1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * rtc-ab-b5ze-s3 - Driver for Abracon AB-RTCMC-32.768Khz-B5ZE-S3 4 * I2C RTC / Alarm chip 5 * 6 * Copyright (C) 2014, Arnaud EBALARD <arno@natisbad.org> 7 * 8 * Detailed datasheet of the chip is available here: 9 * 10 * https://www.abracon.com/realtimeclock/AB-RTCMC-32.768kHz-B5ZE-S3-Application-Manual.pdf 11 * 12 * This work is based on ISL12057 driver (drivers/rtc/rtc-isl12057.c). 13 * 14 */ 15 16 #include <linux/module.h> 17 #include <linux/rtc.h> 18 #include <linux/i2c.h> 19 #include <linux/bcd.h> 20 #include <linux/of.h> 21 #include <linux/regmap.h> 22 #include <linux/interrupt.h> 23 24 #define DRV_NAME "rtc-ab-b5ze-s3" 25 26 /* Control section */ 27 #define ABB5ZES3_REG_CTRL1 0x00 /* Control 1 register */ 28 #define ABB5ZES3_REG_CTRL1_CIE BIT(0) /* Pulse interrupt enable */ 29 #define ABB5ZES3_REG_CTRL1_AIE BIT(1) /* Alarm interrupt enable */ 30 #define ABB5ZES3_REG_CTRL1_SIE BIT(2) /* Second interrupt enable */ 31 #define ABB5ZES3_REG_CTRL1_PM BIT(3) /* 24h/12h mode */ 32 #define ABB5ZES3_REG_CTRL1_SR BIT(4) /* Software reset */ 33 #define ABB5ZES3_REG_CTRL1_STOP BIT(5) /* RTC circuit enable */ 34 #define ABB5ZES3_REG_CTRL1_CAP BIT(7) 35 36 #define ABB5ZES3_REG_CTRL2 0x01 /* Control 2 register */ 37 #define ABB5ZES3_REG_CTRL2_CTBIE BIT(0) /* Countdown timer B int. enable */ 38 #define ABB5ZES3_REG_CTRL2_CTAIE BIT(1) /* Countdown timer A int. enable */ 39 #define ABB5ZES3_REG_CTRL2_WTAIE BIT(2) /* Watchdog timer A int. enable */ 40 #define ABB5ZES3_REG_CTRL2_AF BIT(3) /* Alarm interrupt status */ 41 #define ABB5ZES3_REG_CTRL2_SF BIT(4) /* Second interrupt status */ 42 #define ABB5ZES3_REG_CTRL2_CTBF BIT(5) /* Countdown timer B int. status */ 43 #define ABB5ZES3_REG_CTRL2_CTAF BIT(6) /* Countdown timer A int. status */ 44 #define ABB5ZES3_REG_CTRL2_WTAF BIT(7) /* Watchdog timer A int. status */ 45 46 #define ABB5ZES3_REG_CTRL3 0x02 /* Control 3 register */ 47 #define ABB5ZES3_REG_CTRL3_PM2 BIT(7) /* Power Management bit 2 */ 48 #define ABB5ZES3_REG_CTRL3_PM1 BIT(6) /* Power Management bit 1 */ 49 #define ABB5ZES3_REG_CTRL3_PM0 BIT(5) /* Power Management bit 0 */ 50 #define ABB5ZES3_REG_CTRL3_BSF BIT(3) /* Battery switchover int. status */ 51 #define ABB5ZES3_REG_CTRL3_BLF BIT(2) /* Battery low int. status */ 52 #define ABB5ZES3_REG_CTRL3_BSIE BIT(1) /* Battery switchover int. enable */ 53 #define ABB5ZES3_REG_CTRL3_BLIE BIT(0) /* Battery low int. enable */ 54 55 #define ABB5ZES3_CTRL_SEC_LEN 3 56 57 /* RTC section */ 58 #define ABB5ZES3_REG_RTC_SC 0x03 /* RTC Seconds register */ 59 #define ABB5ZES3_REG_RTC_SC_OSC BIT(7) /* Clock integrity status */ 60 #define ABB5ZES3_REG_RTC_MN 0x04 /* RTC Minutes register */ 61 #define ABB5ZES3_REG_RTC_HR 0x05 /* RTC Hours register */ 62 #define ABB5ZES3_REG_RTC_HR_PM BIT(5) /* RTC Hours PM bit */ 63 #define ABB5ZES3_REG_RTC_DT 0x06 /* RTC Date register */ 64 #define ABB5ZES3_REG_RTC_DW 0x07 /* RTC Day of the week register */ 65 #define ABB5ZES3_REG_RTC_MO 0x08 /* RTC Month register */ 66 #define ABB5ZES3_REG_RTC_YR 0x09 /* RTC Year register */ 67 68 #define ABB5ZES3_RTC_SEC_LEN 7 69 70 /* Alarm section (enable bits are all active low) */ 71 #define ABB5ZES3_REG_ALRM_MN 0x0A /* Alarm - minute register */ 72 #define ABB5ZES3_REG_ALRM_MN_AE BIT(7) /* Minute enable */ 73 #define ABB5ZES3_REG_ALRM_HR 0x0B /* Alarm - hours register */ 74 #define ABB5ZES3_REG_ALRM_HR_AE BIT(7) /* Hour enable */ 75 #define ABB5ZES3_REG_ALRM_DT 0x0C /* Alarm - date register */ 76 #define ABB5ZES3_REG_ALRM_DT_AE BIT(7) /* Date (day of the month) enable */ 77 #define ABB5ZES3_REG_ALRM_DW 0x0D /* Alarm - day of the week reg. */ 78 #define ABB5ZES3_REG_ALRM_DW_AE BIT(7) /* Day of the week enable */ 79 80 #define ABB5ZES3_ALRM_SEC_LEN 4 81 82 /* Frequency offset section */ 83 #define ABB5ZES3_REG_FREQ_OF 0x0E /* Frequency offset register */ 84 #define ABB5ZES3_REG_FREQ_OF_MODE 0x0E /* Offset mode: 2 hours / minute */ 85 86 /* CLOCKOUT section */ 87 #define ABB5ZES3_REG_TIM_CLK 0x0F /* Timer & Clockout register */ 88 #define ABB5ZES3_REG_TIM_CLK_TAM BIT(7) /* Permanent/pulsed timer A/int. 2 */ 89 #define ABB5ZES3_REG_TIM_CLK_TBM BIT(6) /* Permanent/pulsed timer B */ 90 #define ABB5ZES3_REG_TIM_CLK_COF2 BIT(5) /* Clkout Freq bit 2 */ 91 #define ABB5ZES3_REG_TIM_CLK_COF1 BIT(4) /* Clkout Freq bit 1 */ 92 #define ABB5ZES3_REG_TIM_CLK_COF0 BIT(3) /* Clkout Freq bit 0 */ 93 #define ABB5ZES3_REG_TIM_CLK_TAC1 BIT(2) /* Timer A: - 01 : countdown */ 94 #define ABB5ZES3_REG_TIM_CLK_TAC0 BIT(1) /* - 10 : timer */ 95 #define ABB5ZES3_REG_TIM_CLK_TBC BIT(0) /* Timer B enable */ 96 97 /* Timer A Section */ 98 #define ABB5ZES3_REG_TIMA_CLK 0x10 /* Timer A clock register */ 99 #define ABB5ZES3_REG_TIMA_CLK_TAQ2 BIT(2) /* Freq bit 2 */ 100 #define ABB5ZES3_REG_TIMA_CLK_TAQ1 BIT(1) /* Freq bit 1 */ 101 #define ABB5ZES3_REG_TIMA_CLK_TAQ0 BIT(0) /* Freq bit 0 */ 102 #define ABB5ZES3_REG_TIMA 0x11 /* Timer A register */ 103 104 #define ABB5ZES3_TIMA_SEC_LEN 2 105 106 /* Timer B Section */ 107 #define ABB5ZES3_REG_TIMB_CLK 0x12 /* Timer B clock register */ 108 #define ABB5ZES3_REG_TIMB_CLK_TBW2 BIT(6) 109 #define ABB5ZES3_REG_TIMB_CLK_TBW1 BIT(5) 110 #define ABB5ZES3_REG_TIMB_CLK_TBW0 BIT(4) 111 #define ABB5ZES3_REG_TIMB_CLK_TAQ2 BIT(2) 112 #define ABB5ZES3_REG_TIMB_CLK_TAQ1 BIT(1) 113 #define ABB5ZES3_REG_TIMB_CLK_TAQ0 BIT(0) 114 #define ABB5ZES3_REG_TIMB 0x13 /* Timer B register */ 115 #define ABB5ZES3_TIMB_SEC_LEN 2 116 117 #define ABB5ZES3_MEM_MAP_LEN 0x14 118 119 struct abb5zes3_rtc_data { 120 struct rtc_device *rtc; 121 struct regmap *regmap; 122 123 int irq; 124 125 bool battery_low; 126 bool timer_alarm; /* current alarm is via timer A */ 127 }; 128 129 /* 130 * Try and match register bits w/ fixed null values to see whether we 131 * are dealing with an ABB5ZES3. 132 */ 133 static int abb5zes3_i2c_validate_chip(struct regmap *regmap) 134 { 135 u8 regs[ABB5ZES3_MEM_MAP_LEN]; 136 static const u8 mask[ABB5ZES3_MEM_MAP_LEN] = { 0x00, 0x00, 0x10, 0x00, 137 0x80, 0xc0, 0xc0, 0xf8, 138 0xe0, 0x00, 0x00, 0x40, 139 0x40, 0x78, 0x00, 0x00, 140 0xf8, 0x00, 0x88, 0x00 }; 141 int ret, i; 142 143 ret = regmap_bulk_read(regmap, 0, regs, ABB5ZES3_MEM_MAP_LEN); 144 if (ret) 145 return ret; 146 147 for (i = 0; i < ABB5ZES3_MEM_MAP_LEN; ++i) { 148 if (regs[i] & mask[i]) /* check if bits are cleared */ 149 return -ENODEV; 150 } 151 152 return 0; 153 } 154 155 /* Clear alarm status bit. */ 156 static int _abb5zes3_rtc_clear_alarm(struct device *dev) 157 { 158 struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); 159 int ret; 160 161 ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2, 162 ABB5ZES3_REG_CTRL2_AF, 0); 163 if (ret) 164 dev_err(dev, "%s: clearing alarm failed (%d)\n", __func__, ret); 165 166 return ret; 167 } 168 169 /* Enable or disable alarm (i.e. alarm interrupt generation) */ 170 static int _abb5zes3_rtc_update_alarm(struct device *dev, bool enable) 171 { 172 struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); 173 int ret; 174 175 ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL1, 176 ABB5ZES3_REG_CTRL1_AIE, 177 enable ? ABB5ZES3_REG_CTRL1_AIE : 0); 178 if (ret) 179 dev_err(dev, "%s: writing alarm INT failed (%d)\n", 180 __func__, ret); 181 182 return ret; 183 } 184 185 /* Enable or disable timer (watchdog timer A interrupt generation) */ 186 static int _abb5zes3_rtc_update_timer(struct device *dev, bool enable) 187 { 188 struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); 189 int ret; 190 191 ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2, 192 ABB5ZES3_REG_CTRL2_WTAIE, 193 enable ? ABB5ZES3_REG_CTRL2_WTAIE : 0); 194 if (ret) 195 dev_err(dev, "%s: writing timer INT failed (%d)\n", 196 __func__, ret); 197 198 return ret; 199 } 200 201 /* 202 * Note: we only read, so regmap inner lock protection is sufficient, i.e. 203 * we do not need driver's main lock protection. 204 */ 205 static int _abb5zes3_rtc_read_time(struct device *dev, struct rtc_time *tm) 206 { 207 struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); 208 u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN]; 209 int ret = 0; 210 211 /* 212 * As we need to read CTRL1 register anyway to access 24/12h 213 * mode bit, we do a single bulk read of both control and RTC 214 * sections (they are consecutive). This also ease indexing 215 * of register values after bulk read. 216 */ 217 ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_CTRL1, regs, 218 sizeof(regs)); 219 if (ret) { 220 dev_err(dev, "%s: reading RTC time failed (%d)\n", 221 __func__, ret); 222 return ret; 223 } 224 225 /* If clock integrity is not guaranteed, do not return a time value */ 226 if (regs[ABB5ZES3_REG_RTC_SC] & ABB5ZES3_REG_RTC_SC_OSC) 227 return -ENODATA; 228 229 tm->tm_sec = bcd2bin(regs[ABB5ZES3_REG_RTC_SC] & 0x7F); 230 tm->tm_min = bcd2bin(regs[ABB5ZES3_REG_RTC_MN]); 231 232 if (regs[ABB5ZES3_REG_CTRL1] & ABB5ZES3_REG_CTRL1_PM) { /* 12hr mode */ 233 tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR] & 0x1f); 234 if (regs[ABB5ZES3_REG_RTC_HR] & ABB5ZES3_REG_RTC_HR_PM) /* PM */ 235 tm->tm_hour += 12; 236 } else { /* 24hr mode */ 237 tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR]); 238 } 239 240 tm->tm_mday = bcd2bin(regs[ABB5ZES3_REG_RTC_DT]); 241 tm->tm_wday = bcd2bin(regs[ABB5ZES3_REG_RTC_DW]); 242 tm->tm_mon = bcd2bin(regs[ABB5ZES3_REG_RTC_MO]) - 1; /* starts at 1 */ 243 tm->tm_year = bcd2bin(regs[ABB5ZES3_REG_RTC_YR]) + 100; 244 245 return ret; 246 } 247 248 static int abb5zes3_rtc_set_time(struct device *dev, struct rtc_time *tm) 249 { 250 struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); 251 u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN]; 252 int ret; 253 254 regs[ABB5ZES3_REG_RTC_SC] = bin2bcd(tm->tm_sec); /* MSB=0 clears OSC */ 255 regs[ABB5ZES3_REG_RTC_MN] = bin2bcd(tm->tm_min); 256 regs[ABB5ZES3_REG_RTC_HR] = bin2bcd(tm->tm_hour); /* 24-hour format */ 257 regs[ABB5ZES3_REG_RTC_DT] = bin2bcd(tm->tm_mday); 258 regs[ABB5ZES3_REG_RTC_DW] = bin2bcd(tm->tm_wday); 259 regs[ABB5ZES3_REG_RTC_MO] = bin2bcd(tm->tm_mon + 1); 260 regs[ABB5ZES3_REG_RTC_YR] = bin2bcd(tm->tm_year - 100); 261 262 ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_RTC_SC, 263 regs + ABB5ZES3_REG_RTC_SC, 264 ABB5ZES3_RTC_SEC_LEN); 265 266 return ret; 267 } 268 269 /* 270 * Set provided TAQ and Timer A registers (TIMA_CLK and TIMA) based on 271 * given number of seconds. 272 */ 273 static inline void sec_to_timer_a(u8 secs, u8 *taq, u8 *timer_a) 274 { 275 *taq = ABB5ZES3_REG_TIMA_CLK_TAQ1; /* 1Hz */ 276 *timer_a = secs; 277 } 278 279 /* 280 * Return current number of seconds in Timer A. As we only use 281 * timer A with a 1Hz freq, this is what we expect to have. 282 */ 283 static inline int sec_from_timer_a(u8 *secs, u8 taq, u8 timer_a) 284 { 285 if (taq != ABB5ZES3_REG_TIMA_CLK_TAQ1) /* 1Hz */ 286 return -EINVAL; 287 288 *secs = timer_a; 289 290 return 0; 291 } 292 293 /* 294 * Read alarm currently configured via a watchdog timer using timer A. This 295 * is done by reading current RTC time and adding remaining timer time. 296 */ 297 static int _abb5zes3_rtc_read_timer(struct device *dev, 298 struct rtc_wkalrm *alarm) 299 { 300 struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); 301 struct rtc_time rtc_tm, *alarm_tm = &alarm->time; 302 u8 regs[ABB5ZES3_TIMA_SEC_LEN + 1]; 303 unsigned long rtc_secs; 304 unsigned int reg; 305 u8 timer_secs; 306 int ret; 307 308 /* 309 * Instead of doing two separate calls, because they are consecutive, 310 * we grab both clockout register and Timer A section. The latter is 311 * used to decide if timer A is enabled (as a watchdog timer). 312 */ 313 ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_TIM_CLK, regs, 314 ABB5ZES3_TIMA_SEC_LEN + 1); 315 if (ret) { 316 dev_err(dev, "%s: reading Timer A section failed (%d)\n", 317 __func__, ret); 318 return ret; 319 } 320 321 /* get current time ... */ 322 ret = _abb5zes3_rtc_read_time(dev, &rtc_tm); 323 if (ret) 324 return ret; 325 326 /* ... convert to seconds ... */ 327 rtc_secs = rtc_tm_to_time64(&rtc_tm); 328 329 /* ... add remaining timer A time ... */ 330 ret = sec_from_timer_a(&timer_secs, regs[1], regs[2]); 331 if (ret) 332 return ret; 333 334 /* ... and convert back. */ 335 rtc_time64_to_tm(rtc_secs + timer_secs, alarm_tm); 336 337 ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL2, ®); 338 if (ret) { 339 dev_err(dev, "%s: reading ctrl reg failed (%d)\n", 340 __func__, ret); 341 return ret; 342 } 343 344 alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL2_WTAIE); 345 346 return 0; 347 } 348 349 /* Read alarm currently configured via a RTC alarm registers. */ 350 static int _abb5zes3_rtc_read_alarm(struct device *dev, 351 struct rtc_wkalrm *alarm) 352 { 353 struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); 354 struct rtc_time rtc_tm, *alarm_tm = &alarm->time; 355 unsigned long rtc_secs, alarm_secs; 356 u8 regs[ABB5ZES3_ALRM_SEC_LEN]; 357 unsigned int reg; 358 int ret; 359 360 ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_ALRM_MN, regs, 361 ABB5ZES3_ALRM_SEC_LEN); 362 if (ret) { 363 dev_err(dev, "%s: reading alarm section failed (%d)\n", 364 __func__, ret); 365 return ret; 366 } 367 368 alarm_tm->tm_sec = 0; 369 alarm_tm->tm_min = bcd2bin(regs[0] & 0x7f); 370 alarm_tm->tm_hour = bcd2bin(regs[1] & 0x3f); 371 alarm_tm->tm_mday = bcd2bin(regs[2] & 0x3f); 372 alarm_tm->tm_wday = -1; 373 374 /* 375 * The alarm section does not store year/month. We use the ones in rtc 376 * section as a basis and increment month and then year if needed to get 377 * alarm after current time. 378 */ 379 ret = _abb5zes3_rtc_read_time(dev, &rtc_tm); 380 if (ret) 381 return ret; 382 383 alarm_tm->tm_year = rtc_tm.tm_year; 384 alarm_tm->tm_mon = rtc_tm.tm_mon; 385 386 rtc_secs = rtc_tm_to_time64(&rtc_tm); 387 alarm_secs = rtc_tm_to_time64(alarm_tm); 388 389 if (alarm_secs < rtc_secs) { 390 if (alarm_tm->tm_mon == 11) { 391 alarm_tm->tm_mon = 0; 392 alarm_tm->tm_year += 1; 393 } else { 394 alarm_tm->tm_mon += 1; 395 } 396 } 397 398 ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL1, ®); 399 if (ret) { 400 dev_err(dev, "%s: reading ctrl reg failed (%d)\n", 401 __func__, ret); 402 return ret; 403 } 404 405 alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL1_AIE); 406 407 return 0; 408 } 409 410 /* 411 * As the Alarm mechanism supported by the chip is only accurate to the 412 * minute, we use the watchdog timer mechanism provided by timer A 413 * (up to 256 seconds w/ a second accuracy) for low alarm values (below 414 * 4 minutes). Otherwise, we use the common alarm mechanism provided 415 * by the chip. In order for that to work, we keep track of currently 416 * configured timer type via 'timer_alarm' flag in our private data 417 * structure. 418 */ 419 static int abb5zes3_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm) 420 { 421 struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); 422 int ret; 423 424 if (data->timer_alarm) 425 ret = _abb5zes3_rtc_read_timer(dev, alarm); 426 else 427 ret = _abb5zes3_rtc_read_alarm(dev, alarm); 428 429 return ret; 430 } 431 432 /* 433 * Set alarm using chip alarm mechanism. It is only accurate to the 434 * minute (not the second). The function expects alarm interrupt to 435 * be disabled. 436 */ 437 static int _abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm) 438 { 439 struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); 440 struct rtc_time *alarm_tm = &alarm->time; 441 u8 regs[ABB5ZES3_ALRM_SEC_LEN]; 442 struct rtc_time rtc_tm; 443 int ret, enable = 1; 444 445 if (!alarm->enabled) { 446 enable = 0; 447 } else { 448 unsigned long rtc_secs, alarm_secs; 449 450 /* 451 * Chip only support alarms up to one month in the future. Let's 452 * return an error if we get something after that limit. 453 * Comparison is done by incrementing rtc_tm month field by one 454 * and checking alarm value is still below. 455 */ 456 ret = _abb5zes3_rtc_read_time(dev, &rtc_tm); 457 if (ret) 458 return ret; 459 460 if (rtc_tm.tm_mon == 11) { /* handle year wrapping */ 461 rtc_tm.tm_mon = 0; 462 rtc_tm.tm_year += 1; 463 } else { 464 rtc_tm.tm_mon += 1; 465 } 466 467 rtc_secs = rtc_tm_to_time64(&rtc_tm); 468 alarm_secs = rtc_tm_to_time64(alarm_tm); 469 470 if (alarm_secs > rtc_secs) { 471 dev_err(dev, "%s: alarm maximum is one month in the future (%d)\n", 472 __func__, ret); 473 return -EINVAL; 474 } 475 } 476 477 /* 478 * Program all alarm registers but DW one. For each register, setting 479 * MSB to 0 enables associated alarm. 480 */ 481 regs[0] = bin2bcd(alarm_tm->tm_min) & 0x7f; 482 regs[1] = bin2bcd(alarm_tm->tm_hour) & 0x3f; 483 regs[2] = bin2bcd(alarm_tm->tm_mday) & 0x3f; 484 regs[3] = ABB5ZES3_REG_ALRM_DW_AE; /* do not match day of the week */ 485 486 ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_ALRM_MN, regs, 487 ABB5ZES3_ALRM_SEC_LEN); 488 if (ret < 0) { 489 dev_err(dev, "%s: writing ALARM section failed (%d)\n", 490 __func__, ret); 491 return ret; 492 } 493 494 /* Record currently configured alarm is not a timer */ 495 data->timer_alarm = 0; 496 497 /* Enable or disable alarm interrupt generation */ 498 return _abb5zes3_rtc_update_alarm(dev, enable); 499 } 500 501 /* 502 * Set alarm using timer watchdog (via timer A) mechanism. The function expects 503 * timer A interrupt to be disabled. 504 */ 505 static int _abb5zes3_rtc_set_timer(struct device *dev, struct rtc_wkalrm *alarm, 506 u8 secs) 507 { 508 struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); 509 u8 regs[ABB5ZES3_TIMA_SEC_LEN]; 510 u8 mask = ABB5ZES3_REG_TIM_CLK_TAC0 | ABB5ZES3_REG_TIM_CLK_TAC1; 511 int ret = 0; 512 513 /* Program given number of seconds to Timer A registers */ 514 sec_to_timer_a(secs, ®s[0], ®s[1]); 515 ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_TIMA_CLK, regs, 516 ABB5ZES3_TIMA_SEC_LEN); 517 if (ret < 0) { 518 dev_err(dev, "%s: writing timer section failed\n", __func__); 519 return ret; 520 } 521 522 /* Configure Timer A as a watchdog timer */ 523 ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_TIM_CLK, 524 mask, ABB5ZES3_REG_TIM_CLK_TAC1); 525 if (ret) 526 dev_err(dev, "%s: failed to update timer\n", __func__); 527 528 /* Record currently configured alarm is a timer */ 529 data->timer_alarm = 1; 530 531 /* Enable or disable timer interrupt generation */ 532 return _abb5zes3_rtc_update_timer(dev, alarm->enabled); 533 } 534 535 /* 536 * The chip has an alarm which is only accurate to the minute. In order to 537 * handle alarms below that limit, we use the watchdog timer function of 538 * timer A. More precisely, the timer method is used for alarms below 240 539 * seconds. 540 */ 541 static int abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm) 542 { 543 struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); 544 struct rtc_time *alarm_tm = &alarm->time; 545 unsigned long rtc_secs, alarm_secs; 546 struct rtc_time rtc_tm; 547 int ret; 548 549 ret = _abb5zes3_rtc_read_time(dev, &rtc_tm); 550 if (ret) 551 return ret; 552 553 rtc_secs = rtc_tm_to_time64(&rtc_tm); 554 alarm_secs = rtc_tm_to_time64(alarm_tm); 555 556 /* Let's first disable both the alarm and the timer interrupts */ 557 ret = _abb5zes3_rtc_update_alarm(dev, false); 558 if (ret < 0) { 559 dev_err(dev, "%s: unable to disable alarm (%d)\n", __func__, 560 ret); 561 return ret; 562 } 563 ret = _abb5zes3_rtc_update_timer(dev, false); 564 if (ret < 0) { 565 dev_err(dev, "%s: unable to disable timer (%d)\n", __func__, 566 ret); 567 return ret; 568 } 569 570 data->timer_alarm = 0; 571 572 /* 573 * Let's now configure the alarm; if we are expected to ring in 574 * more than 240s, then we setup an alarm. Otherwise, a timer. 575 */ 576 if ((alarm_secs > rtc_secs) && ((alarm_secs - rtc_secs) <= 240)) 577 ret = _abb5zes3_rtc_set_timer(dev, alarm, 578 alarm_secs - rtc_secs); 579 else 580 ret = _abb5zes3_rtc_set_alarm(dev, alarm); 581 582 if (ret) 583 dev_err(dev, "%s: unable to configure alarm (%d)\n", __func__, 584 ret); 585 586 return ret; 587 } 588 589 /* Enable or disable battery low irq generation */ 590 static inline int _abb5zes3_rtc_battery_low_irq_enable(struct regmap *regmap, 591 bool enable) 592 { 593 return regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3, 594 ABB5ZES3_REG_CTRL3_BLIE, 595 enable ? ABB5ZES3_REG_CTRL3_BLIE : 0); 596 } 597 598 /* 599 * Check current RTC status and enable/disable what needs to be. Return 0 if 600 * everything went ok and a negative value upon error. 601 */ 602 static int abb5zes3_rtc_check_setup(struct device *dev) 603 { 604 struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); 605 struct regmap *regmap = data->regmap; 606 unsigned int reg; 607 int ret; 608 u8 mask; 609 610 /* 611 * By default, the devices generates a 32.768KHz signal on IRQ#1 pin. It 612 * is disabled here to prevent polluting the interrupt line and 613 * uselessly triggering the IRQ handler we install for alarm and battery 614 * low events. Note: this is done before clearing int. status below 615 * in this function. 616 * We also disable all timers and set timer interrupt to permanent (not 617 * pulsed). 618 */ 619 mask = (ABB5ZES3_REG_TIM_CLK_TBC | ABB5ZES3_REG_TIM_CLK_TAC0 | 620 ABB5ZES3_REG_TIM_CLK_TAC1 | ABB5ZES3_REG_TIM_CLK_COF0 | 621 ABB5ZES3_REG_TIM_CLK_COF1 | ABB5ZES3_REG_TIM_CLK_COF2 | 622 ABB5ZES3_REG_TIM_CLK_TBM | ABB5ZES3_REG_TIM_CLK_TAM); 623 ret = regmap_update_bits(regmap, ABB5ZES3_REG_TIM_CLK, mask, 624 ABB5ZES3_REG_TIM_CLK_COF0 | 625 ABB5ZES3_REG_TIM_CLK_COF1 | 626 ABB5ZES3_REG_TIM_CLK_COF2); 627 if (ret < 0) { 628 dev_err(dev, "%s: unable to initialize clkout register (%d)\n", 629 __func__, ret); 630 return ret; 631 } 632 633 /* 634 * Each component of the alarm (MN, HR, DT, DW) can be enabled/disabled 635 * individually by clearing/setting MSB of each associated register. So, 636 * we set all alarm enable bits to disable current alarm setting. 637 */ 638 mask = (ABB5ZES3_REG_ALRM_MN_AE | ABB5ZES3_REG_ALRM_HR_AE | 639 ABB5ZES3_REG_ALRM_DT_AE | ABB5ZES3_REG_ALRM_DW_AE); 640 ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, mask); 641 if (ret < 0) { 642 dev_err(dev, "%s: unable to disable alarm setting (%d)\n", 643 __func__, ret); 644 return ret; 645 } 646 647 /* Set Control 1 register (RTC enabled, 24hr mode, all int. disabled) */ 648 mask = (ABB5ZES3_REG_CTRL1_CIE | ABB5ZES3_REG_CTRL1_AIE | 649 ABB5ZES3_REG_CTRL1_SIE | ABB5ZES3_REG_CTRL1_PM | 650 ABB5ZES3_REG_CTRL1_CAP | ABB5ZES3_REG_CTRL1_STOP); 651 ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL1, mask, 0); 652 if (ret < 0) { 653 dev_err(dev, "%s: unable to initialize CTRL1 register (%d)\n", 654 __func__, ret); 655 return ret; 656 } 657 658 /* 659 * Set Control 2 register (timer int. disabled, alarm status cleared). 660 * WTAF is read-only and cleared automatically by reading the register. 661 */ 662 mask = (ABB5ZES3_REG_CTRL2_CTBIE | ABB5ZES3_REG_CTRL2_CTAIE | 663 ABB5ZES3_REG_CTRL2_WTAIE | ABB5ZES3_REG_CTRL2_AF | 664 ABB5ZES3_REG_CTRL2_SF | ABB5ZES3_REG_CTRL2_CTBF | 665 ABB5ZES3_REG_CTRL2_CTAF); 666 ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, 0); 667 if (ret < 0) { 668 dev_err(dev, "%s: unable to initialize CTRL2 register (%d)\n", 669 __func__, ret); 670 return ret; 671 } 672 673 /* 674 * Enable battery low detection function and battery switchover function 675 * (standard mode). Disable associated interrupts. Clear battery 676 * switchover flag but not battery low flag. The latter is checked 677 * later below. 678 */ 679 mask = (ABB5ZES3_REG_CTRL3_PM0 | ABB5ZES3_REG_CTRL3_PM1 | 680 ABB5ZES3_REG_CTRL3_PM2 | ABB5ZES3_REG_CTRL3_BLIE | 681 ABB5ZES3_REG_CTRL3_BSIE | ABB5ZES3_REG_CTRL3_BSF); 682 ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3, mask, 0); 683 if (ret < 0) { 684 dev_err(dev, "%s: unable to initialize CTRL3 register (%d)\n", 685 __func__, ret); 686 return ret; 687 } 688 689 /* Check oscillator integrity flag */ 690 ret = regmap_read(regmap, ABB5ZES3_REG_RTC_SC, ®); 691 if (ret < 0) { 692 dev_err(dev, "%s: unable to read osc. integrity flag (%d)\n", 693 __func__, ret); 694 return ret; 695 } 696 697 if (reg & ABB5ZES3_REG_RTC_SC_OSC) { 698 dev_err(dev, "clock integrity not guaranteed. Osc. has stopped or has been interrupted.\n"); 699 dev_err(dev, "change battery (if not already done) and then set time to reset osc. failure flag.\n"); 700 } 701 702 /* 703 * Check battery low flag at startup: this allows reporting battery 704 * is low at startup when IRQ line is not connected. Note: we record 705 * current status to avoid reenabling this interrupt later in probe 706 * function if battery is low. 707 */ 708 ret = regmap_read(regmap, ABB5ZES3_REG_CTRL3, ®); 709 if (ret < 0) { 710 dev_err(dev, "%s: unable to read battery low flag (%d)\n", 711 __func__, ret); 712 return ret; 713 } 714 715 data->battery_low = reg & ABB5ZES3_REG_CTRL3_BLF; 716 if (data->battery_low) { 717 dev_err(dev, "RTC battery is low; please, consider changing it!\n"); 718 719 ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, false); 720 if (ret) 721 dev_err(dev, "%s: disabling battery low interrupt generation failed (%d)\n", 722 __func__, ret); 723 } 724 725 return ret; 726 } 727 728 static int abb5zes3_rtc_alarm_irq_enable(struct device *dev, 729 unsigned int enable) 730 { 731 struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev); 732 int ret = 0; 733 734 if (rtc_data->irq) { 735 if (rtc_data->timer_alarm) 736 ret = _abb5zes3_rtc_update_timer(dev, enable); 737 else 738 ret = _abb5zes3_rtc_update_alarm(dev, enable); 739 } 740 741 return ret; 742 } 743 744 static irqreturn_t _abb5zes3_rtc_interrupt(int irq, void *data) 745 { 746 struct i2c_client *client = data; 747 struct device *dev = &client->dev; 748 struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev); 749 struct rtc_device *rtc = rtc_data->rtc; 750 u8 regs[ABB5ZES3_CTRL_SEC_LEN]; 751 int ret, handled = IRQ_NONE; 752 753 ret = regmap_bulk_read(rtc_data->regmap, 0, regs, 754 ABB5ZES3_CTRL_SEC_LEN); 755 if (ret) { 756 dev_err(dev, "%s: unable to read control section (%d)!\n", 757 __func__, ret); 758 return handled; 759 } 760 761 /* 762 * Check battery low detection flag and disable battery low interrupt 763 * generation if flag is set (interrupt can only be cleared when 764 * battery is replaced). 765 */ 766 if (regs[ABB5ZES3_REG_CTRL3] & ABB5ZES3_REG_CTRL3_BLF) { 767 dev_err(dev, "RTC battery is low; please change it!\n"); 768 769 _abb5zes3_rtc_battery_low_irq_enable(rtc_data->regmap, false); 770 771 handled = IRQ_HANDLED; 772 } 773 774 /* Check alarm flag */ 775 if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_AF) { 776 dev_dbg(dev, "RTC alarm!\n"); 777 778 rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF); 779 780 /* Acknowledge and disable the alarm */ 781 _abb5zes3_rtc_clear_alarm(dev); 782 _abb5zes3_rtc_update_alarm(dev, 0); 783 784 handled = IRQ_HANDLED; 785 } 786 787 /* Check watchdog Timer A flag */ 788 if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_WTAF) { 789 dev_dbg(dev, "RTC timer!\n"); 790 791 rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF); 792 793 /* 794 * Acknowledge and disable the alarm. Note: WTAF 795 * flag had been cleared when reading CTRL2 796 */ 797 _abb5zes3_rtc_update_timer(dev, 0); 798 799 rtc_data->timer_alarm = 0; 800 801 handled = IRQ_HANDLED; 802 } 803 804 return handled; 805 } 806 807 static const struct rtc_class_ops rtc_ops = { 808 .read_time = _abb5zes3_rtc_read_time, 809 .set_time = abb5zes3_rtc_set_time, 810 .read_alarm = abb5zes3_rtc_read_alarm, 811 .set_alarm = abb5zes3_rtc_set_alarm, 812 .alarm_irq_enable = abb5zes3_rtc_alarm_irq_enable, 813 }; 814 815 static const struct regmap_config abb5zes3_rtc_regmap_config = { 816 .reg_bits = 8, 817 .val_bits = 8, 818 }; 819 820 static int abb5zes3_probe(struct i2c_client *client, 821 const struct i2c_device_id *id) 822 { 823 struct abb5zes3_rtc_data *data = NULL; 824 struct device *dev = &client->dev; 825 struct regmap *regmap; 826 int ret; 827 828 if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C | 829 I2C_FUNC_SMBUS_BYTE_DATA | 830 I2C_FUNC_SMBUS_I2C_BLOCK)) 831 return -ENODEV; 832 833 regmap = devm_regmap_init_i2c(client, &abb5zes3_rtc_regmap_config); 834 if (IS_ERR(regmap)) { 835 ret = PTR_ERR(regmap); 836 dev_err(dev, "%s: regmap allocation failed: %d\n", 837 __func__, ret); 838 return ret; 839 } 840 841 ret = abb5zes3_i2c_validate_chip(regmap); 842 if (ret) 843 return ret; 844 845 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); 846 if (!data) 847 return -ENOMEM; 848 849 data->regmap = regmap; 850 dev_set_drvdata(dev, data); 851 852 ret = abb5zes3_rtc_check_setup(dev); 853 if (ret) 854 return ret; 855 856 data->rtc = devm_rtc_allocate_device(dev); 857 ret = PTR_ERR_OR_ZERO(data->rtc); 858 if (ret) { 859 dev_err(dev, "%s: unable to allocate RTC device (%d)\n", 860 __func__, ret); 861 return ret; 862 } 863 864 if (client->irq > 0) { 865 ret = devm_request_threaded_irq(dev, client->irq, NULL, 866 _abb5zes3_rtc_interrupt, 867 IRQF_SHARED | IRQF_ONESHOT, 868 DRV_NAME, client); 869 if (!ret) { 870 device_init_wakeup(dev, true); 871 data->irq = client->irq; 872 dev_dbg(dev, "%s: irq %d used by RTC\n", __func__, 873 client->irq); 874 } else { 875 dev_err(dev, "%s: irq %d unavailable (%d)\n", 876 __func__, client->irq, ret); 877 goto err; 878 } 879 } 880 881 data->rtc->ops = &rtc_ops; 882 data->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000; 883 data->rtc->range_max = RTC_TIMESTAMP_END_2099; 884 885 /* Enable battery low detection interrupt if battery not already low */ 886 if (!data->battery_low && data->irq) { 887 ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, true); 888 if (ret) { 889 dev_err(dev, "%s: enabling battery low interrupt generation failed (%d)\n", 890 __func__, ret); 891 goto err; 892 } 893 } 894 895 ret = devm_rtc_register_device(data->rtc); 896 897 err: 898 if (ret && data->irq) 899 device_init_wakeup(dev, false); 900 return ret; 901 } 902 903 #ifdef CONFIG_PM_SLEEP 904 static int abb5zes3_rtc_suspend(struct device *dev) 905 { 906 struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev); 907 908 if (device_may_wakeup(dev)) 909 return enable_irq_wake(rtc_data->irq); 910 911 return 0; 912 } 913 914 static int abb5zes3_rtc_resume(struct device *dev) 915 { 916 struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev); 917 918 if (device_may_wakeup(dev)) 919 return disable_irq_wake(rtc_data->irq); 920 921 return 0; 922 } 923 #endif 924 925 static SIMPLE_DEV_PM_OPS(abb5zes3_rtc_pm_ops, abb5zes3_rtc_suspend, 926 abb5zes3_rtc_resume); 927 928 #ifdef CONFIG_OF 929 static const struct of_device_id abb5zes3_dt_match[] = { 930 { .compatible = "abracon,abb5zes3" }, 931 { }, 932 }; 933 MODULE_DEVICE_TABLE(of, abb5zes3_dt_match); 934 #endif 935 936 static const struct i2c_device_id abb5zes3_id[] = { 937 { "abb5zes3", 0 }, 938 { } 939 }; 940 MODULE_DEVICE_TABLE(i2c, abb5zes3_id); 941 942 static struct i2c_driver abb5zes3_driver = { 943 .driver = { 944 .name = DRV_NAME, 945 .pm = &abb5zes3_rtc_pm_ops, 946 .of_match_table = of_match_ptr(abb5zes3_dt_match), 947 }, 948 .probe = abb5zes3_probe, 949 .id_table = abb5zes3_id, 950 }; 951 module_i2c_driver(abb5zes3_driver); 952 953 MODULE_AUTHOR("Arnaud EBALARD <arno@natisbad.org>"); 954 MODULE_DESCRIPTION("Abracon AB-RTCMC-32.768kHz-B5ZE-S3 RTC/Alarm driver"); 955 MODULE_LICENSE("GPL"); 956