xref: /openbmc/linux/drivers/rtc/interface.c (revision f7c35abe)
1 /*
2  * RTC subsystem, interface functions
3  *
4  * Copyright (C) 2005 Tower Technologies
5  * Author: Alessandro Zummo <a.zummo@towertech.it>
6  *
7  * based on arch/arm/common/rtctime.c
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12 */
13 
14 #include <linux/rtc.h>
15 #include <linux/sched.h>
16 #include <linux/module.h>
17 #include <linux/log2.h>
18 #include <linux/workqueue.h>
19 
20 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
21 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
22 
23 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
24 {
25 	int err;
26 	if (!rtc->ops)
27 		err = -ENODEV;
28 	else if (!rtc->ops->read_time)
29 		err = -EINVAL;
30 	else {
31 		memset(tm, 0, sizeof(struct rtc_time));
32 		err = rtc->ops->read_time(rtc->dev.parent, tm);
33 		if (err < 0) {
34 			dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
35 				err);
36 			return err;
37 		}
38 
39 		err = rtc_valid_tm(tm);
40 		if (err < 0)
41 			dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
42 	}
43 	return err;
44 }
45 
46 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
47 {
48 	int err;
49 
50 	err = mutex_lock_interruptible(&rtc->ops_lock);
51 	if (err)
52 		return err;
53 
54 	err = __rtc_read_time(rtc, tm);
55 	mutex_unlock(&rtc->ops_lock);
56 	return err;
57 }
58 EXPORT_SYMBOL_GPL(rtc_read_time);
59 
60 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
61 {
62 	int err;
63 
64 	err = rtc_valid_tm(tm);
65 	if (err != 0)
66 		return err;
67 
68 	err = mutex_lock_interruptible(&rtc->ops_lock);
69 	if (err)
70 		return err;
71 
72 	if (!rtc->ops)
73 		err = -ENODEV;
74 	else if (rtc->ops->set_time)
75 		err = rtc->ops->set_time(rtc->dev.parent, tm);
76 	else if (rtc->ops->set_mmss64) {
77 		time64_t secs64 = rtc_tm_to_time64(tm);
78 
79 		err = rtc->ops->set_mmss64(rtc->dev.parent, secs64);
80 	} else if (rtc->ops->set_mmss) {
81 		time64_t secs64 = rtc_tm_to_time64(tm);
82 		err = rtc->ops->set_mmss(rtc->dev.parent, secs64);
83 	} else
84 		err = -EINVAL;
85 
86 	pm_stay_awake(rtc->dev.parent);
87 	mutex_unlock(&rtc->ops_lock);
88 	/* A timer might have just expired */
89 	schedule_work(&rtc->irqwork);
90 	return err;
91 }
92 EXPORT_SYMBOL_GPL(rtc_set_time);
93 
94 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
95 {
96 	int err;
97 
98 	err = mutex_lock_interruptible(&rtc->ops_lock);
99 	if (err)
100 		return err;
101 
102 	if (rtc->ops == NULL)
103 		err = -ENODEV;
104 	else if (!rtc->ops->read_alarm)
105 		err = -EINVAL;
106 	else {
107 		alarm->enabled = 0;
108 		alarm->pending = 0;
109 		alarm->time.tm_sec = -1;
110 		alarm->time.tm_min = -1;
111 		alarm->time.tm_hour = -1;
112 		alarm->time.tm_mday = -1;
113 		alarm->time.tm_mon = -1;
114 		alarm->time.tm_year = -1;
115 		alarm->time.tm_wday = -1;
116 		alarm->time.tm_yday = -1;
117 		alarm->time.tm_isdst = -1;
118 		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
119 	}
120 
121 	mutex_unlock(&rtc->ops_lock);
122 	return err;
123 }
124 
125 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
126 {
127 	int err;
128 	struct rtc_time before, now;
129 	int first_time = 1;
130 	time64_t t_now, t_alm;
131 	enum { none, day, month, year } missing = none;
132 	unsigned days;
133 
134 	/* The lower level RTC driver may return -1 in some fields,
135 	 * creating invalid alarm->time values, for reasons like:
136 	 *
137 	 *   - The hardware may not be capable of filling them in;
138 	 *     many alarms match only on time-of-day fields, not
139 	 *     day/month/year calendar data.
140 	 *
141 	 *   - Some hardware uses illegal values as "wildcard" match
142 	 *     values, which non-Linux firmware (like a BIOS) may try
143 	 *     to set up as e.g. "alarm 15 minutes after each hour".
144 	 *     Linux uses only oneshot alarms.
145 	 *
146 	 * When we see that here, we deal with it by using values from
147 	 * a current RTC timestamp for any missing (-1) values.  The
148 	 * RTC driver prevents "periodic alarm" modes.
149 	 *
150 	 * But this can be racey, because some fields of the RTC timestamp
151 	 * may have wrapped in the interval since we read the RTC alarm,
152 	 * which would lead to us inserting inconsistent values in place
153 	 * of the -1 fields.
154 	 *
155 	 * Reading the alarm and timestamp in the reverse sequence
156 	 * would have the same race condition, and not solve the issue.
157 	 *
158 	 * So, we must first read the RTC timestamp,
159 	 * then read the RTC alarm value,
160 	 * and then read a second RTC timestamp.
161 	 *
162 	 * If any fields of the second timestamp have changed
163 	 * when compared with the first timestamp, then we know
164 	 * our timestamp may be inconsistent with that used by
165 	 * the low-level rtc_read_alarm_internal() function.
166 	 *
167 	 * So, when the two timestamps disagree, we just loop and do
168 	 * the process again to get a fully consistent set of values.
169 	 *
170 	 * This could all instead be done in the lower level driver,
171 	 * but since more than one lower level RTC implementation needs it,
172 	 * then it's probably best best to do it here instead of there..
173 	 */
174 
175 	/* Get the "before" timestamp */
176 	err = rtc_read_time(rtc, &before);
177 	if (err < 0)
178 		return err;
179 	do {
180 		if (!first_time)
181 			memcpy(&before, &now, sizeof(struct rtc_time));
182 		first_time = 0;
183 
184 		/* get the RTC alarm values, which may be incomplete */
185 		err = rtc_read_alarm_internal(rtc, alarm);
186 		if (err)
187 			return err;
188 
189 		/* full-function RTCs won't have such missing fields */
190 		if (rtc_valid_tm(&alarm->time) == 0)
191 			return 0;
192 
193 		/* get the "after" timestamp, to detect wrapped fields */
194 		err = rtc_read_time(rtc, &now);
195 		if (err < 0)
196 			return err;
197 
198 		/* note that tm_sec is a "don't care" value here: */
199 	} while (   before.tm_min   != now.tm_min
200 		 || before.tm_hour  != now.tm_hour
201 		 || before.tm_mon   != now.tm_mon
202 		 || before.tm_year  != now.tm_year);
203 
204 	/* Fill in the missing alarm fields using the timestamp; we
205 	 * know there's at least one since alarm->time is invalid.
206 	 */
207 	if (alarm->time.tm_sec == -1)
208 		alarm->time.tm_sec = now.tm_sec;
209 	if (alarm->time.tm_min == -1)
210 		alarm->time.tm_min = now.tm_min;
211 	if (alarm->time.tm_hour == -1)
212 		alarm->time.tm_hour = now.tm_hour;
213 
214 	/* For simplicity, only support date rollover for now */
215 	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
216 		alarm->time.tm_mday = now.tm_mday;
217 		missing = day;
218 	}
219 	if ((unsigned)alarm->time.tm_mon >= 12) {
220 		alarm->time.tm_mon = now.tm_mon;
221 		if (missing == none)
222 			missing = month;
223 	}
224 	if (alarm->time.tm_year == -1) {
225 		alarm->time.tm_year = now.tm_year;
226 		if (missing == none)
227 			missing = year;
228 	}
229 
230 	/* with luck, no rollover is needed */
231 	t_now = rtc_tm_to_time64(&now);
232 	t_alm = rtc_tm_to_time64(&alarm->time);
233 	if (t_now < t_alm)
234 		goto done;
235 
236 	switch (missing) {
237 
238 	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
239 	 * that will trigger at 5am will do so at 5am Tuesday, which
240 	 * could also be in the next month or year.  This is a common
241 	 * case, especially for PCs.
242 	 */
243 	case day:
244 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
245 		t_alm += 24 * 60 * 60;
246 		rtc_time64_to_tm(t_alm, &alarm->time);
247 		break;
248 
249 	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
250 	 * be next month.  An alarm matching on the 30th, 29th, or 28th
251 	 * may end up in the month after that!  Many newer PCs support
252 	 * this type of alarm.
253 	 */
254 	case month:
255 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
256 		do {
257 			if (alarm->time.tm_mon < 11)
258 				alarm->time.tm_mon++;
259 			else {
260 				alarm->time.tm_mon = 0;
261 				alarm->time.tm_year++;
262 			}
263 			days = rtc_month_days(alarm->time.tm_mon,
264 					alarm->time.tm_year);
265 		} while (days < alarm->time.tm_mday);
266 		break;
267 
268 	/* Year rollover ... easy except for leap years! */
269 	case year:
270 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
271 		do {
272 			alarm->time.tm_year++;
273 		} while (!is_leap_year(alarm->time.tm_year + 1900)
274 			&& rtc_valid_tm(&alarm->time) != 0);
275 		break;
276 
277 	default:
278 		dev_warn(&rtc->dev, "alarm rollover not handled\n");
279 	}
280 
281 done:
282 	err = rtc_valid_tm(&alarm->time);
283 
284 	if (err) {
285 		dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
286 			alarm->time.tm_year + 1900, alarm->time.tm_mon + 1,
287 			alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min,
288 			alarm->time.tm_sec);
289 	}
290 
291 	return err;
292 }
293 
294 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
295 {
296 	int err;
297 
298 	err = mutex_lock_interruptible(&rtc->ops_lock);
299 	if (err)
300 		return err;
301 	if (rtc->ops == NULL)
302 		err = -ENODEV;
303 	else if (!rtc->ops->read_alarm)
304 		err = -EINVAL;
305 	else {
306 		memset(alarm, 0, sizeof(struct rtc_wkalrm));
307 		alarm->enabled = rtc->aie_timer.enabled;
308 		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
309 	}
310 	mutex_unlock(&rtc->ops_lock);
311 
312 	return err;
313 }
314 EXPORT_SYMBOL_GPL(rtc_read_alarm);
315 
316 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
317 {
318 	struct rtc_time tm;
319 	time64_t now, scheduled;
320 	int err;
321 
322 	err = rtc_valid_tm(&alarm->time);
323 	if (err)
324 		return err;
325 	scheduled = rtc_tm_to_time64(&alarm->time);
326 
327 	/* Make sure we're not setting alarms in the past */
328 	err = __rtc_read_time(rtc, &tm);
329 	if (err)
330 		return err;
331 	now = rtc_tm_to_time64(&tm);
332 	if (scheduled <= now)
333 		return -ETIME;
334 	/*
335 	 * XXX - We just checked to make sure the alarm time is not
336 	 * in the past, but there is still a race window where if
337 	 * the is alarm set for the next second and the second ticks
338 	 * over right here, before we set the alarm.
339 	 */
340 
341 	if (!rtc->ops)
342 		err = -ENODEV;
343 	else if (!rtc->ops->set_alarm)
344 		err = -EINVAL;
345 	else
346 		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
347 
348 	return err;
349 }
350 
351 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
352 {
353 	int err;
354 
355 	err = rtc_valid_tm(&alarm->time);
356 	if (err != 0)
357 		return err;
358 
359 	err = mutex_lock_interruptible(&rtc->ops_lock);
360 	if (err)
361 		return err;
362 	if (rtc->aie_timer.enabled)
363 		rtc_timer_remove(rtc, &rtc->aie_timer);
364 
365 	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
366 	rtc->aie_timer.period = 0;
367 	if (alarm->enabled)
368 		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
369 
370 	mutex_unlock(&rtc->ops_lock);
371 	return err;
372 }
373 EXPORT_SYMBOL_GPL(rtc_set_alarm);
374 
375 /* Called once per device from rtc_device_register */
376 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
377 {
378 	int err;
379 	struct rtc_time now;
380 
381 	err = rtc_valid_tm(&alarm->time);
382 	if (err != 0)
383 		return err;
384 
385 	err = rtc_read_time(rtc, &now);
386 	if (err)
387 		return err;
388 
389 	err = mutex_lock_interruptible(&rtc->ops_lock);
390 	if (err)
391 		return err;
392 
393 	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
394 	rtc->aie_timer.period = 0;
395 
396 	/* Alarm has to be enabled & in the future for us to enqueue it */
397 	if (alarm->enabled && (rtc_tm_to_ktime(now) <
398 			 rtc->aie_timer.node.expires)) {
399 
400 		rtc->aie_timer.enabled = 1;
401 		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
402 	}
403 	mutex_unlock(&rtc->ops_lock);
404 	return err;
405 }
406 EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
407 
408 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
409 {
410 	int err = mutex_lock_interruptible(&rtc->ops_lock);
411 	if (err)
412 		return err;
413 
414 	if (rtc->aie_timer.enabled != enabled) {
415 		if (enabled)
416 			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
417 		else
418 			rtc_timer_remove(rtc, &rtc->aie_timer);
419 	}
420 
421 	if (err)
422 		/* nothing */;
423 	else if (!rtc->ops)
424 		err = -ENODEV;
425 	else if (!rtc->ops->alarm_irq_enable)
426 		err = -EINVAL;
427 	else
428 		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
429 
430 	mutex_unlock(&rtc->ops_lock);
431 	return err;
432 }
433 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
434 
435 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
436 {
437 	int err = mutex_lock_interruptible(&rtc->ops_lock);
438 	if (err)
439 		return err;
440 
441 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
442 	if (enabled == 0 && rtc->uie_irq_active) {
443 		mutex_unlock(&rtc->ops_lock);
444 		return rtc_dev_update_irq_enable_emul(rtc, 0);
445 	}
446 #endif
447 	/* make sure we're changing state */
448 	if (rtc->uie_rtctimer.enabled == enabled)
449 		goto out;
450 
451 	if (rtc->uie_unsupported) {
452 		err = -EINVAL;
453 		goto out;
454 	}
455 
456 	if (enabled) {
457 		struct rtc_time tm;
458 		ktime_t now, onesec;
459 
460 		__rtc_read_time(rtc, &tm);
461 		onesec = ktime_set(1, 0);
462 		now = rtc_tm_to_ktime(tm);
463 		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
464 		rtc->uie_rtctimer.period = ktime_set(1, 0);
465 		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
466 	} else
467 		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
468 
469 out:
470 	mutex_unlock(&rtc->ops_lock);
471 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
472 	/*
473 	 * Enable emulation if the driver did not provide
474 	 * the update_irq_enable function pointer or if returned
475 	 * -EINVAL to signal that it has been configured without
476 	 * interrupts or that are not available at the moment.
477 	 */
478 	if (err == -EINVAL)
479 		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
480 #endif
481 	return err;
482 
483 }
484 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
485 
486 
487 /**
488  * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
489  * @rtc: pointer to the rtc device
490  *
491  * This function is called when an AIE, UIE or PIE mode interrupt
492  * has occurred (or been emulated).
493  *
494  * Triggers the registered irq_task function callback.
495  */
496 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
497 {
498 	unsigned long flags;
499 
500 	/* mark one irq of the appropriate mode */
501 	spin_lock_irqsave(&rtc->irq_lock, flags);
502 	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
503 	spin_unlock_irqrestore(&rtc->irq_lock, flags);
504 
505 	/* call the task func */
506 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
507 	if (rtc->irq_task)
508 		rtc->irq_task->func(rtc->irq_task->private_data);
509 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
510 
511 	wake_up_interruptible(&rtc->irq_queue);
512 	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
513 }
514 
515 
516 /**
517  * rtc_aie_update_irq - AIE mode rtctimer hook
518  * @private: pointer to the rtc_device
519  *
520  * This functions is called when the aie_timer expires.
521  */
522 void rtc_aie_update_irq(void *private)
523 {
524 	struct rtc_device *rtc = (struct rtc_device *)private;
525 	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
526 }
527 
528 
529 /**
530  * rtc_uie_update_irq - UIE mode rtctimer hook
531  * @private: pointer to the rtc_device
532  *
533  * This functions is called when the uie_timer expires.
534  */
535 void rtc_uie_update_irq(void *private)
536 {
537 	struct rtc_device *rtc = (struct rtc_device *)private;
538 	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
539 }
540 
541 
542 /**
543  * rtc_pie_update_irq - PIE mode hrtimer hook
544  * @timer: pointer to the pie mode hrtimer
545  *
546  * This function is used to emulate PIE mode interrupts
547  * using an hrtimer. This function is called when the periodic
548  * hrtimer expires.
549  */
550 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
551 {
552 	struct rtc_device *rtc;
553 	ktime_t period;
554 	int count;
555 	rtc = container_of(timer, struct rtc_device, pie_timer);
556 
557 	period = NSEC_PER_SEC / rtc->irq_freq;
558 	count = hrtimer_forward_now(timer, period);
559 
560 	rtc_handle_legacy_irq(rtc, count, RTC_PF);
561 
562 	return HRTIMER_RESTART;
563 }
564 
565 /**
566  * rtc_update_irq - Triggered when a RTC interrupt occurs.
567  * @rtc: the rtc device
568  * @num: how many irqs are being reported (usually one)
569  * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
570  * Context: any
571  */
572 void rtc_update_irq(struct rtc_device *rtc,
573 		unsigned long num, unsigned long events)
574 {
575 	if (IS_ERR_OR_NULL(rtc))
576 		return;
577 
578 	pm_stay_awake(rtc->dev.parent);
579 	schedule_work(&rtc->irqwork);
580 }
581 EXPORT_SYMBOL_GPL(rtc_update_irq);
582 
583 static int __rtc_match(struct device *dev, const void *data)
584 {
585 	const char *name = data;
586 
587 	if (strcmp(dev_name(dev), name) == 0)
588 		return 1;
589 	return 0;
590 }
591 
592 struct rtc_device *rtc_class_open(const char *name)
593 {
594 	struct device *dev;
595 	struct rtc_device *rtc = NULL;
596 
597 	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
598 	if (dev)
599 		rtc = to_rtc_device(dev);
600 
601 	if (rtc) {
602 		if (!try_module_get(rtc->owner)) {
603 			put_device(dev);
604 			rtc = NULL;
605 		}
606 	}
607 
608 	return rtc;
609 }
610 EXPORT_SYMBOL_GPL(rtc_class_open);
611 
612 void rtc_class_close(struct rtc_device *rtc)
613 {
614 	module_put(rtc->owner);
615 	put_device(&rtc->dev);
616 }
617 EXPORT_SYMBOL_GPL(rtc_class_close);
618 
619 int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
620 {
621 	int retval = -EBUSY;
622 
623 	if (task == NULL || task->func == NULL)
624 		return -EINVAL;
625 
626 	/* Cannot register while the char dev is in use */
627 	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
628 		return -EBUSY;
629 
630 	spin_lock_irq(&rtc->irq_task_lock);
631 	if (rtc->irq_task == NULL) {
632 		rtc->irq_task = task;
633 		retval = 0;
634 	}
635 	spin_unlock_irq(&rtc->irq_task_lock);
636 
637 	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
638 
639 	return retval;
640 }
641 EXPORT_SYMBOL_GPL(rtc_irq_register);
642 
643 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
644 {
645 	spin_lock_irq(&rtc->irq_task_lock);
646 	if (rtc->irq_task == task)
647 		rtc->irq_task = NULL;
648 	spin_unlock_irq(&rtc->irq_task_lock);
649 }
650 EXPORT_SYMBOL_GPL(rtc_irq_unregister);
651 
652 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
653 {
654 	/*
655 	 * We always cancel the timer here first, because otherwise
656 	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
657 	 * when we manage to start the timer before the callback
658 	 * returns HRTIMER_RESTART.
659 	 *
660 	 * We cannot use hrtimer_cancel() here as a running callback
661 	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
662 	 * would spin forever.
663 	 */
664 	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
665 		return -1;
666 
667 	if (enabled) {
668 		ktime_t period = NSEC_PER_SEC / rtc->irq_freq;
669 
670 		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
671 	}
672 	return 0;
673 }
674 
675 /**
676  * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
677  * @rtc: the rtc device
678  * @task: currently registered with rtc_irq_register()
679  * @enabled: true to enable periodic IRQs
680  * Context: any
681  *
682  * Note that rtc_irq_set_freq() should previously have been used to
683  * specify the desired frequency of periodic IRQ task->func() callbacks.
684  */
685 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
686 {
687 	int err = 0;
688 	unsigned long flags;
689 
690 retry:
691 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
692 	if (rtc->irq_task != NULL && task == NULL)
693 		err = -EBUSY;
694 	else if (rtc->irq_task != task)
695 		err = -EACCES;
696 	else {
697 		if (rtc_update_hrtimer(rtc, enabled) < 0) {
698 			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
699 			cpu_relax();
700 			goto retry;
701 		}
702 		rtc->pie_enabled = enabled;
703 	}
704 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
705 	return err;
706 }
707 EXPORT_SYMBOL_GPL(rtc_irq_set_state);
708 
709 /**
710  * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
711  * @rtc: the rtc device
712  * @task: currently registered with rtc_irq_register()
713  * @freq: positive frequency with which task->func() will be called
714  * Context: any
715  *
716  * Note that rtc_irq_set_state() is used to enable or disable the
717  * periodic IRQs.
718  */
719 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
720 {
721 	int err = 0;
722 	unsigned long flags;
723 
724 	if (freq <= 0 || freq > RTC_MAX_FREQ)
725 		return -EINVAL;
726 retry:
727 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
728 	if (rtc->irq_task != NULL && task == NULL)
729 		err = -EBUSY;
730 	else if (rtc->irq_task != task)
731 		err = -EACCES;
732 	else {
733 		rtc->irq_freq = freq;
734 		if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
735 			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
736 			cpu_relax();
737 			goto retry;
738 		}
739 	}
740 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
741 	return err;
742 }
743 EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
744 
745 /**
746  * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
747  * @rtc rtc device
748  * @timer timer being added.
749  *
750  * Enqueues a timer onto the rtc devices timerqueue and sets
751  * the next alarm event appropriately.
752  *
753  * Sets the enabled bit on the added timer.
754  *
755  * Must hold ops_lock for proper serialization of timerqueue
756  */
757 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
758 {
759 	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
760 	struct rtc_time tm;
761 	ktime_t now;
762 
763 	timer->enabled = 1;
764 	__rtc_read_time(rtc, &tm);
765 	now = rtc_tm_to_ktime(tm);
766 
767 	/* Skip over expired timers */
768 	while (next) {
769 		if (next->expires >= now)
770 			break;
771 		next = timerqueue_iterate_next(next);
772 	}
773 
774 	timerqueue_add(&rtc->timerqueue, &timer->node);
775 	if (!next) {
776 		struct rtc_wkalrm alarm;
777 		int err;
778 		alarm.time = rtc_ktime_to_tm(timer->node.expires);
779 		alarm.enabled = 1;
780 		err = __rtc_set_alarm(rtc, &alarm);
781 		if (err == -ETIME) {
782 			pm_stay_awake(rtc->dev.parent);
783 			schedule_work(&rtc->irqwork);
784 		} else if (err) {
785 			timerqueue_del(&rtc->timerqueue, &timer->node);
786 			timer->enabled = 0;
787 			return err;
788 		}
789 	}
790 	return 0;
791 }
792 
793 static void rtc_alarm_disable(struct rtc_device *rtc)
794 {
795 	if (!rtc->ops || !rtc->ops->alarm_irq_enable)
796 		return;
797 
798 	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
799 }
800 
801 /**
802  * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
803  * @rtc rtc device
804  * @timer timer being removed.
805  *
806  * Removes a timer onto the rtc devices timerqueue and sets
807  * the next alarm event appropriately.
808  *
809  * Clears the enabled bit on the removed timer.
810  *
811  * Must hold ops_lock for proper serialization of timerqueue
812  */
813 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
814 {
815 	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
816 	timerqueue_del(&rtc->timerqueue, &timer->node);
817 	timer->enabled = 0;
818 	if (next == &timer->node) {
819 		struct rtc_wkalrm alarm;
820 		int err;
821 		next = timerqueue_getnext(&rtc->timerqueue);
822 		if (!next) {
823 			rtc_alarm_disable(rtc);
824 			return;
825 		}
826 		alarm.time = rtc_ktime_to_tm(next->expires);
827 		alarm.enabled = 1;
828 		err = __rtc_set_alarm(rtc, &alarm);
829 		if (err == -ETIME) {
830 			pm_stay_awake(rtc->dev.parent);
831 			schedule_work(&rtc->irqwork);
832 		}
833 	}
834 }
835 
836 /**
837  * rtc_timer_do_work - Expires rtc timers
838  * @rtc rtc device
839  * @timer timer being removed.
840  *
841  * Expires rtc timers. Reprograms next alarm event if needed.
842  * Called via worktask.
843  *
844  * Serializes access to timerqueue via ops_lock mutex
845  */
846 void rtc_timer_do_work(struct work_struct *work)
847 {
848 	struct rtc_timer *timer;
849 	struct timerqueue_node *next;
850 	ktime_t now;
851 	struct rtc_time tm;
852 
853 	struct rtc_device *rtc =
854 		container_of(work, struct rtc_device, irqwork);
855 
856 	mutex_lock(&rtc->ops_lock);
857 again:
858 	__rtc_read_time(rtc, &tm);
859 	now = rtc_tm_to_ktime(tm);
860 	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
861 		if (next->expires > now)
862 			break;
863 
864 		/* expire timer */
865 		timer = container_of(next, struct rtc_timer, node);
866 		timerqueue_del(&rtc->timerqueue, &timer->node);
867 		timer->enabled = 0;
868 		if (timer->task.func)
869 			timer->task.func(timer->task.private_data);
870 
871 		/* Re-add/fwd periodic timers */
872 		if (ktime_to_ns(timer->period)) {
873 			timer->node.expires = ktime_add(timer->node.expires,
874 							timer->period);
875 			timer->enabled = 1;
876 			timerqueue_add(&rtc->timerqueue, &timer->node);
877 		}
878 	}
879 
880 	/* Set next alarm */
881 	if (next) {
882 		struct rtc_wkalrm alarm;
883 		int err;
884 		int retry = 3;
885 
886 		alarm.time = rtc_ktime_to_tm(next->expires);
887 		alarm.enabled = 1;
888 reprogram:
889 		err = __rtc_set_alarm(rtc, &alarm);
890 		if (err == -ETIME)
891 			goto again;
892 		else if (err) {
893 			if (retry-- > 0)
894 				goto reprogram;
895 
896 			timer = container_of(next, struct rtc_timer, node);
897 			timerqueue_del(&rtc->timerqueue, &timer->node);
898 			timer->enabled = 0;
899 			dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
900 			goto again;
901 		}
902 	} else
903 		rtc_alarm_disable(rtc);
904 
905 	pm_relax(rtc->dev.parent);
906 	mutex_unlock(&rtc->ops_lock);
907 }
908 
909 
910 /* rtc_timer_init - Initializes an rtc_timer
911  * @timer: timer to be intiialized
912  * @f: function pointer to be called when timer fires
913  * @data: private data passed to function pointer
914  *
915  * Kernel interface to initializing an rtc_timer.
916  */
917 void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
918 {
919 	timerqueue_init(&timer->node);
920 	timer->enabled = 0;
921 	timer->task.func = f;
922 	timer->task.private_data = data;
923 }
924 
925 /* rtc_timer_start - Sets an rtc_timer to fire in the future
926  * @ rtc: rtc device to be used
927  * @ timer: timer being set
928  * @ expires: time at which to expire the timer
929  * @ period: period that the timer will recur
930  *
931  * Kernel interface to set an rtc_timer
932  */
933 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
934 			ktime_t expires, ktime_t period)
935 {
936 	int ret = 0;
937 	mutex_lock(&rtc->ops_lock);
938 	if (timer->enabled)
939 		rtc_timer_remove(rtc, timer);
940 
941 	timer->node.expires = expires;
942 	timer->period = period;
943 
944 	ret = rtc_timer_enqueue(rtc, timer);
945 
946 	mutex_unlock(&rtc->ops_lock);
947 	return ret;
948 }
949 
950 /* rtc_timer_cancel - Stops an rtc_timer
951  * @ rtc: rtc device to be used
952  * @ timer: timer being set
953  *
954  * Kernel interface to cancel an rtc_timer
955  */
956 void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
957 {
958 	mutex_lock(&rtc->ops_lock);
959 	if (timer->enabled)
960 		rtc_timer_remove(rtc, timer);
961 	mutex_unlock(&rtc->ops_lock);
962 }
963 
964 /**
965  * rtc_read_offset - Read the amount of rtc offset in parts per billion
966  * @ rtc: rtc device to be used
967  * @ offset: the offset in parts per billion
968  *
969  * see below for details.
970  *
971  * Kernel interface to read rtc clock offset
972  * Returns 0 on success, or a negative number on error.
973  * If read_offset() is not implemented for the rtc, return -EINVAL
974  */
975 int rtc_read_offset(struct rtc_device *rtc, long *offset)
976 {
977 	int ret;
978 
979 	if (!rtc->ops)
980 		return -ENODEV;
981 
982 	if (!rtc->ops->read_offset)
983 		return -EINVAL;
984 
985 	mutex_lock(&rtc->ops_lock);
986 	ret = rtc->ops->read_offset(rtc->dev.parent, offset);
987 	mutex_unlock(&rtc->ops_lock);
988 	return ret;
989 }
990 
991 /**
992  * rtc_set_offset - Adjusts the duration of the average second
993  * @ rtc: rtc device to be used
994  * @ offset: the offset in parts per billion
995  *
996  * Some rtc's allow an adjustment to the average duration of a second
997  * to compensate for differences in the actual clock rate due to temperature,
998  * the crystal, capacitor, etc.
999  *
1000  * Kernel interface to adjust an rtc clock offset.
1001  * Return 0 on success, or a negative number on error.
1002  * If the rtc offset is not setable (or not implemented), return -EINVAL
1003  */
1004 int rtc_set_offset(struct rtc_device *rtc, long offset)
1005 {
1006 	int ret;
1007 
1008 	if (!rtc->ops)
1009 		return -ENODEV;
1010 
1011 	if (!rtc->ops->set_offset)
1012 		return -EINVAL;
1013 
1014 	mutex_lock(&rtc->ops_lock);
1015 	ret = rtc->ops->set_offset(rtc->dev.parent, offset);
1016 	mutex_unlock(&rtc->ops_lock);
1017 	return ret;
1018 }
1019