 2 register (timer int. disabled, alarm status cleared).
660 	 * WTAF is read-only and cleared automatically by reading the register.
661 	 */
662 	mask = (ABB5ZES3_REG_CTRL2_CTBIE | ABB5ZES3_REG_CTRL2_CTAIE |
663 		ABB5ZES3_REG_CTRL2_WTAIE | ABB5ZES3_REG_CTRL2_AF |
664 		ABB5ZES3_REG_CTRL2_SF | ABB5ZES3_REG_CTRL2_CTBF |
665 		ABB5ZES3_REG_CTRL2_CTAF);
666 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, 0);
667 	if (ret < 0) {
668 		dev_err(dev, "%s: unable to initialize CTRL2 register (%d)\n",
669 			__func__, ret);
670 		return ret;
671 	}
672 
673 	/*
674 	 * Enable battery low detection function and battery switchover function
675 	 * (standard mode). Disable associated interrupts. Clear battery
676 	 * switchover flag but not battery low flag. The latter is checked
677 	 * later below.
678 	 */
679 	mask = (ABB5ZES3_REG_CTRL3_PM0  | ABB5ZES3_REG_CTRL3_PM1 |
680 		ABB5ZES3_REG_CTRL3_PM2  | ABB5ZES3_REG_CTRL3_BLIE |
681 		ABB5ZES3_REG_CTRL3_BSIE | ABB5ZES3_REG_CTRL3_BSF);
682 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3, mask, 0);
683 	if (ret < 0) {
684 		dev_err(dev, "%s: unable to initialize CTRL3 register (%d)\n",
685 			__func__, ret);
686 		return ret;
687 	}
688 
689 	/* Check oscillator integrity flag */
690 	ret = regmap_read(regmap, ABB5ZES3_REG_RTC_SC, &reg);
691 	if (ret < 0) {
692 		dev_err(dev, "%s: unable to read osc. integrity flag (%d)\n",
693 			__func__, ret);
694 		return ret;
695 	}
696 
697 	if (reg & ABB5ZES3_REG_RTC_SC_OSC) {
698 		dev_err(dev, "clock integrity not guaranteed. Osc. has stopped or has been interrupted.\n");
699 		dev_err(dev, "change battery (if not already done) and then set time to reset osc. failure flag.\n");
700 	}
701 
702 	/*
703 	 * Check battery low flag at startup: this allows reporting battery
704 	 * is low at startup when IRQ line is not connected. Note: we record
705 	 * current status to avoid reenabling this interrupt later in probe
706 	 * function if battery is low.
707 	 */
708 	ret = regmap_read(regmap, ABB5ZES3_REG_CTRL3, &reg);
709 	if (ret < 0) {
710 		dev_err(dev, "%s: unable to read battery low flag (%d)\n",
711 			__func__, ret);
712 		return ret;
713 	}
714 
715 	data->battery_low = reg & ABB5ZES3_REG_CTRL3_BLF;
716 	if (data->battery_low) {
717 		dev_err(dev, "RTC battery is low; please, consider changing it!\n");
718 
719 		ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, false);
720 		if (ret)
721 			dev_err(dev, "%s: disabling battery low interrupt generation failed (%d)\n",
722 				__func__, ret);
723 	}
724 
725 	return ret;
726 }
727 
728 static int abb5zes3_rtc_alarm_irq_enable(struct device *dev,
729 					 unsigned int enable)
730 {
731 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
732 	int ret = 0;
733 
734 	if (rtc_data->irq) {
735 		if (rtc_data->timer_alarm)
736 			ret = _abb5zes3_rtc_update_timer(dev, enable);
737 		else
738 			ret = _abb5zes3_rtc_update_alarm(dev, enable);
739 	}
740 
741 	return ret;
742 }
743 
744 static irqreturn_t _abb5zes3_rtc_interrupt(int irq, void *data)
745 {
746 	struct i2c_client *client = data;
747 	struct device *dev = &client->dev;
748 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
749 	struct rtc_device *rtc = rtc_data->rtc;
750 	u8 regs[ABB5ZES3_CTRL_SEC_LEN];
751 	int ret, handled = IRQ_NONE;
752 
753 	ret = regmap_bulk_read(rtc_data->regmap, 0, regs,
754 			       ABB5ZES3_CTRL_SEC_LEN);
755 	if (ret) {
756 		dev_err(dev, "%s: unable to read control section (%d)!\n",
757 			__func__, ret);
758 		return handled;
759 	}
760 
761 	/*
762 	 * Check battery low detection flag and disable battery low interrupt
763 	 * generation if flag is set (interrupt can only be cleared when
764 	 * battery is replaced).
765 	 */
766 	if (regs[ABB5ZES3_REG_CTRL3] & ABB5ZES3_REG_CTRL3_BLF) {
767 		dev_err(dev, "RTC battery is low; please change it!\n");
768 
769 		_abb5zes3_rtc_battery_low_irq_enable(rtc_data->regmap, false);
770 
771 		handled = IRQ_HANDLED;
772 	}
773 
774 	/* Check alarm flag */
775 	if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_AF) {
776 		dev_dbg(dev, "RTC alarm!\n");
777 
778 		rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
779 
780 		/* Acknowledge and disable the alarm */
781 		_abb5zes3_rtc_clear_alarm(dev);
782 		_abb5zes3_rtc_update_alarm(dev, 0);
783 
784 		handled = IRQ_HANDLED;
785 	}
786 
787 	/* Check watchdog Timer A flag */
788 	if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_WTAF) {
789 		dev_dbg(dev, "RTC timer!\n");
790 
791 		rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
792 
793 		/*
794 		 * Acknowledge and disable the alarm. Note: WTAF
795 		 * flag had been cleared when reading CTRL2
796 		 */
797 		_abb5zes3_rtc_update_timer(dev, 0);
798 
799 		rtc_data->timer_alarm = 0;
800 
801 		handled = IRQ_HANDLED;
802 	}
803 
804 	return handled;
805 }
806 
807 static const struct rtc_class_ops rtc_ops = {
808 	.read_time = _abb5zes3_rtc_read_time,
809 	.set_time = abb5zes3_rtc_set_time,
810 	.read_alarm = abb5zes3_rtc_read_alarm,
811 	.set_alarm = abb5zes3_rtc_set_alarm,
812 	.alarm_irq_enable = abb5zes3_rtc_alarm_irq_enable,
813 };
814 
815 static const struct regmap_config abb5zes3_rtc_regmap_config = {
816 	.reg_bits = 8,
817 	.val_bits = 8,
818 };
819 
820 static int abb5zes3_probe(struct i2c_client *client)
821 {
822 	struct abb5zes3_rtc_data *data = NULL;
823 	struct device *dev = &client->dev;
824 	struct regmap *regmap;
825 	int ret;
826 
827 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C |
828 				     I2C_FUNC_SMBUS_BYTE_DATA |
829 				     I2C_FUNC_SMBUS_I2C_BLOCK))
830 		return -ENODEV;
831 
832 	regmap = devm_regmap_init_i2c(client, &abb5zes3_rtc_regmap_config);
833 	if (IS_ERR(regmap)) {
834 		ret = PTR_ERR(regmap);
835 		dev_err(dev, "%s: regmap allocation failed: %d\n",
836 			__func__, ret);
837 		return ret;
838 	}
839 
840 	ret = abb5zes3_i2c_validate_chip(regmap);
841 	if (ret)
842 		return ret;
843 
844 	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
845 	if (!data)
846 		return -ENOMEM;
847 
848 	data->regmap = regmap;
849 	dev_set_drvdata(dev, data);
850 
851 	ret = abb5zes3_rtc_check_setup(dev);
852 	if (ret)
853 		return ret;
854 
855 	data->rtc = devm_rtc_allocate_device(dev);
856 	ret = PTR_ERR_OR_ZERO(data->rtc);
857 	if (ret) {
858 		dev_err(dev, "%s: unable to allocate RTC device (%d)\n",
859 			__func__, ret);
860 		return ret;
861 	}
862 
863 	if (client->irq > 0) {
864 		ret = devm_request_threaded_irq(dev, client->irq, NULL,
865 						_abb5zes3_rtc_interrupt,
866 						IRQF_SHARED | IRQF_ONESHOT,
867 						DRV_NAME, client);
868 		if (!ret) {
869 			device_init_wakeup(dev, true);
870 			data->irq = client->irq;
871 			dev_dbg(dev, "%s: irq %d used by RTC\n", __func__,
872 				client->irq);
873 		} else {
874 			dev_err(dev, "%s: irq %d unavailable (%d)\n",
875 				__func__, client->irq, ret);
876 			goto err;
877 		}
878 	}
879 
880 	data->rtc->ops = &rtc_ops;
881 	data->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
882 	data->rtc->range_max = RTC_TIMESTAMP_END_2099;
883 
884 	/* Enable battery low detection interrupt if battery not already low */
885 	if (!data->battery_low && data->irq) {
886 		ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, true);
887 		if (ret) {
888 			dev_err(dev, "%s: enabling battery low interrupt generation failed (%d)\n",
889 				__func__, ret);
890 			goto err;
891 		}
892 	}
893 
894 	ret = devm_rtc_register_device(data->rtc);
895 
896 err:
897 	if (ret && data->irq)
898 		device_init_wakeup(dev, false);
899 	return ret;
900 }
901 
902 #ifdef CONFIG_PM_SLEEP
903 static int abb5zes3_rtc_suspend(struct device *dev)
904 {
905 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
906 
907 	if (device_may_wakeup(dev))
908 		return enable_irq_wake(rtc_data->irq);
909 
910 	return 0;
911 }
912 
913 static int abb5zes3_rtc_resume(struct device *dev)
914 {
915 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
916 
917 	if (device_may_wakeup(dev))
918 		return disable_irq_wake(rtc_data->irq);
919 
920 	return 0;
921 }
922 #endif
923 
924 static SIMPLE_DEV_PM_OPS(abb5zes3_rtc_pm_ops, abb5zes3_rtc_suspend,
925 			 abb5zes3_rtc_resume);
926 
927 #ifdef CONFIG_OF
928 static const struct of_device_id abb5zes3_dt_match[] = {
929 	{ .compatible = "abracon,abb5zes3" },
930 	{ },
931 };
932 MODULE_DEVICE_TABLE(of, abb5zes3_dt_match);
933 #endif
934 
935 static const struct i2c_device_id abb5zes3_id[] = {
936 	{ "abb5zes3", 0 },
937 	{ }
938 };
939 MODULE_DEVICE_TABLE(i2c, abb5zes3_id);
940 
941 static struct i2c_driver abb5zes3_driver = {
942 	.driver = {
943 		.name = DRV_NAME,
944 		.pm = &abb5zes3_rtc_pm_ops,
945 		.of_match_table = of_match_ptr(abb5zes3_dt_match),
946 	},
947 	.probe_new = abb5zes3_probe,
948 	.id_table = abb5zes3_id,
949 };
950 module_i2c_driver(abb5zes3_driver);
951 
952 MODULE_AUTHOR("Arnaud EBALARD <arno@natisbad.org>");
953 MODULE_DESCRIPTION("Abracon AB-RTCMC-32.768kHz-B5ZE-S3 RTC/Alarm driver");
954 MODULE_LICENSE("GPL");
955