xref: /openbmc/linux/drivers/rtc/rtc-ab-b5ze-s3.c (revision 1c4fc295)
1 /*
2  * rtc-ab-b5ze-s3 - Driver for Abracon AB-RTCMC-32.768Khz-B5ZE-S3
3  *                  I2C RTC / Alarm chip
4  *
5  * Copyright (C) 2014, Arnaud EBALARD <arno@natisbad.org>
6  *
7  * Detailed datasheet of the chip is available here:
8  *
9  *  http://www.abracon.com/realtimeclock/AB-RTCMC-32.768kHz-B5ZE-S3-Application-Manual.pdf
10  *
11  * This work is based on ISL12057 driver (drivers/rtc/rtc-isl12057.c).
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/rtc.h>
27 #include <linux/i2c.h>
28 #include <linux/bcd.h>
29 #include <linux/of.h>
30 #include <linux/regmap.h>
31 #include <linux/interrupt.h>
32 
33 #define DRV_NAME "rtc-ab-b5ze-s3"
34 
35 /* Control section */
36 #define ABB5ZES3_REG_CTRL1	   0x00	   /* Control 1 register */
37 #define ABB5ZES3_REG_CTRL1_CIE	   BIT(0)  /* Pulse interrupt enable */
38 #define ABB5ZES3_REG_CTRL1_AIE	   BIT(1)  /* Alarm interrupt enable */
39 #define ABB5ZES3_REG_CTRL1_SIE	   BIT(2)  /* Second interrupt enable */
40 #define ABB5ZES3_REG_CTRL1_PM	   BIT(3)  /* 24h/12h mode */
41 #define ABB5ZES3_REG_CTRL1_SR	   BIT(4)  /* Software reset */
42 #define ABB5ZES3_REG_CTRL1_STOP	   BIT(5)  /* RTC circuit enable */
43 #define ABB5ZES3_REG_CTRL1_CAP	   BIT(7)
44 
45 #define ABB5ZES3_REG_CTRL2	   0x01	   /* Control 2 register */
46 #define ABB5ZES3_REG_CTRL2_CTBIE   BIT(0)  /* Countdown timer B int. enable */
47 #define ABB5ZES3_REG_CTRL2_CTAIE   BIT(1)  /* Countdown timer A int. enable */
48 #define ABB5ZES3_REG_CTRL2_WTAIE   BIT(2)  /* Watchdog timer A int. enable */
49 #define ABB5ZES3_REG_CTRL2_AF	   BIT(3)  /* Alarm interrupt status */
50 #define ABB5ZES3_REG_CTRL2_SF	   BIT(4)  /* Second interrupt status */
51 #define ABB5ZES3_REG_CTRL2_CTBF	   BIT(5)  /* Countdown timer B int. status */
52 #define ABB5ZES3_REG_CTRL2_CTAF	   BIT(6)  /* Countdown timer A int. status */
53 #define ABB5ZES3_REG_CTRL2_WTAF	   BIT(7)  /* Watchdog timer A int. status */
54 
55 #define ABB5ZES3_REG_CTRL3	   0x02	   /* Control 3 register */
56 #define ABB5ZES3_REG_CTRL3_PM2	   BIT(7)  /* Power Management bit 2 */
57 #define ABB5ZES3_REG_CTRL3_PM1	   BIT(6)  /* Power Management bit 1 */
58 #define ABB5ZES3_REG_CTRL3_PM0	   BIT(5)  /* Power Management bit 0 */
59 #define ABB5ZES3_REG_CTRL3_BSF	   BIT(3)  /* Battery switchover int. status */
60 #define ABB5ZES3_REG_CTRL3_BLF	   BIT(2)  /* Battery low int. status */
61 #define ABB5ZES3_REG_CTRL3_BSIE	   BIT(1)  /* Battery switchover int. enable */
62 #define ABB5ZES3_REG_CTRL3_BLIE	   BIT(0)  /* Battery low int. enable */
63 
64 #define ABB5ZES3_CTRL_SEC_LEN	   3
65 
66 /* RTC section */
67 #define ABB5ZES3_REG_RTC_SC	   0x03	   /* RTC Seconds register */
68 #define ABB5ZES3_REG_RTC_SC_OSC	   BIT(7)  /* Clock integrity status */
69 #define ABB5ZES3_REG_RTC_MN	   0x04	   /* RTC Minutes register */
70 #define ABB5ZES3_REG_RTC_HR	   0x05	   /* RTC Hours register */
71 #define ABB5ZES3_REG_RTC_HR_PM	   BIT(5)  /* RTC Hours PM bit */
72 #define ABB5ZES3_REG_RTC_DT	   0x06	   /* RTC Date register */
73 #define ABB5ZES3_REG_RTC_DW	   0x07	   /* RTC Day of the week register */
74 #define ABB5ZES3_REG_RTC_MO	   0x08	   /* RTC Month register */
75 #define ABB5ZES3_REG_RTC_YR	   0x09	   /* RTC Year register */
76 
77 #define ABB5ZES3_RTC_SEC_LEN	   7
78 
79 /* Alarm section (enable bits are all active low) */
80 #define ABB5ZES3_REG_ALRM_MN	   0x0A	   /* Alarm - minute register */
81 #define ABB5ZES3_REG_ALRM_MN_AE	   BIT(7)  /* Minute enable */
82 #define ABB5ZES3_REG_ALRM_HR	   0x0B	   /* Alarm - hours register */
83 #define ABB5ZES3_REG_ALRM_HR_AE	   BIT(7)  /* Hour enable */
84 #define ABB5ZES3_REG_ALRM_DT	   0x0C	   /* Alarm - date register */
85 #define ABB5ZES3_REG_ALRM_DT_AE	   BIT(7)  /* Date (day of the month) enable */
86 #define ABB5ZES3_REG_ALRM_DW	   0x0D	   /* Alarm - day of the week reg. */
87 #define ABB5ZES3_REG_ALRM_DW_AE	   BIT(7)  /* Day of the week enable */
88 
89 #define ABB5ZES3_ALRM_SEC_LEN	   4
90 
91 /* Frequency offset section */
92 #define ABB5ZES3_REG_FREQ_OF	   0x0E	   /* Frequency offset register */
93 #define ABB5ZES3_REG_FREQ_OF_MODE  0x0E	   /* Offset mode: 2 hours / minute */
94 
95 /* CLOCKOUT section */
96 #define ABB5ZES3_REG_TIM_CLK	   0x0F	   /* Timer & Clockout register */
97 #define ABB5ZES3_REG_TIM_CLK_TAM   BIT(7)  /* Permanent/pulsed timer A/int. 2 */
98 #define ABB5ZES3_REG_TIM_CLK_TBM   BIT(6)  /* Permanent/pulsed timer B */
99 #define ABB5ZES3_REG_TIM_CLK_COF2  BIT(5)  /* Clkout Freq bit 2 */
100 #define ABB5ZES3_REG_TIM_CLK_COF1  BIT(4)  /* Clkout Freq bit 1 */
101 #define ABB5ZES3_REG_TIM_CLK_COF0  BIT(3)  /* Clkout Freq bit 0 */
102 #define ABB5ZES3_REG_TIM_CLK_TAC1  BIT(2)  /* Timer A: - 01 : countdown */
103 #define ABB5ZES3_REG_TIM_CLK_TAC0  BIT(1)  /*	       - 10 : timer	*/
104 #define ABB5ZES3_REG_TIM_CLK_TBC   BIT(0)  /* Timer B enable */
105 
106 /* Timer A Section */
107 #define ABB5ZES3_REG_TIMA_CLK	   0x10	   /* Timer A clock register */
108 #define ABB5ZES3_REG_TIMA_CLK_TAQ2 BIT(2)  /* Freq bit 2 */
109 #define ABB5ZES3_REG_TIMA_CLK_TAQ1 BIT(1)  /* Freq bit 1 */
110 #define ABB5ZES3_REG_TIMA_CLK_TAQ0 BIT(0)  /* Freq bit 0 */
111 #define ABB5ZES3_REG_TIMA	   0x11	   /* Timer A register */
112 
113 #define ABB5ZES3_TIMA_SEC_LEN	   2
114 
115 /* Timer B Section */
116 #define ABB5ZES3_REG_TIMB_CLK	   0x12	   /* Timer B clock register */
117 #define ABB5ZES3_REG_TIMB_CLK_TBW2 BIT(6)
118 #define ABB5ZES3_REG_TIMB_CLK_TBW1 BIT(5)
119 #define ABB5ZES3_REG_TIMB_CLK_TBW0 BIT(4)
120 #define ABB5ZES3_REG_TIMB_CLK_TAQ2 BIT(2)
121 #define ABB5ZES3_REG_TIMB_CLK_TAQ1 BIT(1)
122 #define ABB5ZES3_REG_TIMB_CLK_TAQ0 BIT(0)
123 #define ABB5ZES3_REG_TIMB	   0x13	   /* Timer B register */
124 #define ABB5ZES3_TIMB_SEC_LEN	   2
125 
126 #define ABB5ZES3_MEM_MAP_LEN	   0x14
127 
128 struct abb5zes3_rtc_data {
129 	struct rtc_device *rtc;
130 	struct regmap *regmap;
131 	struct mutex lock;
132 
133 	int irq;
134 
135 	bool battery_low;
136 	bool timer_alarm; /* current alarm is via timer A */
137 };
138 
139 /*
140  * Try and match register bits w/ fixed null values to see whether we
141  * are dealing with an ABB5ZES3. Note: this function is called early
142  * during init and hence does need mutex protection.
143  */
144 static int abb5zes3_i2c_validate_chip(struct regmap *regmap)
145 {
146 	u8 regs[ABB5ZES3_MEM_MAP_LEN];
147 	static const u8 mask[ABB5ZES3_MEM_MAP_LEN] = { 0x00, 0x00, 0x10, 0x00,
148 						       0x80, 0xc0, 0xc0, 0xf8,
149 						       0xe0, 0x00, 0x00, 0x40,
150 						       0x40, 0x78, 0x00, 0x00,
151 						       0xf8, 0x00, 0x88, 0x00 };
152 	int ret, i;
153 
154 	ret = regmap_bulk_read(regmap, 0, regs, ABB5ZES3_MEM_MAP_LEN);
155 	if (ret)
156 		return ret;
157 
158 	for (i = 0; i < ABB5ZES3_MEM_MAP_LEN; ++i) {
159 		if (regs[i] & mask[i]) /* check if bits are cleared */
160 			return -ENODEV;
161 	}
162 
163 	return 0;
164 }
165 
166 /* Clear alarm status bit. */
167 static int _abb5zes3_rtc_clear_alarm(struct device *dev)
168 {
169 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
170 	int ret;
171 
172 	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2,
173 				 ABB5ZES3_REG_CTRL2_AF, 0);
174 	if (ret)
175 		dev_err(dev, "%s: clearing alarm failed (%d)\n", __func__, ret);
176 
177 	return ret;
178 }
179 
180 /* Enable or disable alarm (i.e. alarm interrupt generation) */
181 static int _abb5zes3_rtc_update_alarm(struct device *dev, bool enable)
182 {
183 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
184 	int ret;
185 
186 	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL1,
187 				 ABB5ZES3_REG_CTRL1_AIE,
188 				 enable ? ABB5ZES3_REG_CTRL1_AIE : 0);
189 	if (ret)
190 		dev_err(dev, "%s: writing alarm INT failed (%d)\n",
191 			__func__, ret);
192 
193 	return ret;
194 }
195 
196 /* Enable or disable timer (watchdog timer A interrupt generation) */
197 static int _abb5zes3_rtc_update_timer(struct device *dev, bool enable)
198 {
199 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
200 	int ret;
201 
202 	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2,
203 				 ABB5ZES3_REG_CTRL2_WTAIE,
204 				 enable ? ABB5ZES3_REG_CTRL2_WTAIE : 0);
205 	if (ret)
206 		dev_err(dev, "%s: writing timer INT failed (%d)\n",
207 			__func__, ret);
208 
209 	return ret;
210 }
211 
212 /*
213  * Note: we only read, so regmap inner lock protection is sufficient, i.e.
214  * we do not need driver's main lock protection.
215  */
216 static int _abb5zes3_rtc_read_time(struct device *dev, struct rtc_time *tm)
217 {
218 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
219 	u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
220 	int ret;
221 
222 	/*
223 	 * As we need to read CTRL1 register anyway to access 24/12h
224 	 * mode bit, we do a single bulk read of both control and RTC
225 	 * sections (they are consecutive). This also ease indexing
226 	 * of register values after bulk read.
227 	 */
228 	ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_CTRL1, regs,
229 			       sizeof(regs));
230 	if (ret) {
231 		dev_err(dev, "%s: reading RTC time failed (%d)\n",
232 			__func__, ret);
233 		goto err;
234 	}
235 
236 	/* If clock integrity is not guaranteed, do not return a time value */
237 	if (regs[ABB5ZES3_REG_RTC_SC] & ABB5ZES3_REG_RTC_SC_OSC) {
238 		ret = -ENODATA;
239 		goto err;
240 	}
241 
242 	tm->tm_sec = bcd2bin(regs[ABB5ZES3_REG_RTC_SC] & 0x7F);
243 	tm->tm_min = bcd2bin(regs[ABB5ZES3_REG_RTC_MN]);
244 
245 	if (regs[ABB5ZES3_REG_CTRL1] & ABB5ZES3_REG_CTRL1_PM) { /* 12hr mode */
246 		tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR] & 0x1f);
247 		if (regs[ABB5ZES3_REG_RTC_HR] & ABB5ZES3_REG_RTC_HR_PM) /* PM */
248 			tm->tm_hour += 12;
249 	} else {						/* 24hr mode */
250 		tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR]);
251 	}
252 
253 	tm->tm_mday = bcd2bin(regs[ABB5ZES3_REG_RTC_DT]);
254 	tm->tm_wday = bcd2bin(regs[ABB5ZES3_REG_RTC_DW]);
255 	tm->tm_mon  = bcd2bin(regs[ABB5ZES3_REG_RTC_MO]) - 1; /* starts at 1 */
256 	tm->tm_year = bcd2bin(regs[ABB5ZES3_REG_RTC_YR]) + 100;
257 
258 	ret = rtc_valid_tm(tm);
259 
260 err:
261 	return ret;
262 }
263 
264 static int abb5zes3_rtc_set_time(struct device *dev, struct rtc_time *tm)
265 {
266 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
267 	u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
268 	int ret;
269 
270 	/*
271 	 * Year register is 8-bit wide and bcd-coded, i.e records values
272 	 * between 0 and 99. tm_year is an offset from 1900 and we are
273 	 * interested in the 2000-2099 range, so any value less than 100
274 	 * is invalid.
275 	 */
276 	if (tm->tm_year < 100)
277 		return -EINVAL;
278 
279 	regs[ABB5ZES3_REG_RTC_SC] = bin2bcd(tm->tm_sec); /* MSB=0 clears OSC */
280 	regs[ABB5ZES3_REG_RTC_MN] = bin2bcd(tm->tm_min);
281 	regs[ABB5ZES3_REG_RTC_HR] = bin2bcd(tm->tm_hour); /* 24-hour format */
282 	regs[ABB5ZES3_REG_RTC_DT] = bin2bcd(tm->tm_mday);
283 	regs[ABB5ZES3_REG_RTC_DW] = bin2bcd(tm->tm_wday);
284 	regs[ABB5ZES3_REG_RTC_MO] = bin2bcd(tm->tm_mon + 1);
285 	regs[ABB5ZES3_REG_RTC_YR] = bin2bcd(tm->tm_year - 100);
286 
287 	mutex_lock(&data->lock);
288 	ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_RTC_SC,
289 				regs + ABB5ZES3_REG_RTC_SC,
290 				ABB5ZES3_RTC_SEC_LEN);
291 	mutex_unlock(&data->lock);
292 
293 
294 	return ret;
295 }
296 
297 /*
298  * Set provided TAQ and Timer A registers (TIMA_CLK and TIMA) based on
299  * given number of seconds.
300  */
301 static inline void sec_to_timer_a(u8 secs, u8 *taq, u8 *timer_a)
302 {
303 	*taq = ABB5ZES3_REG_TIMA_CLK_TAQ1; /* 1Hz */
304 	*timer_a = secs;
305 }
306 
307 /*
308  * Return current number of seconds in Timer A. As we only use
309  * timer A with a 1Hz freq, this is what we expect to have.
310  */
311 static inline int sec_from_timer_a(u8 *secs, u8 taq, u8 timer_a)
312 {
313 	if (taq != ABB5ZES3_REG_TIMA_CLK_TAQ1) /* 1Hz */
314 		return -EINVAL;
315 
316 	*secs = timer_a;
317 
318 	return 0;
319 }
320 
321 /*
322  * Read alarm currently configured via a watchdog timer using timer A. This
323  * is done by reading current RTC time and adding remaining timer time.
324  */
325 static int _abb5zes3_rtc_read_timer(struct device *dev,
326 				    struct rtc_wkalrm *alarm)
327 {
328 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
329 	struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
330 	u8 regs[ABB5ZES3_TIMA_SEC_LEN + 1];
331 	unsigned long rtc_secs;
332 	unsigned int reg;
333 	u8 timer_secs;
334 	int ret;
335 
336 	/*
337 	 * Instead of doing two separate calls, because they are consecutive,
338 	 * we grab both clockout register and Timer A section. The latter is
339 	 * used to decide if timer A is enabled (as a watchdog timer).
340 	 */
341 	ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_TIM_CLK, regs,
342 			       ABB5ZES3_TIMA_SEC_LEN + 1);
343 	if (ret) {
344 		dev_err(dev, "%s: reading Timer A section failed (%d)\n",
345 			__func__, ret);
346 		goto err;
347 	}
348 
349 	/* get current time ... */
350 	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
351 	if (ret)
352 		goto err;
353 
354 	/* ... convert to seconds ... */
355 	ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
356 	if (ret)
357 		goto err;
358 
359 	/* ... add remaining timer A time ... */
360 	ret = sec_from_timer_a(&timer_secs, regs[1], regs[2]);
361 	if (ret)
362 		goto err;
363 
364 	/* ... and convert back. */
365 	rtc_time_to_tm(rtc_secs + timer_secs, alarm_tm);
366 
367 	ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL2, &reg);
368 	if (ret) {
369 		dev_err(dev, "%s: reading ctrl reg failed (%d)\n",
370 			__func__, ret);
371 		goto err;
372 	}
373 
374 	alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL2_WTAIE);
375 
376 err:
377 	return ret;
378 }
379 
380 /* Read alarm currently configured via a RTC alarm registers. */
381 static int _abb5zes3_rtc_read_alarm(struct device *dev,
382 				    struct rtc_wkalrm *alarm)
383 {
384 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
385 	struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
386 	unsigned long rtc_secs, alarm_secs;
387 	u8 regs[ABB5ZES3_ALRM_SEC_LEN];
388 	unsigned int reg;
389 	int ret;
390 
391 	ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
392 			       ABB5ZES3_ALRM_SEC_LEN);
393 	if (ret) {
394 		dev_err(dev, "%s: reading alarm section failed (%d)\n",
395 			__func__, ret);
396 		goto err;
397 	}
398 
399 	alarm_tm->tm_sec  = 0;
400 	alarm_tm->tm_min  = bcd2bin(regs[0] & 0x7f);
401 	alarm_tm->tm_hour = bcd2bin(regs[1] & 0x3f);
402 	alarm_tm->tm_mday = bcd2bin(regs[2] & 0x3f);
403 	alarm_tm->tm_wday = -1;
404 
405 	/*
406 	 * The alarm section does not store year/month. We use the ones in rtc
407 	 * section as a basis and increment month and then year if needed to get
408 	 * alarm after current time.
409 	 */
410 	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
411 	if (ret)
412 		goto err;
413 
414 	alarm_tm->tm_year = rtc_tm.tm_year;
415 	alarm_tm->tm_mon = rtc_tm.tm_mon;
416 
417 	ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
418 	if (ret)
419 		goto err;
420 
421 	ret = rtc_tm_to_time(alarm_tm, &alarm_secs);
422 	if (ret)
423 		goto err;
424 
425 	if (alarm_secs < rtc_secs) {
426 		if (alarm_tm->tm_mon == 11) {
427 			alarm_tm->tm_mon = 0;
428 			alarm_tm->tm_year += 1;
429 		} else {
430 			alarm_tm->tm_mon += 1;
431 		}
432 	}
433 
434 	ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL1, &reg);
435 	if (ret) {
436 		dev_err(dev, "%s: reading ctrl reg failed (%d)\n",
437 			__func__, ret);
438 		goto err;
439 	}
440 
441 	alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL1_AIE);
442 
443 err:
444 	return ret;
445 }
446 
447 /*
448  * As the Alarm mechanism supported by the chip is only accurate to the
449  * minute, we use the watchdog timer mechanism provided by timer A
450  * (up to 256 seconds w/ a second accuracy) for low alarm values (below
451  * 4 minutes). Otherwise, we use the common alarm mechanism provided
452  * by the chip. In order for that to work, we keep track of currently
453  * configured timer type via 'timer_alarm' flag in our private data
454  * structure.
455  */
456 static int abb5zes3_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
457 {
458 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
459 	int ret;
460 
461 	mutex_lock(&data->lock);
462 	if (data->timer_alarm)
463 		ret = _abb5zes3_rtc_read_timer(dev, alarm);
464 	else
465 		ret = _abb5zes3_rtc_read_alarm(dev, alarm);
466 	mutex_unlock(&data->lock);
467 
468 	return ret;
469 }
470 
471 /*
472  * Set alarm using chip alarm mechanism. It is only accurate to the
473  * minute (not the second). The function expects alarm interrupt to
474  * be disabled.
475  */
476 static int _abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
477 {
478 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
479 	struct rtc_time *alarm_tm = &alarm->time;
480 	unsigned long rtc_secs, alarm_secs;
481 	u8 regs[ABB5ZES3_ALRM_SEC_LEN];
482 	struct rtc_time rtc_tm;
483 	int ret, enable = 1;
484 
485 	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
486 	if (ret)
487 		goto err;
488 
489 	ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
490 	if (ret)
491 		goto err;
492 
493 	ret = rtc_tm_to_time(alarm_tm, &alarm_secs);
494 	if (ret)
495 		goto err;
496 
497 	/* If alarm time is before current time, disable the alarm */
498 	if (!alarm->enabled || alarm_secs <= rtc_secs) {
499 		enable = 0;
500 	} else {
501 		/*
502 		 * Chip only support alarms up to one month in the future. Let's
503 		 * return an error if we get something after that limit.
504 		 * Comparison is done by incrementing rtc_tm month field by one
505 		 * and checking alarm value is still below.
506 		 */
507 		if (rtc_tm.tm_mon == 11) { /* handle year wrapping */
508 			rtc_tm.tm_mon = 0;
509 			rtc_tm.tm_year += 1;
510 		} else {
511 			rtc_tm.tm_mon += 1;
512 		}
513 
514 		ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
515 		if (ret)
516 			goto err;
517 
518 		if (alarm_secs > rtc_secs) {
519 			dev_err(dev, "%s: alarm maximum is one month in the "
520 				"future (%d)\n", __func__, ret);
521 			ret = -EINVAL;
522 			goto err;
523 		}
524 	}
525 
526 	/*
527 	 * Program all alarm registers but DW one. For each register, setting
528 	 * MSB to 0 enables associated alarm.
529 	 */
530 	regs[0] = bin2bcd(alarm_tm->tm_min) & 0x7f;
531 	regs[1] = bin2bcd(alarm_tm->tm_hour) & 0x3f;
532 	regs[2] = bin2bcd(alarm_tm->tm_mday) & 0x3f;
533 	regs[3] = ABB5ZES3_REG_ALRM_DW_AE; /* do not match day of the week */
534 
535 	ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
536 				ABB5ZES3_ALRM_SEC_LEN);
537 	if (ret < 0) {
538 		dev_err(dev, "%s: writing ALARM section failed (%d)\n",
539 			__func__, ret);
540 		goto err;
541 	}
542 
543 	/* Record currently configured alarm is not a timer */
544 	data->timer_alarm = 0;
545 
546 	/* Enable or disable alarm interrupt generation */
547 	ret = _abb5zes3_rtc_update_alarm(dev, enable);
548 
549 err:
550 	return ret;
551 }
552 
553 /*
554  * Set alarm using timer watchdog (via timer A) mechanism. The function expects
555  * timer A interrupt to be disabled.
556  */
557 static int _abb5zes3_rtc_set_timer(struct device *dev, struct rtc_wkalrm *alarm,
558 				   u8 secs)
559 {
560 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
561 	u8 regs[ABB5ZES3_TIMA_SEC_LEN];
562 	u8 mask = ABB5ZES3_REG_TIM_CLK_TAC0 | ABB5ZES3_REG_TIM_CLK_TAC1;
563 	int ret = 0;
564 
565 	/* Program given number of seconds to Timer A registers */
566 	sec_to_timer_a(secs, &regs[0], &regs[1]);
567 	ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_TIMA_CLK, regs,
568 				ABB5ZES3_TIMA_SEC_LEN);
569 	if (ret < 0) {
570 		dev_err(dev, "%s: writing timer section failed\n", __func__);
571 		goto err;
572 	}
573 
574 	/* Configure Timer A as a watchdog timer */
575 	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_TIM_CLK,
576 				 mask, ABB5ZES3_REG_TIM_CLK_TAC1);
577 	if (ret)
578 		dev_err(dev, "%s: failed to update timer\n", __func__);
579 
580 	/* Record currently configured alarm is a timer */
581 	data->timer_alarm = 1;
582 
583 	/* Enable or disable timer interrupt generation */
584 	ret = _abb5zes3_rtc_update_timer(dev, alarm->enabled);
585 
586 err:
587 	return ret;
588 }
589 
590 /*
591  * The chip has an alarm which is only accurate to the minute. In order to
592  * handle alarms below that limit, we use the watchdog timer function of
593  * timer A. More precisely, the timer method is used for alarms below 240
594  * seconds.
595  */
596 static int abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
597 {
598 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
599 	struct rtc_time *alarm_tm = &alarm->time;
600 	unsigned long rtc_secs, alarm_secs;
601 	struct rtc_time rtc_tm;
602 	int ret;
603 
604 	mutex_lock(&data->lock);
605 	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
606 	if (ret)
607 		goto err;
608 
609 	ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
610 	if (ret)
611 		goto err;
612 
613 	ret = rtc_tm_to_time(alarm_tm, &alarm_secs);
614 	if (ret)
615 		goto err;
616 
617 	/* Let's first disable both the alarm and the timer interrupts */
618 	ret = _abb5zes3_rtc_update_alarm(dev, false);
619 	if (ret < 0) {
620 		dev_err(dev, "%s: unable to disable alarm (%d)\n", __func__,
621 			ret);
622 		goto err;
623 	}
624 	ret = _abb5zes3_rtc_update_timer(dev, false);
625 	if (ret < 0) {
626 		dev_err(dev, "%s: unable to disable timer (%d)\n", __func__,
627 			ret);
628 		goto err;
629 	}
630 
631 	data->timer_alarm = 0;
632 
633 	/*
634 	 * Let's now configure the alarm; if we are expected to ring in
635 	 * more than 240s, then we setup an alarm. Otherwise, a timer.
636 	 */
637 	if ((alarm_secs > rtc_secs) && ((alarm_secs - rtc_secs) <= 240))
638 		ret = _abb5zes3_rtc_set_timer(dev, alarm,
639 					      alarm_secs - rtc_secs);
640 	else
641 		ret = _abb5zes3_rtc_set_alarm(dev, alarm);
642 
643  err:
644 	mutex_unlock(&data->lock);
645 
646 	if (ret)
647 		dev_err(dev, "%s: unable to configure alarm (%d)\n", __func__,
648 			ret);
649 
650 	return ret;
651  }
652 
653 /* Enable or disable battery low irq generation */
654 static inline int _abb5zes3_rtc_battery_low_irq_enable(struct regmap *regmap,
655 						       bool enable)
656 {
657 	return regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3,
658 				  ABB5ZES3_REG_CTRL3_BLIE,
659 				  enable ? ABB5ZES3_REG_CTRL3_BLIE : 0);
660 }
661 
662 /*
663  * Check current RTC status and enable/disable what needs to be. Return 0 if
664  * everything went ok and a negative value upon error. Note: this function
665  * is called early during init and hence does need mutex protection.
666  */
667 static int abb5zes3_rtc_check_setup(struct device *dev)
668 {
669 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
670 	struct regmap *regmap = data->regmap;
671 	unsigned int reg;
672 	int ret;
673 	u8 mask;
674 
675 	/*
676 	 * By default, the devices generates a 32.768KHz signal on IRQ#1 pin. It
677 	 * is disabled here to prevent polluting the interrupt line and
678 	 * uselessly triggering the IRQ handler we install for alarm and battery
679 	 * low events. Note: this is done before clearing int. status below
680 	 * in this function.
681 	 * We also disable all timers and set timer interrupt to permanent (not
682 	 * pulsed).
683 	 */
684 	mask = (ABB5ZES3_REG_TIM_CLK_TBC | ABB5ZES3_REG_TIM_CLK_TAC0 |
685 		ABB5ZES3_REG_TIM_CLK_TAC1 | ABB5ZES3_REG_TIM_CLK_COF0 |
686 		ABB5ZES3_REG_TIM_CLK_COF1 | ABB5ZES3_REG_TIM_CLK_COF2 |
687 		ABB5ZES3_REG_TIM_CLK_TBM | ABB5ZES3_REG_TIM_CLK_TAM);
688 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_TIM_CLK, mask,
689 		ABB5ZES3_REG_TIM_CLK_COF0 | ABB5ZES3_REG_TIM_CLK_COF1 |
690 		ABB5ZES3_REG_TIM_CLK_COF2);
691 	if (ret < 0) {
692 		dev_err(dev, "%s: unable to initialize clkout register (%d)\n",
693 			__func__, ret);
694 		return ret;
695 	}
696 
697 	/*
698 	 * Each component of the alarm (MN, HR, DT, DW) can be enabled/disabled
699 	 * individually by clearing/setting MSB of each associated register. So,
700 	 * we set all alarm enable bits to disable current alarm setting.
701 	 */
702 	mask = (ABB5ZES3_REG_ALRM_MN_AE | ABB5ZES3_REG_ALRM_HR_AE |
703 		ABB5ZES3_REG_ALRM_DT_AE | ABB5ZES3_REG_ALRM_DW_AE);
704 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, mask);
705 	if (ret < 0) {
706 		dev_err(dev, "%s: unable to disable alarm setting (%d)\n",
707 			__func__, ret);
708 		return ret;
709 	}
710 
711 	/* Set Control 1 register (RTC enabled, 24hr mode, all int. disabled) */
712 	mask = (ABB5ZES3_REG_CTRL1_CIE | ABB5ZES3_REG_CTRL1_AIE |
713 		ABB5ZES3_REG_CTRL1_SIE | ABB5ZES3_REG_CTRL1_PM |
714 		ABB5ZES3_REG_CTRL1_CAP | ABB5ZES3_REG_CTRL1_STOP);
715 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL1, mask, 0);
716 	if (ret < 0) {
717 		dev_err(dev, "%s: unable to initialize CTRL1 register (%d)\n",
718 			__func__, ret);
719 		return ret;
720 	}
721 
722 	/*
723 	 * Set Control 2 register (timer int. disabled, alarm status cleared).
724 	 * WTAF is read-only and cleared automatically by reading the register.
725 	 */
726 	mask = (ABB5ZES3_REG_CTRL2_CTBIE | ABB5ZES3_REG_CTRL2_CTAIE |
727 		ABB5ZES3_REG_CTRL2_WTAIE | ABB5ZES3_REG_CTRL2_AF |
728 		ABB5ZES3_REG_CTRL2_SF | ABB5ZES3_REG_CTRL2_CTBF |
729 		ABB5ZES3_REG_CTRL2_CTAF);
730 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, 0);
731 	if (ret < 0) {
732 		dev_err(dev, "%s: unable to initialize CTRL2 register (%d)\n",
733 			__func__, ret);
734 		return ret;
735 	}
736 
737 	/*
738 	 * Enable battery low detection function and battery switchover function
739 	 * (standard mode). Disable associated interrupts. Clear battery
740 	 * switchover flag but not battery low flag. The latter is checked
741 	 * later below.
742 	 */
743 	mask = (ABB5ZES3_REG_CTRL3_PM0 | ABB5ZES3_REG_CTRL3_PM1 |
744 		ABB5ZES3_REG_CTRL3_PM2 | ABB5ZES3_REG_CTRL3_BLIE |
745 		ABB5ZES3_REG_CTRL3_BSIE| ABB5ZES3_REG_CTRL3_BSF);
746 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3, mask, 0);
747 	if (ret < 0) {
748 		dev_err(dev, "%s: unable to initialize CTRL3 register (%d)\n",
749 			__func__, ret);
750 		return ret;
751 	}
752 
753 	/* Check oscillator integrity flag */
754 	ret = regmap_read(regmap, ABB5ZES3_REG_RTC_SC, &reg);
755 	if (ret < 0) {
756 		dev_err(dev, "%s: unable to read osc. integrity flag (%d)\n",
757 			__func__, ret);
758 		return ret;
759 	}
760 
761 	if (reg & ABB5ZES3_REG_RTC_SC_OSC) {
762 		dev_err(dev, "clock integrity not guaranteed. Osc. has stopped "
763 			"or has been interrupted.\n");
764 		dev_err(dev, "change battery (if not already done) and  "
765 			"then set time to reset osc. failure flag.\n");
766 	}
767 
768 	/*
769 	 * Check battery low flag at startup: this allows reporting battery
770 	 * is low at startup when IRQ line is not connected. Note: we record
771 	 * current status to avoid reenabling this interrupt later in probe
772 	 * function if battery is low.
773 	 */
774 	ret = regmap_read(regmap, ABB5ZES3_REG_CTRL3, &reg);
775 	if (ret < 0) {
776 		dev_err(dev, "%s: unable to read battery low flag (%d)\n",
777 			__func__, ret);
778 		return ret;
779 	}
780 
781 	data->battery_low = reg & ABB5ZES3_REG_CTRL3_BLF;
782 	if (data->battery_low) {
783 		dev_err(dev, "RTC battery is low; please, consider "
784 			"changing it!\n");
785 
786 		ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, false);
787 		if (ret)
788 			dev_err(dev, "%s: disabling battery low interrupt "
789 				"generation failed (%d)\n", __func__, ret);
790 	}
791 
792 	return ret;
793 }
794 
795 static int abb5zes3_rtc_alarm_irq_enable(struct device *dev,
796 					 unsigned int enable)
797 {
798 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
799 	int ret = 0;
800 
801 	if (rtc_data->irq) {
802 		mutex_lock(&rtc_data->lock);
803 		if (rtc_data->timer_alarm)
804 			ret = _abb5zes3_rtc_update_timer(dev, enable);
805 		else
806 			ret = _abb5zes3_rtc_update_alarm(dev, enable);
807 		mutex_unlock(&rtc_data->lock);
808 	}
809 
810 	return ret;
811 }
812 
813 static irqreturn_t _abb5zes3_rtc_interrupt(int irq, void *data)
814 {
815 	struct i2c_client *client = data;
816 	struct device *dev = &client->dev;
817 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
818 	struct rtc_device *rtc = rtc_data->rtc;
819 	u8 regs[ABB5ZES3_CTRL_SEC_LEN];
820 	int ret, handled = IRQ_NONE;
821 
822 	ret = regmap_bulk_read(rtc_data->regmap, 0, regs,
823 			       ABB5ZES3_CTRL_SEC_LEN);
824 	if (ret) {
825 		dev_err(dev, "%s: unable to read control section (%d)!\n",
826 			__func__, ret);
827 		return handled;
828 	}
829 
830 	/*
831 	 * Check battery low detection flag and disable battery low interrupt
832 	 * generation if flag is set (interrupt can only be cleared when
833 	 * battery is replaced).
834 	 */
835 	if (regs[ABB5ZES3_REG_CTRL3] & ABB5ZES3_REG_CTRL3_BLF) {
836 		dev_err(dev, "RTC battery is low; please change it!\n");
837 
838 		_abb5zes3_rtc_battery_low_irq_enable(rtc_data->regmap, false);
839 
840 		handled = IRQ_HANDLED;
841 	}
842 
843 	/* Check alarm flag */
844 	if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_AF) {
845 		dev_dbg(dev, "RTC alarm!\n");
846 
847 		rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
848 
849 		/* Acknowledge and disable the alarm */
850 		_abb5zes3_rtc_clear_alarm(dev);
851 		_abb5zes3_rtc_update_alarm(dev, 0);
852 
853 		handled = IRQ_HANDLED;
854 	}
855 
856 	/* Check watchdog Timer A flag */
857 	if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_WTAF) {
858 		dev_dbg(dev, "RTC timer!\n");
859 
860 		rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
861 
862 		/*
863 		 * Acknowledge and disable the alarm. Note: WTAF
864 		 * flag had been cleared when reading CTRL2
865 		 */
866 		_abb5zes3_rtc_update_timer(dev, 0);
867 
868 		rtc_data->timer_alarm = 0;
869 
870 		handled = IRQ_HANDLED;
871 	}
872 
873 	return handled;
874 }
875 
876 static const struct rtc_class_ops rtc_ops = {
877 	.read_time = _abb5zes3_rtc_read_time,
878 	.set_time = abb5zes3_rtc_set_time,
879 	.read_alarm = abb5zes3_rtc_read_alarm,
880 	.set_alarm = abb5zes3_rtc_set_alarm,
881 	.alarm_irq_enable = abb5zes3_rtc_alarm_irq_enable,
882 };
883 
884 static const struct regmap_config abb5zes3_rtc_regmap_config = {
885 	.reg_bits = 8,
886 	.val_bits = 8,
887 };
888 
889 static int abb5zes3_probe(struct i2c_client *client,
890 			  const struct i2c_device_id *id)
891 {
892 	struct abb5zes3_rtc_data *data = NULL;
893 	struct device *dev = &client->dev;
894 	struct regmap *regmap;
895 	int ret;
896 
897 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C |
898 				     I2C_FUNC_SMBUS_BYTE_DATA |
899 				     I2C_FUNC_SMBUS_I2C_BLOCK)) {
900 		ret = -ENODEV;
901 		goto err;
902 	}
903 
904 	regmap = devm_regmap_init_i2c(client, &abb5zes3_rtc_regmap_config);
905 	if (IS_ERR(regmap)) {
906 		ret = PTR_ERR(regmap);
907 		dev_err(dev, "%s: regmap allocation failed: %d\n",
908 			__func__, ret);
909 		goto err;
910 	}
911 
912 	ret = abb5zes3_i2c_validate_chip(regmap);
913 	if (ret)
914 		goto err;
915 
916 	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
917 	if (!data) {
918 		ret = -ENOMEM;
919 		goto err;
920 	}
921 
922 	mutex_init(&data->lock);
923 	data->regmap = regmap;
924 	dev_set_drvdata(dev, data);
925 
926 	ret = abb5zes3_rtc_check_setup(dev);
927 	if (ret)
928 		goto err;
929 
930 	if (client->irq > 0) {
931 		ret = devm_request_threaded_irq(dev, client->irq, NULL,
932 						_abb5zes3_rtc_interrupt,
933 						IRQF_SHARED|IRQF_ONESHOT,
934 						DRV_NAME, client);
935 		if (!ret) {
936 			device_init_wakeup(dev, true);
937 			data->irq = client->irq;
938 			dev_dbg(dev, "%s: irq %d used by RTC\n", __func__,
939 				client->irq);
940 		} else {
941 			dev_err(dev, "%s: irq %d unavailable (%d)\n",
942 				__func__, client->irq, ret);
943 			goto err;
944 		}
945 	}
946 
947 	data->rtc = devm_rtc_device_register(dev, DRV_NAME, &rtc_ops,
948 					     THIS_MODULE);
949 	ret = PTR_ERR_OR_ZERO(data->rtc);
950 	if (ret) {
951 		dev_err(dev, "%s: unable to register RTC device (%d)\n",
952 			__func__, ret);
953 		goto err;
954 	}
955 
956 	/* Enable battery low detection interrupt if battery not already low */
957 	if (!data->battery_low && data->irq) {
958 		ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, true);
959 		if (ret) {
960 			dev_err(dev, "%s: enabling battery low interrupt "
961 				"generation failed (%d)\n", __func__, ret);
962 			goto err;
963 		}
964 	}
965 
966 err:
967 	if (ret && data && data->irq)
968 		device_init_wakeup(dev, false);
969 	return ret;
970 }
971 
972 static int abb5zes3_remove(struct i2c_client *client)
973 {
974 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(&client->dev);
975 
976 	if (rtc_data->irq > 0)
977 		device_init_wakeup(&client->dev, false);
978 
979 	return 0;
980 }
981 
982 #ifdef CONFIG_PM_SLEEP
983 static int abb5zes3_rtc_suspend(struct device *dev)
984 {
985 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
986 
987 	if (device_may_wakeup(dev))
988 		return enable_irq_wake(rtc_data->irq);
989 
990 	return 0;
991 }
992 
993 static int abb5zes3_rtc_resume(struct device *dev)
994 {
995 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
996 
997 	if (device_may_wakeup(dev))
998 		return disable_irq_wake(rtc_data->irq);
999 
1000 	return 0;
1001 }
1002 #endif
1003 
1004 static SIMPLE_DEV_PM_OPS(abb5zes3_rtc_pm_ops, abb5zes3_rtc_suspend,
1005 			 abb5zes3_rtc_resume);
1006 
1007 #ifdef CONFIG_OF
1008 static const struct of_device_id abb5zes3_dt_match[] = {
1009 	{ .compatible = "abracon,abb5zes3" },
1010 	{ },
1011 };
1012 MODULE_DEVICE_TABLE(of, abb5zes3_dt_match);
1013 #endif
1014 
1015 static const struct i2c_device_id abb5zes3_id[] = {
1016 	{ "abb5zes3", 0 },
1017 	{ }
1018 };
1019 MODULE_DEVICE_TABLE(i2c, abb5zes3_id);
1020 
1021 static struct i2c_driver abb5zes3_driver = {
1022 	.driver = {
1023 		.name = DRV_NAME,
1024 		.pm = &abb5zes3_rtc_pm_ops,
1025 		.of_match_table = of_match_ptr(abb5zes3_dt_match),
1026 	},
1027 	.probe	  = abb5zes3_probe,
1028 	.remove	  = abb5zes3_remove,
1029 	.id_table = abb5zes3_id,
1030 };
1031 module_i2c_driver(abb5zes3_driver);
1032 
1033 MODULE_AUTHOR("Arnaud EBALARD <arno@natisbad.org>");
1034 MODULE_DESCRIPTION("Abracon AB-RTCMC-32.768kHz-B5ZE-S3 RTC/Alarm driver");
1035 MODULE_LICENSE("GPL");
1036