xref: /openbmc/linux/drivers/rtc/interface.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * RTC subsystem, interface functions
3  *
4  * Copyright (C) 2005 Tower Technologies
5  * Author: Alessandro Zummo <a.zummo@towertech.it>
6  *
7  * based on arch/arm/common/rtctime.c
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12 */
13 
14 #include <linux/rtc.h>
15 #include <linux/sched.h>
16 #include <linux/log2.h>
17 #include <linux/workqueue.h>
18 
19 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
20 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
21 
22 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
23 {
24 	int err;
25 	if (!rtc->ops)
26 		err = -ENODEV;
27 	else if (!rtc->ops->read_time)
28 		err = -EINVAL;
29 	else {
30 		memset(tm, 0, sizeof(struct rtc_time));
31 		err = rtc->ops->read_time(rtc->dev.parent, tm);
32 	}
33 	return err;
34 }
35 
36 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
37 {
38 	int err;
39 
40 	err = mutex_lock_interruptible(&rtc->ops_lock);
41 	if (err)
42 		return err;
43 
44 	err = __rtc_read_time(rtc, tm);
45 	mutex_unlock(&rtc->ops_lock);
46 	return err;
47 }
48 EXPORT_SYMBOL_GPL(rtc_read_time);
49 
50 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
51 {
52 	int err;
53 
54 	err = rtc_valid_tm(tm);
55 	if (err != 0)
56 		return err;
57 
58 	err = mutex_lock_interruptible(&rtc->ops_lock);
59 	if (err)
60 		return err;
61 
62 	if (!rtc->ops)
63 		err = -ENODEV;
64 	else if (rtc->ops->set_time)
65 		err = rtc->ops->set_time(rtc->dev.parent, tm);
66 	else if (rtc->ops->set_mmss) {
67 		unsigned long secs;
68 		err = rtc_tm_to_time(tm, &secs);
69 		if (err == 0)
70 			err = rtc->ops->set_mmss(rtc->dev.parent, secs);
71 	} else
72 		err = -EINVAL;
73 
74 	mutex_unlock(&rtc->ops_lock);
75 	return err;
76 }
77 EXPORT_SYMBOL_GPL(rtc_set_time);
78 
79 int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
80 {
81 	int err;
82 
83 	err = mutex_lock_interruptible(&rtc->ops_lock);
84 	if (err)
85 		return err;
86 
87 	if (!rtc->ops)
88 		err = -ENODEV;
89 	else if (rtc->ops->set_mmss)
90 		err = rtc->ops->set_mmss(rtc->dev.parent, secs);
91 	else if (rtc->ops->read_time && rtc->ops->set_time) {
92 		struct rtc_time new, old;
93 
94 		err = rtc->ops->read_time(rtc->dev.parent, &old);
95 		if (err == 0) {
96 			rtc_time_to_tm(secs, &new);
97 
98 			/*
99 			 * avoid writing when we're going to change the day of
100 			 * the month. We will retry in the next minute. This
101 			 * basically means that if the RTC must not drift
102 			 * by more than 1 minute in 11 minutes.
103 			 */
104 			if (!((old.tm_hour == 23 && old.tm_min == 59) ||
105 				(new.tm_hour == 23 && new.tm_min == 59)))
106 				err = rtc->ops->set_time(rtc->dev.parent,
107 						&new);
108 		}
109 	}
110 	else
111 		err = -EINVAL;
112 
113 	mutex_unlock(&rtc->ops_lock);
114 
115 	return err;
116 }
117 EXPORT_SYMBOL_GPL(rtc_set_mmss);
118 
119 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
120 {
121 	int err;
122 
123 	err = mutex_lock_interruptible(&rtc->ops_lock);
124 	if (err)
125 		return err;
126 	if (rtc->ops == NULL)
127 		err = -ENODEV;
128 	else if (!rtc->ops->read_alarm)
129 		err = -EINVAL;
130 	else {
131 		memset(alarm, 0, sizeof(struct rtc_wkalrm));
132 		alarm->enabled = rtc->aie_timer.enabled;
133 		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
134 	}
135 	mutex_unlock(&rtc->ops_lock);
136 
137 	return err;
138 }
139 EXPORT_SYMBOL_GPL(rtc_read_alarm);
140 
141 int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
142 {
143 	struct rtc_time tm;
144 	long now, scheduled;
145 	int err;
146 
147 	err = rtc_valid_tm(&alarm->time);
148 	if (err)
149 		return err;
150 	rtc_tm_to_time(&alarm->time, &scheduled);
151 
152 	/* Make sure we're not setting alarms in the past */
153 	err = __rtc_read_time(rtc, &tm);
154 	rtc_tm_to_time(&tm, &now);
155 	if (scheduled <= now)
156 		return -ETIME;
157 	/*
158 	 * XXX - We just checked to make sure the alarm time is not
159 	 * in the past, but there is still a race window where if
160 	 * the is alarm set for the next second and the second ticks
161 	 * over right here, before we set the alarm.
162 	 */
163 
164 	if (!rtc->ops)
165 		err = -ENODEV;
166 	else if (!rtc->ops->set_alarm)
167 		err = -EINVAL;
168 	else
169 		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
170 
171 	return err;
172 }
173 
174 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
175 {
176 	int err;
177 
178 	err = rtc_valid_tm(&alarm->time);
179 	if (err != 0)
180 		return err;
181 
182 	err = mutex_lock_interruptible(&rtc->ops_lock);
183 	if (err)
184 		return err;
185 	if (rtc->aie_timer.enabled) {
186 		rtc_timer_remove(rtc, &rtc->aie_timer);
187 	}
188 	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
189 	rtc->aie_timer.period = ktime_set(0, 0);
190 	if (alarm->enabled) {
191 		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
192 	}
193 	mutex_unlock(&rtc->ops_lock);
194 	return err;
195 }
196 EXPORT_SYMBOL_GPL(rtc_set_alarm);
197 
198 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
199 {
200 	int err = mutex_lock_interruptible(&rtc->ops_lock);
201 	if (err)
202 		return err;
203 
204 	if (rtc->aie_timer.enabled != enabled) {
205 		if (enabled)
206 			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
207 		else
208 			rtc_timer_remove(rtc, &rtc->aie_timer);
209 	}
210 
211 	if (err)
212 		/* nothing */;
213 	else if (!rtc->ops)
214 		err = -ENODEV;
215 	else if (!rtc->ops->alarm_irq_enable)
216 		err = -EINVAL;
217 	else
218 		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
219 
220 	mutex_unlock(&rtc->ops_lock);
221 	return err;
222 }
223 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
224 
225 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
226 {
227 	int err = mutex_lock_interruptible(&rtc->ops_lock);
228 	if (err)
229 		return err;
230 
231 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
232 	if (enabled == 0 && rtc->uie_irq_active) {
233 		mutex_unlock(&rtc->ops_lock);
234 		return rtc_dev_update_irq_enable_emul(rtc, 0);
235 	}
236 #endif
237 	/* make sure we're changing state */
238 	if (rtc->uie_rtctimer.enabled == enabled)
239 		goto out;
240 
241 	if (enabled) {
242 		struct rtc_time tm;
243 		ktime_t now, onesec;
244 
245 		__rtc_read_time(rtc, &tm);
246 		onesec = ktime_set(1, 0);
247 		now = rtc_tm_to_ktime(tm);
248 		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
249 		rtc->uie_rtctimer.period = ktime_set(1, 0);
250 		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
251 	} else
252 		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
253 
254 out:
255 	mutex_unlock(&rtc->ops_lock);
256 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
257 	/*
258 	 * Enable emulation if the driver did not provide
259 	 * the update_irq_enable function pointer or if returned
260 	 * -EINVAL to signal that it has been configured without
261 	 * interrupts or that are not available at the moment.
262 	 */
263 	if (err == -EINVAL)
264 		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
265 #endif
266 	return err;
267 
268 }
269 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
270 
271 
272 /**
273  * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
274  * @rtc: pointer to the rtc device
275  *
276  * This function is called when an AIE, UIE or PIE mode interrupt
277  * has occured (or been emulated).
278  *
279  * Triggers the registered irq_task function callback.
280  */
281 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
282 {
283 	unsigned long flags;
284 
285 	/* mark one irq of the appropriate mode */
286 	spin_lock_irqsave(&rtc->irq_lock, flags);
287 	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
288 	spin_unlock_irqrestore(&rtc->irq_lock, flags);
289 
290 	/* call the task func */
291 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
292 	if (rtc->irq_task)
293 		rtc->irq_task->func(rtc->irq_task->private_data);
294 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
295 
296 	wake_up_interruptible(&rtc->irq_queue);
297 	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
298 }
299 
300 
301 /**
302  * rtc_aie_update_irq - AIE mode rtctimer hook
303  * @private: pointer to the rtc_device
304  *
305  * This functions is called when the aie_timer expires.
306  */
307 void rtc_aie_update_irq(void *private)
308 {
309 	struct rtc_device *rtc = (struct rtc_device *)private;
310 	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
311 }
312 
313 
314 /**
315  * rtc_uie_update_irq - UIE mode rtctimer hook
316  * @private: pointer to the rtc_device
317  *
318  * This functions is called when the uie_timer expires.
319  */
320 void rtc_uie_update_irq(void *private)
321 {
322 	struct rtc_device *rtc = (struct rtc_device *)private;
323 	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
324 }
325 
326 
327 /**
328  * rtc_pie_update_irq - PIE mode hrtimer hook
329  * @timer: pointer to the pie mode hrtimer
330  *
331  * This function is used to emulate PIE mode interrupts
332  * using an hrtimer. This function is called when the periodic
333  * hrtimer expires.
334  */
335 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
336 {
337 	struct rtc_device *rtc;
338 	ktime_t period;
339 	int count;
340 	rtc = container_of(timer, struct rtc_device, pie_timer);
341 
342 	period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
343 	count = hrtimer_forward_now(timer, period);
344 
345 	rtc_handle_legacy_irq(rtc, count, RTC_PF);
346 
347 	return HRTIMER_RESTART;
348 }
349 
350 /**
351  * rtc_update_irq - Triggered when a RTC interrupt occurs.
352  * @rtc: the rtc device
353  * @num: how many irqs are being reported (usually one)
354  * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
355  * Context: any
356  */
357 void rtc_update_irq(struct rtc_device *rtc,
358 		unsigned long num, unsigned long events)
359 {
360 	schedule_work(&rtc->irqwork);
361 }
362 EXPORT_SYMBOL_GPL(rtc_update_irq);
363 
364 static int __rtc_match(struct device *dev, void *data)
365 {
366 	char *name = (char *)data;
367 
368 	if (strcmp(dev_name(dev), name) == 0)
369 		return 1;
370 	return 0;
371 }
372 
373 struct rtc_device *rtc_class_open(char *name)
374 {
375 	struct device *dev;
376 	struct rtc_device *rtc = NULL;
377 
378 	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
379 	if (dev)
380 		rtc = to_rtc_device(dev);
381 
382 	if (rtc) {
383 		if (!try_module_get(rtc->owner)) {
384 			put_device(dev);
385 			rtc = NULL;
386 		}
387 	}
388 
389 	return rtc;
390 }
391 EXPORT_SYMBOL_GPL(rtc_class_open);
392 
393 void rtc_class_close(struct rtc_device *rtc)
394 {
395 	module_put(rtc->owner);
396 	put_device(&rtc->dev);
397 }
398 EXPORT_SYMBOL_GPL(rtc_class_close);
399 
400 int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
401 {
402 	int retval = -EBUSY;
403 
404 	if (task == NULL || task->func == NULL)
405 		return -EINVAL;
406 
407 	/* Cannot register while the char dev is in use */
408 	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
409 		return -EBUSY;
410 
411 	spin_lock_irq(&rtc->irq_task_lock);
412 	if (rtc->irq_task == NULL) {
413 		rtc->irq_task = task;
414 		retval = 0;
415 	}
416 	spin_unlock_irq(&rtc->irq_task_lock);
417 
418 	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
419 
420 	return retval;
421 }
422 EXPORT_SYMBOL_GPL(rtc_irq_register);
423 
424 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
425 {
426 	spin_lock_irq(&rtc->irq_task_lock);
427 	if (rtc->irq_task == task)
428 		rtc->irq_task = NULL;
429 	spin_unlock_irq(&rtc->irq_task_lock);
430 }
431 EXPORT_SYMBOL_GPL(rtc_irq_unregister);
432 
433 /**
434  * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
435  * @rtc: the rtc device
436  * @task: currently registered with rtc_irq_register()
437  * @enabled: true to enable periodic IRQs
438  * Context: any
439  *
440  * Note that rtc_irq_set_freq() should previously have been used to
441  * specify the desired frequency of periodic IRQ task->func() callbacks.
442  */
443 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
444 {
445 	int err = 0;
446 	unsigned long flags;
447 
448 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
449 	if (rtc->irq_task != NULL && task == NULL)
450 		err = -EBUSY;
451 	if (rtc->irq_task != task)
452 		err = -EACCES;
453 
454 	if (enabled) {
455 		ktime_t period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
456 		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
457 	} else {
458 		hrtimer_cancel(&rtc->pie_timer);
459 	}
460 	rtc->pie_enabled = enabled;
461 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
462 
463 	return err;
464 }
465 EXPORT_SYMBOL_GPL(rtc_irq_set_state);
466 
467 /**
468  * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
469  * @rtc: the rtc device
470  * @task: currently registered with rtc_irq_register()
471  * @freq: positive frequency with which task->func() will be called
472  * Context: any
473  *
474  * Note that rtc_irq_set_state() is used to enable or disable the
475  * periodic IRQs.
476  */
477 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
478 {
479 	int err = 0;
480 	unsigned long flags;
481 
482 	if (freq <= 0)
483 		return -EINVAL;
484 
485 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
486 	if (rtc->irq_task != NULL && task == NULL)
487 		err = -EBUSY;
488 	if (rtc->irq_task != task)
489 		err = -EACCES;
490 	if (err == 0) {
491 		rtc->irq_freq = freq;
492 		if (rtc->pie_enabled) {
493 			ktime_t period;
494 			hrtimer_cancel(&rtc->pie_timer);
495 			period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
496 			hrtimer_start(&rtc->pie_timer, period,
497 					HRTIMER_MODE_REL);
498 		}
499 	}
500 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
501 	return err;
502 }
503 EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
504 
505 /**
506  * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
507  * @rtc rtc device
508  * @timer timer being added.
509  *
510  * Enqueues a timer onto the rtc devices timerqueue and sets
511  * the next alarm event appropriately.
512  *
513  * Sets the enabled bit on the added timer.
514  *
515  * Must hold ops_lock for proper serialization of timerqueue
516  */
517 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
518 {
519 	timer->enabled = 1;
520 	timerqueue_add(&rtc->timerqueue, &timer->node);
521 	if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
522 		struct rtc_wkalrm alarm;
523 		int err;
524 		alarm.time = rtc_ktime_to_tm(timer->node.expires);
525 		alarm.enabled = 1;
526 		err = __rtc_set_alarm(rtc, &alarm);
527 		if (err == -ETIME)
528 			schedule_work(&rtc->irqwork);
529 		else if (err) {
530 			timerqueue_del(&rtc->timerqueue, &timer->node);
531 			timer->enabled = 0;
532 			return err;
533 		}
534 	}
535 	return 0;
536 }
537 
538 /**
539  * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
540  * @rtc rtc device
541  * @timer timer being removed.
542  *
543  * Removes a timer onto the rtc devices timerqueue and sets
544  * the next alarm event appropriately.
545  *
546  * Clears the enabled bit on the removed timer.
547  *
548  * Must hold ops_lock for proper serialization of timerqueue
549  */
550 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
551 {
552 	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
553 	timerqueue_del(&rtc->timerqueue, &timer->node);
554 	timer->enabled = 0;
555 	if (next == &timer->node) {
556 		struct rtc_wkalrm alarm;
557 		int err;
558 		next = timerqueue_getnext(&rtc->timerqueue);
559 		if (!next)
560 			return;
561 		alarm.time = rtc_ktime_to_tm(next->expires);
562 		alarm.enabled = 1;
563 		err = __rtc_set_alarm(rtc, &alarm);
564 		if (err == -ETIME)
565 			schedule_work(&rtc->irqwork);
566 	}
567 }
568 
569 /**
570  * rtc_timer_do_work - Expires rtc timers
571  * @rtc rtc device
572  * @timer timer being removed.
573  *
574  * Expires rtc timers. Reprograms next alarm event if needed.
575  * Called via worktask.
576  *
577  * Serializes access to timerqueue via ops_lock mutex
578  */
579 void rtc_timer_do_work(struct work_struct *work)
580 {
581 	struct rtc_timer *timer;
582 	struct timerqueue_node *next;
583 	ktime_t now;
584 	struct rtc_time tm;
585 
586 	struct rtc_device *rtc =
587 		container_of(work, struct rtc_device, irqwork);
588 
589 	mutex_lock(&rtc->ops_lock);
590 again:
591 	__rtc_read_time(rtc, &tm);
592 	now = rtc_tm_to_ktime(tm);
593 	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
594 		if (next->expires.tv64 > now.tv64)
595 			break;
596 
597 		/* expire timer */
598 		timer = container_of(next, struct rtc_timer, node);
599 		timerqueue_del(&rtc->timerqueue, &timer->node);
600 		timer->enabled = 0;
601 		if (timer->task.func)
602 			timer->task.func(timer->task.private_data);
603 
604 		/* Re-add/fwd periodic timers */
605 		if (ktime_to_ns(timer->period)) {
606 			timer->node.expires = ktime_add(timer->node.expires,
607 							timer->period);
608 			timer->enabled = 1;
609 			timerqueue_add(&rtc->timerqueue, &timer->node);
610 		}
611 	}
612 
613 	/* Set next alarm */
614 	if (next) {
615 		struct rtc_wkalrm alarm;
616 		int err;
617 		alarm.time = rtc_ktime_to_tm(next->expires);
618 		alarm.enabled = 1;
619 		err = __rtc_set_alarm(rtc, &alarm);
620 		if (err == -ETIME)
621 			goto again;
622 	}
623 
624 	mutex_unlock(&rtc->ops_lock);
625 }
626 
627 
628 /* rtc_timer_init - Initializes an rtc_timer
629  * @timer: timer to be intiialized
630  * @f: function pointer to be called when timer fires
631  * @data: private data passed to function pointer
632  *
633  * Kernel interface to initializing an rtc_timer.
634  */
635 void rtc_timer_init(struct rtc_timer *timer, void (*f)(void* p), void* data)
636 {
637 	timerqueue_init(&timer->node);
638 	timer->enabled = 0;
639 	timer->task.func = f;
640 	timer->task.private_data = data;
641 }
642 
643 /* rtc_timer_start - Sets an rtc_timer to fire in the future
644  * @ rtc: rtc device to be used
645  * @ timer: timer being set
646  * @ expires: time at which to expire the timer
647  * @ period: period that the timer will recur
648  *
649  * Kernel interface to set an rtc_timer
650  */
651 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer* timer,
652 			ktime_t expires, ktime_t period)
653 {
654 	int ret = 0;
655 	mutex_lock(&rtc->ops_lock);
656 	if (timer->enabled)
657 		rtc_timer_remove(rtc, timer);
658 
659 	timer->node.expires = expires;
660 	timer->period = period;
661 
662 	ret = rtc_timer_enqueue(rtc, timer);
663 
664 	mutex_unlock(&rtc->ops_lock);
665 	return ret;
666 }
667 
668 /* rtc_timer_cancel - Stops an rtc_timer
669  * @ rtc: rtc device to be used
670  * @ timer: timer being set
671  *
672  * Kernel interface to cancel an rtc_timer
673  */
674 int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer* timer)
675 {
676 	int ret = 0;
677 	mutex_lock(&rtc->ops_lock);
678 	if (timer->enabled)
679 		rtc_timer_remove(rtc, timer);
680 	mutex_unlock(&rtc->ops_lock);
681 	return ret;
682 }
683 
684 
685