1 /* 2 * RTC subsystem, interface functions 3 * 4 * Copyright (C) 2005 Tower Technologies 5 * Author: Alessandro Zummo <a.zummo@towertech.it> 6 * 7 * based on arch/arm/common/rtctime.c 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 14 #include <linux/rtc.h> 15 #include <linux/sched.h> 16 #include <linux/module.h> 17 #include <linux/log2.h> 18 #include <linux/workqueue.h> 19 20 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer); 21 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer); 22 23 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm) 24 { 25 int err; 26 if (!rtc->ops) 27 err = -ENODEV; 28 else if (!rtc->ops->read_time) 29 err = -EINVAL; 30 else { 31 memset(tm, 0, sizeof(struct rtc_time)); 32 err = rtc->ops->read_time(rtc->dev.parent, tm); 33 } 34 return err; 35 } 36 37 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm) 38 { 39 int err; 40 41 err = mutex_lock_interruptible(&rtc->ops_lock); 42 if (err) 43 return err; 44 45 err = __rtc_read_time(rtc, tm); 46 mutex_unlock(&rtc->ops_lock); 47 return err; 48 } 49 EXPORT_SYMBOL_GPL(rtc_read_time); 50 51 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm) 52 { 53 int err; 54 55 err = rtc_valid_tm(tm); 56 if (err != 0) 57 return err; 58 59 err = mutex_lock_interruptible(&rtc->ops_lock); 60 if (err) 61 return err; 62 63 if (!rtc->ops) 64 err = -ENODEV; 65 else if (rtc->ops->set_time) 66 err = rtc->ops->set_time(rtc->dev.parent, tm); 67 else if (rtc->ops->set_mmss) { 68 unsigned long secs; 69 err = rtc_tm_to_time(tm, &secs); 70 if (err == 0) 71 err = rtc->ops->set_mmss(rtc->dev.parent, secs); 72 } else 73 err = -EINVAL; 74 75 mutex_unlock(&rtc->ops_lock); 76 /* A timer might have just expired */ 77 schedule_work(&rtc->irqwork); 78 return err; 79 } 80 EXPORT_SYMBOL_GPL(rtc_set_time); 81 82 int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs) 83 { 84 int err; 85 86 err = mutex_lock_interruptible(&rtc->ops_lock); 87 if (err) 88 return err; 89 90 if (!rtc->ops) 91 err = -ENODEV; 92 else if (rtc->ops->set_mmss) 93 err = rtc->ops->set_mmss(rtc->dev.parent, secs); 94 else if (rtc->ops->read_time && rtc->ops->set_time) { 95 struct rtc_time new, old; 96 97 err = rtc->ops->read_time(rtc->dev.parent, &old); 98 if (err == 0) { 99 rtc_time_to_tm(secs, &new); 100 101 /* 102 * avoid writing when we're going to change the day of 103 * the month. We will retry in the next minute. This 104 * basically means that if the RTC must not drift 105 * by more than 1 minute in 11 minutes. 106 */ 107 if (!((old.tm_hour == 23 && old.tm_min == 59) || 108 (new.tm_hour == 23 && new.tm_min == 59))) 109 err = rtc->ops->set_time(rtc->dev.parent, 110 &new); 111 } 112 } 113 else 114 err = -EINVAL; 115 116 mutex_unlock(&rtc->ops_lock); 117 /* A timer might have just expired */ 118 schedule_work(&rtc->irqwork); 119 120 return err; 121 } 122 EXPORT_SYMBOL_GPL(rtc_set_mmss); 123 124 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 125 { 126 int err; 127 128 err = mutex_lock_interruptible(&rtc->ops_lock); 129 if (err) 130 return err; 131 132 if (rtc->ops == NULL) 133 err = -ENODEV; 134 else if (!rtc->ops->read_alarm) 135 err = -EINVAL; 136 else { 137 memset(alarm, 0, sizeof(struct rtc_wkalrm)); 138 err = rtc->ops->read_alarm(rtc->dev.parent, alarm); 139 } 140 141 mutex_unlock(&rtc->ops_lock); 142 return err; 143 } 144 145 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 146 { 147 int err; 148 struct rtc_time before, now; 149 int first_time = 1; 150 unsigned long t_now, t_alm; 151 enum { none, day, month, year } missing = none; 152 unsigned days; 153 154 /* The lower level RTC driver may return -1 in some fields, 155 * creating invalid alarm->time values, for reasons like: 156 * 157 * - The hardware may not be capable of filling them in; 158 * many alarms match only on time-of-day fields, not 159 * day/month/year calendar data. 160 * 161 * - Some hardware uses illegal values as "wildcard" match 162 * values, which non-Linux firmware (like a BIOS) may try 163 * to set up as e.g. "alarm 15 minutes after each hour". 164 * Linux uses only oneshot alarms. 165 * 166 * When we see that here, we deal with it by using values from 167 * a current RTC timestamp for any missing (-1) values. The 168 * RTC driver prevents "periodic alarm" modes. 169 * 170 * But this can be racey, because some fields of the RTC timestamp 171 * may have wrapped in the interval since we read the RTC alarm, 172 * which would lead to us inserting inconsistent values in place 173 * of the -1 fields. 174 * 175 * Reading the alarm and timestamp in the reverse sequence 176 * would have the same race condition, and not solve the issue. 177 * 178 * So, we must first read the RTC timestamp, 179 * then read the RTC alarm value, 180 * and then read a second RTC timestamp. 181 * 182 * If any fields of the second timestamp have changed 183 * when compared with the first timestamp, then we know 184 * our timestamp may be inconsistent with that used by 185 * the low-level rtc_read_alarm_internal() function. 186 * 187 * So, when the two timestamps disagree, we just loop and do 188 * the process again to get a fully consistent set of values. 189 * 190 * This could all instead be done in the lower level driver, 191 * but since more than one lower level RTC implementation needs it, 192 * then it's probably best best to do it here instead of there.. 193 */ 194 195 /* Get the "before" timestamp */ 196 err = rtc_read_time(rtc, &before); 197 if (err < 0) 198 return err; 199 do { 200 if (!first_time) 201 memcpy(&before, &now, sizeof(struct rtc_time)); 202 first_time = 0; 203 204 /* get the RTC alarm values, which may be incomplete */ 205 err = rtc_read_alarm_internal(rtc, alarm); 206 if (err) 207 return err; 208 209 /* full-function RTCs won't have such missing fields */ 210 if (rtc_valid_tm(&alarm->time) == 0) 211 return 0; 212 213 /* get the "after" timestamp, to detect wrapped fields */ 214 err = rtc_read_time(rtc, &now); 215 if (err < 0) 216 return err; 217 218 /* note that tm_sec is a "don't care" value here: */ 219 } while ( before.tm_min != now.tm_min 220 || before.tm_hour != now.tm_hour 221 || before.tm_mon != now.tm_mon 222 || before.tm_year != now.tm_year); 223 224 /* Fill in the missing alarm fields using the timestamp; we 225 * know there's at least one since alarm->time is invalid. 226 */ 227 if (alarm->time.tm_sec == -1) 228 alarm->time.tm_sec = now.tm_sec; 229 if (alarm->time.tm_min == -1) 230 alarm->time.tm_min = now.tm_min; 231 if (alarm->time.tm_hour == -1) 232 alarm->time.tm_hour = now.tm_hour; 233 234 /* For simplicity, only support date rollover for now */ 235 if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) { 236 alarm->time.tm_mday = now.tm_mday; 237 missing = day; 238 } 239 if ((unsigned)alarm->time.tm_mon >= 12) { 240 alarm->time.tm_mon = now.tm_mon; 241 if (missing == none) 242 missing = month; 243 } 244 if (alarm->time.tm_year == -1) { 245 alarm->time.tm_year = now.tm_year; 246 if (missing == none) 247 missing = year; 248 } 249 250 /* with luck, no rollover is needed */ 251 rtc_tm_to_time(&now, &t_now); 252 rtc_tm_to_time(&alarm->time, &t_alm); 253 if (t_now < t_alm) 254 goto done; 255 256 switch (missing) { 257 258 /* 24 hour rollover ... if it's now 10am Monday, an alarm that 259 * that will trigger at 5am will do so at 5am Tuesday, which 260 * could also be in the next month or year. This is a common 261 * case, especially for PCs. 262 */ 263 case day: 264 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day"); 265 t_alm += 24 * 60 * 60; 266 rtc_time_to_tm(t_alm, &alarm->time); 267 break; 268 269 /* Month rollover ... if it's the 31th, an alarm on the 3rd will 270 * be next month. An alarm matching on the 30th, 29th, or 28th 271 * may end up in the month after that! Many newer PCs support 272 * this type of alarm. 273 */ 274 case month: 275 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month"); 276 do { 277 if (alarm->time.tm_mon < 11) 278 alarm->time.tm_mon++; 279 else { 280 alarm->time.tm_mon = 0; 281 alarm->time.tm_year++; 282 } 283 days = rtc_month_days(alarm->time.tm_mon, 284 alarm->time.tm_year); 285 } while (days < alarm->time.tm_mday); 286 break; 287 288 /* Year rollover ... easy except for leap years! */ 289 case year: 290 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year"); 291 do { 292 alarm->time.tm_year++; 293 } while (rtc_valid_tm(&alarm->time) != 0); 294 break; 295 296 default: 297 dev_warn(&rtc->dev, "alarm rollover not handled\n"); 298 } 299 300 done: 301 return 0; 302 } 303 304 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 305 { 306 int err; 307 308 err = mutex_lock_interruptible(&rtc->ops_lock); 309 if (err) 310 return err; 311 if (rtc->ops == NULL) 312 err = -ENODEV; 313 else if (!rtc->ops->read_alarm) 314 err = -EINVAL; 315 else { 316 memset(alarm, 0, sizeof(struct rtc_wkalrm)); 317 alarm->enabled = rtc->aie_timer.enabled; 318 alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires); 319 } 320 mutex_unlock(&rtc->ops_lock); 321 322 return err; 323 } 324 EXPORT_SYMBOL_GPL(rtc_read_alarm); 325 326 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 327 { 328 struct rtc_time tm; 329 long now, scheduled; 330 int err; 331 332 err = rtc_valid_tm(&alarm->time); 333 if (err) 334 return err; 335 rtc_tm_to_time(&alarm->time, &scheduled); 336 337 /* Make sure we're not setting alarms in the past */ 338 err = __rtc_read_time(rtc, &tm); 339 rtc_tm_to_time(&tm, &now); 340 if (scheduled <= now) 341 return -ETIME; 342 /* 343 * XXX - We just checked to make sure the alarm time is not 344 * in the past, but there is still a race window where if 345 * the is alarm set for the next second and the second ticks 346 * over right here, before we set the alarm. 347 */ 348 349 if (!rtc->ops) 350 err = -ENODEV; 351 else if (!rtc->ops->set_alarm) 352 err = -EINVAL; 353 else 354 err = rtc->ops->set_alarm(rtc->dev.parent, alarm); 355 356 return err; 357 } 358 359 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 360 { 361 int err; 362 363 err = rtc_valid_tm(&alarm->time); 364 if (err != 0) 365 return err; 366 367 err = mutex_lock_interruptible(&rtc->ops_lock); 368 if (err) 369 return err; 370 if (rtc->aie_timer.enabled) { 371 rtc_timer_remove(rtc, &rtc->aie_timer); 372 } 373 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time); 374 rtc->aie_timer.period = ktime_set(0, 0); 375 if (alarm->enabled) { 376 err = rtc_timer_enqueue(rtc, &rtc->aie_timer); 377 } 378 mutex_unlock(&rtc->ops_lock); 379 return err; 380 } 381 EXPORT_SYMBOL_GPL(rtc_set_alarm); 382 383 /* Called once per device from rtc_device_register */ 384 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 385 { 386 int err; 387 struct rtc_time now; 388 389 err = rtc_valid_tm(&alarm->time); 390 if (err != 0) 391 return err; 392 393 err = rtc_read_time(rtc, &now); 394 if (err) 395 return err; 396 397 err = mutex_lock_interruptible(&rtc->ops_lock); 398 if (err) 399 return err; 400 401 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time); 402 rtc->aie_timer.period = ktime_set(0, 0); 403 404 /* Alarm has to be enabled & in the futrure for us to enqueue it */ 405 if (alarm->enabled && (rtc_tm_to_ktime(now).tv64 < 406 rtc->aie_timer.node.expires.tv64)) { 407 408 rtc->aie_timer.enabled = 1; 409 timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node); 410 } 411 mutex_unlock(&rtc->ops_lock); 412 return err; 413 } 414 EXPORT_SYMBOL_GPL(rtc_initialize_alarm); 415 416 417 418 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled) 419 { 420 int err = mutex_lock_interruptible(&rtc->ops_lock); 421 if (err) 422 return err; 423 424 if (rtc->aie_timer.enabled != enabled) { 425 if (enabled) 426 err = rtc_timer_enqueue(rtc, &rtc->aie_timer); 427 else 428 rtc_timer_remove(rtc, &rtc->aie_timer); 429 } 430 431 if (err) 432 /* nothing */; 433 else if (!rtc->ops) 434 err = -ENODEV; 435 else if (!rtc->ops->alarm_irq_enable) 436 err = -EINVAL; 437 else 438 err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled); 439 440 mutex_unlock(&rtc->ops_lock); 441 return err; 442 } 443 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable); 444 445 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled) 446 { 447 int err = mutex_lock_interruptible(&rtc->ops_lock); 448 if (err) 449 return err; 450 451 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL 452 if (enabled == 0 && rtc->uie_irq_active) { 453 mutex_unlock(&rtc->ops_lock); 454 return rtc_dev_update_irq_enable_emul(rtc, 0); 455 } 456 #endif 457 /* make sure we're changing state */ 458 if (rtc->uie_rtctimer.enabled == enabled) 459 goto out; 460 461 if (rtc->uie_unsupported) { 462 err = -EINVAL; 463 goto out; 464 } 465 466 if (enabled) { 467 struct rtc_time tm; 468 ktime_t now, onesec; 469 470 __rtc_read_time(rtc, &tm); 471 onesec = ktime_set(1, 0); 472 now = rtc_tm_to_ktime(tm); 473 rtc->uie_rtctimer.node.expires = ktime_add(now, onesec); 474 rtc->uie_rtctimer.period = ktime_set(1, 0); 475 err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer); 476 } else 477 rtc_timer_remove(rtc, &rtc->uie_rtctimer); 478 479 out: 480 mutex_unlock(&rtc->ops_lock); 481 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL 482 /* 483 * Enable emulation if the driver did not provide 484 * the update_irq_enable function pointer or if returned 485 * -EINVAL to signal that it has been configured without 486 * interrupts or that are not available at the moment. 487 */ 488 if (err == -EINVAL) 489 err = rtc_dev_update_irq_enable_emul(rtc, enabled); 490 #endif 491 return err; 492 493 } 494 EXPORT_SYMBOL_GPL(rtc_update_irq_enable); 495 496 497 /** 498 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook 499 * @rtc: pointer to the rtc device 500 * 501 * This function is called when an AIE, UIE or PIE mode interrupt 502 * has occurred (or been emulated). 503 * 504 * Triggers the registered irq_task function callback. 505 */ 506 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode) 507 { 508 unsigned long flags; 509 510 /* mark one irq of the appropriate mode */ 511 spin_lock_irqsave(&rtc->irq_lock, flags); 512 rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode); 513 spin_unlock_irqrestore(&rtc->irq_lock, flags); 514 515 /* call the task func */ 516 spin_lock_irqsave(&rtc->irq_task_lock, flags); 517 if (rtc->irq_task) 518 rtc->irq_task->func(rtc->irq_task->private_data); 519 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 520 521 wake_up_interruptible(&rtc->irq_queue); 522 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN); 523 } 524 525 526 /** 527 * rtc_aie_update_irq - AIE mode rtctimer hook 528 * @private: pointer to the rtc_device 529 * 530 * This functions is called when the aie_timer expires. 531 */ 532 void rtc_aie_update_irq(void *private) 533 { 534 struct rtc_device *rtc = (struct rtc_device *)private; 535 rtc_handle_legacy_irq(rtc, 1, RTC_AF); 536 } 537 538 539 /** 540 * rtc_uie_update_irq - UIE mode rtctimer hook 541 * @private: pointer to the rtc_device 542 * 543 * This functions is called when the uie_timer expires. 544 */ 545 void rtc_uie_update_irq(void *private) 546 { 547 struct rtc_device *rtc = (struct rtc_device *)private; 548 rtc_handle_legacy_irq(rtc, 1, RTC_UF); 549 } 550 551 552 /** 553 * rtc_pie_update_irq - PIE mode hrtimer hook 554 * @timer: pointer to the pie mode hrtimer 555 * 556 * This function is used to emulate PIE mode interrupts 557 * using an hrtimer. This function is called when the periodic 558 * hrtimer expires. 559 */ 560 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer) 561 { 562 struct rtc_device *rtc; 563 ktime_t period; 564 int count; 565 rtc = container_of(timer, struct rtc_device, pie_timer); 566 567 period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq); 568 count = hrtimer_forward_now(timer, period); 569 570 rtc_handle_legacy_irq(rtc, count, RTC_PF); 571 572 return HRTIMER_RESTART; 573 } 574 575 /** 576 * rtc_update_irq - Triggered when a RTC interrupt occurs. 577 * @rtc: the rtc device 578 * @num: how many irqs are being reported (usually one) 579 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF 580 * Context: any 581 */ 582 void rtc_update_irq(struct rtc_device *rtc, 583 unsigned long num, unsigned long events) 584 { 585 schedule_work(&rtc->irqwork); 586 } 587 EXPORT_SYMBOL_GPL(rtc_update_irq); 588 589 static int __rtc_match(struct device *dev, void *data) 590 { 591 char *name = (char *)data; 592 593 if (strcmp(dev_name(dev), name) == 0) 594 return 1; 595 return 0; 596 } 597 598 struct rtc_device *rtc_class_open(char *name) 599 { 600 struct device *dev; 601 struct rtc_device *rtc = NULL; 602 603 dev = class_find_device(rtc_class, NULL, name, __rtc_match); 604 if (dev) 605 rtc = to_rtc_device(dev); 606 607 if (rtc) { 608 if (!try_module_get(rtc->owner)) { 609 put_device(dev); 610 rtc = NULL; 611 } 612 } 613 614 return rtc; 615 } 616 EXPORT_SYMBOL_GPL(rtc_class_open); 617 618 void rtc_class_close(struct rtc_device *rtc) 619 { 620 module_put(rtc->owner); 621 put_device(&rtc->dev); 622 } 623 EXPORT_SYMBOL_GPL(rtc_class_close); 624 625 int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task) 626 { 627 int retval = -EBUSY; 628 629 if (task == NULL || task->func == NULL) 630 return -EINVAL; 631 632 /* Cannot register while the char dev is in use */ 633 if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags)) 634 return -EBUSY; 635 636 spin_lock_irq(&rtc->irq_task_lock); 637 if (rtc->irq_task == NULL) { 638 rtc->irq_task = task; 639 retval = 0; 640 } 641 spin_unlock_irq(&rtc->irq_task_lock); 642 643 clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags); 644 645 return retval; 646 } 647 EXPORT_SYMBOL_GPL(rtc_irq_register); 648 649 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task) 650 { 651 spin_lock_irq(&rtc->irq_task_lock); 652 if (rtc->irq_task == task) 653 rtc->irq_task = NULL; 654 spin_unlock_irq(&rtc->irq_task_lock); 655 } 656 EXPORT_SYMBOL_GPL(rtc_irq_unregister); 657 658 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled) 659 { 660 /* 661 * We always cancel the timer here first, because otherwise 662 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK); 663 * when we manage to start the timer before the callback 664 * returns HRTIMER_RESTART. 665 * 666 * We cannot use hrtimer_cancel() here as a running callback 667 * could be blocked on rtc->irq_task_lock and hrtimer_cancel() 668 * would spin forever. 669 */ 670 if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0) 671 return -1; 672 673 if (enabled) { 674 ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq); 675 676 hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL); 677 } 678 return 0; 679 } 680 681 /** 682 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs 683 * @rtc: the rtc device 684 * @task: currently registered with rtc_irq_register() 685 * @enabled: true to enable periodic IRQs 686 * Context: any 687 * 688 * Note that rtc_irq_set_freq() should previously have been used to 689 * specify the desired frequency of periodic IRQ task->func() callbacks. 690 */ 691 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled) 692 { 693 int err = 0; 694 unsigned long flags; 695 696 retry: 697 spin_lock_irqsave(&rtc->irq_task_lock, flags); 698 if (rtc->irq_task != NULL && task == NULL) 699 err = -EBUSY; 700 if (rtc->irq_task != task) 701 err = -EACCES; 702 if (!err) { 703 if (rtc_update_hrtimer(rtc, enabled) < 0) { 704 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 705 cpu_relax(); 706 goto retry; 707 } 708 rtc->pie_enabled = enabled; 709 } 710 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 711 return err; 712 } 713 EXPORT_SYMBOL_GPL(rtc_irq_set_state); 714 715 /** 716 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ 717 * @rtc: the rtc device 718 * @task: currently registered with rtc_irq_register() 719 * @freq: positive frequency with which task->func() will be called 720 * Context: any 721 * 722 * Note that rtc_irq_set_state() is used to enable or disable the 723 * periodic IRQs. 724 */ 725 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq) 726 { 727 int err = 0; 728 unsigned long flags; 729 730 if (freq <= 0 || freq > RTC_MAX_FREQ) 731 return -EINVAL; 732 retry: 733 spin_lock_irqsave(&rtc->irq_task_lock, flags); 734 if (rtc->irq_task != NULL && task == NULL) 735 err = -EBUSY; 736 if (rtc->irq_task != task) 737 err = -EACCES; 738 if (!err) { 739 rtc->irq_freq = freq; 740 if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) { 741 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 742 cpu_relax(); 743 goto retry; 744 } 745 } 746 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 747 return err; 748 } 749 EXPORT_SYMBOL_GPL(rtc_irq_set_freq); 750 751 /** 752 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue 753 * @rtc rtc device 754 * @timer timer being added. 755 * 756 * Enqueues a timer onto the rtc devices timerqueue and sets 757 * the next alarm event appropriately. 758 * 759 * Sets the enabled bit on the added timer. 760 * 761 * Must hold ops_lock for proper serialization of timerqueue 762 */ 763 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer) 764 { 765 timer->enabled = 1; 766 timerqueue_add(&rtc->timerqueue, &timer->node); 767 if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) { 768 struct rtc_wkalrm alarm; 769 int err; 770 alarm.time = rtc_ktime_to_tm(timer->node.expires); 771 alarm.enabled = 1; 772 err = __rtc_set_alarm(rtc, &alarm); 773 if (err == -ETIME) 774 schedule_work(&rtc->irqwork); 775 else if (err) { 776 timerqueue_del(&rtc->timerqueue, &timer->node); 777 timer->enabled = 0; 778 return err; 779 } 780 } 781 return 0; 782 } 783 784 static void rtc_alarm_disable(struct rtc_device *rtc) 785 { 786 if (!rtc->ops || !rtc->ops->alarm_irq_enable) 787 return; 788 789 rtc->ops->alarm_irq_enable(rtc->dev.parent, false); 790 } 791 792 /** 793 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue 794 * @rtc rtc device 795 * @timer timer being removed. 796 * 797 * Removes a timer onto the rtc devices timerqueue and sets 798 * the next alarm event appropriately. 799 * 800 * Clears the enabled bit on the removed timer. 801 * 802 * Must hold ops_lock for proper serialization of timerqueue 803 */ 804 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer) 805 { 806 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue); 807 timerqueue_del(&rtc->timerqueue, &timer->node); 808 timer->enabled = 0; 809 if (next == &timer->node) { 810 struct rtc_wkalrm alarm; 811 int err; 812 next = timerqueue_getnext(&rtc->timerqueue); 813 if (!next) { 814 rtc_alarm_disable(rtc); 815 return; 816 } 817 alarm.time = rtc_ktime_to_tm(next->expires); 818 alarm.enabled = 1; 819 err = __rtc_set_alarm(rtc, &alarm); 820 if (err == -ETIME) 821 schedule_work(&rtc->irqwork); 822 } 823 } 824 825 /** 826 * rtc_timer_do_work - Expires rtc timers 827 * @rtc rtc device 828 * @timer timer being removed. 829 * 830 * Expires rtc timers. Reprograms next alarm event if needed. 831 * Called via worktask. 832 * 833 * Serializes access to timerqueue via ops_lock mutex 834 */ 835 void rtc_timer_do_work(struct work_struct *work) 836 { 837 struct rtc_timer *timer; 838 struct timerqueue_node *next; 839 ktime_t now; 840 struct rtc_time tm; 841 842 struct rtc_device *rtc = 843 container_of(work, struct rtc_device, irqwork); 844 845 mutex_lock(&rtc->ops_lock); 846 again: 847 __rtc_read_time(rtc, &tm); 848 now = rtc_tm_to_ktime(tm); 849 while ((next = timerqueue_getnext(&rtc->timerqueue))) { 850 if (next->expires.tv64 > now.tv64) 851 break; 852 853 /* expire timer */ 854 timer = container_of(next, struct rtc_timer, node); 855 timerqueue_del(&rtc->timerqueue, &timer->node); 856 timer->enabled = 0; 857 if (timer->task.func) 858 timer->task.func(timer->task.private_data); 859 860 /* Re-add/fwd periodic timers */ 861 if (ktime_to_ns(timer->period)) { 862 timer->node.expires = ktime_add(timer->node.expires, 863 timer->period); 864 timer->enabled = 1; 865 timerqueue_add(&rtc->timerqueue, &timer->node); 866 } 867 } 868 869 /* Set next alarm */ 870 if (next) { 871 struct rtc_wkalrm alarm; 872 int err; 873 alarm.time = rtc_ktime_to_tm(next->expires); 874 alarm.enabled = 1; 875 err = __rtc_set_alarm(rtc, &alarm); 876 if (err == -ETIME) 877 goto again; 878 } else 879 rtc_alarm_disable(rtc); 880 881 mutex_unlock(&rtc->ops_lock); 882 } 883 884 885 /* rtc_timer_init - Initializes an rtc_timer 886 * @timer: timer to be intiialized 887 * @f: function pointer to be called when timer fires 888 * @data: private data passed to function pointer 889 * 890 * Kernel interface to initializing an rtc_timer. 891 */ 892 void rtc_timer_init(struct rtc_timer *timer, void (*f)(void* p), void* data) 893 { 894 timerqueue_init(&timer->node); 895 timer->enabled = 0; 896 timer->task.func = f; 897 timer->task.private_data = data; 898 } 899 900 /* rtc_timer_start - Sets an rtc_timer to fire in the future 901 * @ rtc: rtc device to be used 902 * @ timer: timer being set 903 * @ expires: time at which to expire the timer 904 * @ period: period that the timer will recur 905 * 906 * Kernel interface to set an rtc_timer 907 */ 908 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer* timer, 909 ktime_t expires, ktime_t period) 910 { 911 int ret = 0; 912 mutex_lock(&rtc->ops_lock); 913 if (timer->enabled) 914 rtc_timer_remove(rtc, timer); 915 916 timer->node.expires = expires; 917 timer->period = period; 918 919 ret = rtc_timer_enqueue(rtc, timer); 920 921 mutex_unlock(&rtc->ops_lock); 922 return ret; 923 } 924 925 /* rtc_timer_cancel - Stops an rtc_timer 926 * @ rtc: rtc device to be used 927 * @ timer: timer being set 928 * 929 * Kernel interface to cancel an rtc_timer 930 */ 931 int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer* timer) 932 { 933 int ret = 0; 934 mutex_lock(&rtc->ops_lock); 935 if (timer->enabled) 936 rtc_timer_remove(rtc, timer); 937 mutex_unlock(&rtc->ops_lock); 938 return ret; 939 } 940 941 942