1 /* 2 * RTC subsystem, interface functions 3 * 4 * Copyright (C) 2005 Tower Technologies 5 * Author: Alessandro Zummo <a.zummo@towertech.it> 6 * 7 * based on arch/arm/common/rtctime.c 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 14 #include <linux/rtc.h> 15 #include <linux/sched.h> 16 #include <linux/module.h> 17 #include <linux/log2.h> 18 #include <linux/workqueue.h> 19 20 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer); 21 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer); 22 23 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm) 24 { 25 int err; 26 if (!rtc->ops) 27 err = -ENODEV; 28 else if (!rtc->ops->read_time) 29 err = -EINVAL; 30 else { 31 memset(tm, 0, sizeof(struct rtc_time)); 32 err = rtc->ops->read_time(rtc->dev.parent, tm); 33 if (err < 0) { 34 dev_dbg(&rtc->dev, "read_time: fail to read: %d\n", 35 err); 36 return err; 37 } 38 39 err = rtc_valid_tm(tm); 40 if (err < 0) 41 dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n"); 42 } 43 return err; 44 } 45 46 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm) 47 { 48 int err; 49 50 err = mutex_lock_interruptible(&rtc->ops_lock); 51 if (err) 52 return err; 53 54 err = __rtc_read_time(rtc, tm); 55 mutex_unlock(&rtc->ops_lock); 56 return err; 57 } 58 EXPORT_SYMBOL_GPL(rtc_read_time); 59 60 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm) 61 { 62 int err; 63 64 err = rtc_valid_tm(tm); 65 if (err != 0) 66 return err; 67 68 err = mutex_lock_interruptible(&rtc->ops_lock); 69 if (err) 70 return err; 71 72 if (!rtc->ops) 73 err = -ENODEV; 74 else if (rtc->ops->set_time) 75 err = rtc->ops->set_time(rtc->dev.parent, tm); 76 else if (rtc->ops->set_mmss64) { 77 time64_t secs64 = rtc_tm_to_time64(tm); 78 79 err = rtc->ops->set_mmss64(rtc->dev.parent, secs64); 80 } else if (rtc->ops->set_mmss) { 81 time64_t secs64 = rtc_tm_to_time64(tm); 82 err = rtc->ops->set_mmss(rtc->dev.parent, secs64); 83 } else 84 err = -EINVAL; 85 86 pm_stay_awake(rtc->dev.parent); 87 mutex_unlock(&rtc->ops_lock); 88 /* A timer might have just expired */ 89 schedule_work(&rtc->irqwork); 90 return err; 91 } 92 EXPORT_SYMBOL_GPL(rtc_set_time); 93 94 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 95 { 96 int err; 97 98 err = mutex_lock_interruptible(&rtc->ops_lock); 99 if (err) 100 return err; 101 102 if (rtc->ops == NULL) 103 err = -ENODEV; 104 else if (!rtc->ops->read_alarm) 105 err = -EINVAL; 106 else { 107 alarm->enabled = 0; 108 alarm->pending = 0; 109 alarm->time.tm_sec = -1; 110 alarm->time.tm_min = -1; 111 alarm->time.tm_hour = -1; 112 alarm->time.tm_mday = -1; 113 alarm->time.tm_mon = -1; 114 alarm->time.tm_year = -1; 115 alarm->time.tm_wday = -1; 116 alarm->time.tm_yday = -1; 117 alarm->time.tm_isdst = -1; 118 err = rtc->ops->read_alarm(rtc->dev.parent, alarm); 119 } 120 121 mutex_unlock(&rtc->ops_lock); 122 return err; 123 } 124 125 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 126 { 127 int err; 128 struct rtc_time before, now; 129 int first_time = 1; 130 time64_t t_now, t_alm; 131 enum { none, day, month, year } missing = none; 132 unsigned days; 133 134 /* The lower level RTC driver may return -1 in some fields, 135 * creating invalid alarm->time values, for reasons like: 136 * 137 * - The hardware may not be capable of filling them in; 138 * many alarms match only on time-of-day fields, not 139 * day/month/year calendar data. 140 * 141 * - Some hardware uses illegal values as "wildcard" match 142 * values, which non-Linux firmware (like a BIOS) may try 143 * to set up as e.g. "alarm 15 minutes after each hour". 144 * Linux uses only oneshot alarms. 145 * 146 * When we see that here, we deal with it by using values from 147 * a current RTC timestamp for any missing (-1) values. The 148 * RTC driver prevents "periodic alarm" modes. 149 * 150 * But this can be racey, because some fields of the RTC timestamp 151 * may have wrapped in the interval since we read the RTC alarm, 152 * which would lead to us inserting inconsistent values in place 153 * of the -1 fields. 154 * 155 * Reading the alarm and timestamp in the reverse sequence 156 * would have the same race condition, and not solve the issue. 157 * 158 * So, we must first read the RTC timestamp, 159 * then read the RTC alarm value, 160 * and then read a second RTC timestamp. 161 * 162 * If any fields of the second timestamp have changed 163 * when compared with the first timestamp, then we know 164 * our timestamp may be inconsistent with that used by 165 * the low-level rtc_read_alarm_internal() function. 166 * 167 * So, when the two timestamps disagree, we just loop and do 168 * the process again to get a fully consistent set of values. 169 * 170 * This could all instead be done in the lower level driver, 171 * but since more than one lower level RTC implementation needs it, 172 * then it's probably best best to do it here instead of there.. 173 */ 174 175 /* Get the "before" timestamp */ 176 err = rtc_read_time(rtc, &before); 177 if (err < 0) 178 return err; 179 do { 180 if (!first_time) 181 memcpy(&before, &now, sizeof(struct rtc_time)); 182 first_time = 0; 183 184 /* get the RTC alarm values, which may be incomplete */ 185 err = rtc_read_alarm_internal(rtc, alarm); 186 if (err) 187 return err; 188 189 /* full-function RTCs won't have such missing fields */ 190 if (rtc_valid_tm(&alarm->time) == 0) 191 return 0; 192 193 /* get the "after" timestamp, to detect wrapped fields */ 194 err = rtc_read_time(rtc, &now); 195 if (err < 0) 196 return err; 197 198 /* note that tm_sec is a "don't care" value here: */ 199 } while ( before.tm_min != now.tm_min 200 || before.tm_hour != now.tm_hour 201 || before.tm_mon != now.tm_mon 202 || before.tm_year != now.tm_year); 203 204 /* Fill in the missing alarm fields using the timestamp; we 205 * know there's at least one since alarm->time is invalid. 206 */ 207 if (alarm->time.tm_sec == -1) 208 alarm->time.tm_sec = now.tm_sec; 209 if (alarm->time.tm_min == -1) 210 alarm->time.tm_min = now.tm_min; 211 if (alarm->time.tm_hour == -1) 212 alarm->time.tm_hour = now.tm_hour; 213 214 /* For simplicity, only support date rollover for now */ 215 if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) { 216 alarm->time.tm_mday = now.tm_mday; 217 missing = day; 218 } 219 if ((unsigned)alarm->time.tm_mon >= 12) { 220 alarm->time.tm_mon = now.tm_mon; 221 if (missing == none) 222 missing = month; 223 } 224 if (alarm->time.tm_year == -1) { 225 alarm->time.tm_year = now.tm_year; 226 if (missing == none) 227 missing = year; 228 } 229 230 /* Can't proceed if alarm is still invalid after replacing 231 * missing fields. 232 */ 233 err = rtc_valid_tm(&alarm->time); 234 if (err) 235 goto done; 236 237 /* with luck, no rollover is needed */ 238 t_now = rtc_tm_to_time64(&now); 239 t_alm = rtc_tm_to_time64(&alarm->time); 240 if (t_now < t_alm) 241 goto done; 242 243 switch (missing) { 244 245 /* 24 hour rollover ... if it's now 10am Monday, an alarm that 246 * that will trigger at 5am will do so at 5am Tuesday, which 247 * could also be in the next month or year. This is a common 248 * case, especially for PCs. 249 */ 250 case day: 251 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day"); 252 t_alm += 24 * 60 * 60; 253 rtc_time64_to_tm(t_alm, &alarm->time); 254 break; 255 256 /* Month rollover ... if it's the 31th, an alarm on the 3rd will 257 * be next month. An alarm matching on the 30th, 29th, or 28th 258 * may end up in the month after that! Many newer PCs support 259 * this type of alarm. 260 */ 261 case month: 262 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month"); 263 do { 264 if (alarm->time.tm_mon < 11) 265 alarm->time.tm_mon++; 266 else { 267 alarm->time.tm_mon = 0; 268 alarm->time.tm_year++; 269 } 270 days = rtc_month_days(alarm->time.tm_mon, 271 alarm->time.tm_year); 272 } while (days < alarm->time.tm_mday); 273 break; 274 275 /* Year rollover ... easy except for leap years! */ 276 case year: 277 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year"); 278 do { 279 alarm->time.tm_year++; 280 } while (!is_leap_year(alarm->time.tm_year + 1900) 281 && rtc_valid_tm(&alarm->time) != 0); 282 break; 283 284 default: 285 dev_warn(&rtc->dev, "alarm rollover not handled\n"); 286 } 287 288 err = rtc_valid_tm(&alarm->time); 289 290 done: 291 if (err) { 292 dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n", 293 alarm->time.tm_year + 1900, alarm->time.tm_mon + 1, 294 alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min, 295 alarm->time.tm_sec); 296 } 297 298 return err; 299 } 300 301 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 302 { 303 int err; 304 305 err = mutex_lock_interruptible(&rtc->ops_lock); 306 if (err) 307 return err; 308 if (rtc->ops == NULL) 309 err = -ENODEV; 310 else if (!rtc->ops->read_alarm) 311 err = -EINVAL; 312 else { 313 memset(alarm, 0, sizeof(struct rtc_wkalrm)); 314 alarm->enabled = rtc->aie_timer.enabled; 315 alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires); 316 } 317 mutex_unlock(&rtc->ops_lock); 318 319 return err; 320 } 321 EXPORT_SYMBOL_GPL(rtc_read_alarm); 322 323 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 324 { 325 struct rtc_time tm; 326 time64_t now, scheduled; 327 int err; 328 329 err = rtc_valid_tm(&alarm->time); 330 if (err) 331 return err; 332 scheduled = rtc_tm_to_time64(&alarm->time); 333 334 /* Make sure we're not setting alarms in the past */ 335 err = __rtc_read_time(rtc, &tm); 336 if (err) 337 return err; 338 now = rtc_tm_to_time64(&tm); 339 if (scheduled <= now) 340 return -ETIME; 341 /* 342 * XXX - We just checked to make sure the alarm time is not 343 * in the past, but there is still a race window where if 344 * the is alarm set for the next second and the second ticks 345 * over right here, before we set the alarm. 346 */ 347 348 if (!rtc->ops) 349 err = -ENODEV; 350 else if (!rtc->ops->set_alarm) 351 err = -EINVAL; 352 else 353 err = rtc->ops->set_alarm(rtc->dev.parent, alarm); 354 355 return err; 356 } 357 358 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 359 { 360 int err; 361 362 err = rtc_valid_tm(&alarm->time); 363 if (err != 0) 364 return err; 365 366 err = mutex_lock_interruptible(&rtc->ops_lock); 367 if (err) 368 return err; 369 if (rtc->aie_timer.enabled) 370 rtc_timer_remove(rtc, &rtc->aie_timer); 371 372 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time); 373 rtc->aie_timer.period = 0; 374 if (alarm->enabled) 375 err = rtc_timer_enqueue(rtc, &rtc->aie_timer); 376 377 mutex_unlock(&rtc->ops_lock); 378 return err; 379 } 380 EXPORT_SYMBOL_GPL(rtc_set_alarm); 381 382 /* Called once per device from rtc_device_register */ 383 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 384 { 385 int err; 386 struct rtc_time now; 387 388 err = rtc_valid_tm(&alarm->time); 389 if (err != 0) 390 return err; 391 392 err = rtc_read_time(rtc, &now); 393 if (err) 394 return err; 395 396 err = mutex_lock_interruptible(&rtc->ops_lock); 397 if (err) 398 return err; 399 400 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time); 401 rtc->aie_timer.period = 0; 402 403 /* Alarm has to be enabled & in the future for us to enqueue it */ 404 if (alarm->enabled && (rtc_tm_to_ktime(now) < 405 rtc->aie_timer.node.expires)) { 406 407 rtc->aie_timer.enabled = 1; 408 timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node); 409 } 410 mutex_unlock(&rtc->ops_lock); 411 return err; 412 } 413 EXPORT_SYMBOL_GPL(rtc_initialize_alarm); 414 415 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled) 416 { 417 int err = mutex_lock_interruptible(&rtc->ops_lock); 418 if (err) 419 return err; 420 421 if (rtc->aie_timer.enabled != enabled) { 422 if (enabled) 423 err = rtc_timer_enqueue(rtc, &rtc->aie_timer); 424 else 425 rtc_timer_remove(rtc, &rtc->aie_timer); 426 } 427 428 if (err) 429 /* nothing */; 430 else if (!rtc->ops) 431 err = -ENODEV; 432 else if (!rtc->ops->alarm_irq_enable) 433 err = -EINVAL; 434 else 435 err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled); 436 437 mutex_unlock(&rtc->ops_lock); 438 return err; 439 } 440 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable); 441 442 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled) 443 { 444 int err = mutex_lock_interruptible(&rtc->ops_lock); 445 if (err) 446 return err; 447 448 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL 449 if (enabled == 0 && rtc->uie_irq_active) { 450 mutex_unlock(&rtc->ops_lock); 451 return rtc_dev_update_irq_enable_emul(rtc, 0); 452 } 453 #endif 454 /* make sure we're changing state */ 455 if (rtc->uie_rtctimer.enabled == enabled) 456 goto out; 457 458 if (rtc->uie_unsupported) { 459 err = -EINVAL; 460 goto out; 461 } 462 463 if (enabled) { 464 struct rtc_time tm; 465 ktime_t now, onesec; 466 467 __rtc_read_time(rtc, &tm); 468 onesec = ktime_set(1, 0); 469 now = rtc_tm_to_ktime(tm); 470 rtc->uie_rtctimer.node.expires = ktime_add(now, onesec); 471 rtc->uie_rtctimer.period = ktime_set(1, 0); 472 err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer); 473 } else 474 rtc_timer_remove(rtc, &rtc->uie_rtctimer); 475 476 out: 477 mutex_unlock(&rtc->ops_lock); 478 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL 479 /* 480 * Enable emulation if the driver did not provide 481 * the update_irq_enable function pointer or if returned 482 * -EINVAL to signal that it has been configured without 483 * interrupts or that are not available at the moment. 484 */ 485 if (err == -EINVAL) 486 err = rtc_dev_update_irq_enable_emul(rtc, enabled); 487 #endif 488 return err; 489 490 } 491 EXPORT_SYMBOL_GPL(rtc_update_irq_enable); 492 493 494 /** 495 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook 496 * @rtc: pointer to the rtc device 497 * 498 * This function is called when an AIE, UIE or PIE mode interrupt 499 * has occurred (or been emulated). 500 * 501 * Triggers the registered irq_task function callback. 502 */ 503 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode) 504 { 505 unsigned long flags; 506 507 /* mark one irq of the appropriate mode */ 508 spin_lock_irqsave(&rtc->irq_lock, flags); 509 rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode); 510 spin_unlock_irqrestore(&rtc->irq_lock, flags); 511 512 /* call the task func */ 513 spin_lock_irqsave(&rtc->irq_task_lock, flags); 514 if (rtc->irq_task) 515 rtc->irq_task->func(rtc->irq_task->private_data); 516 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 517 518 wake_up_interruptible(&rtc->irq_queue); 519 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN); 520 } 521 522 523 /** 524 * rtc_aie_update_irq - AIE mode rtctimer hook 525 * @private: pointer to the rtc_device 526 * 527 * This functions is called when the aie_timer expires. 528 */ 529 void rtc_aie_update_irq(void *private) 530 { 531 struct rtc_device *rtc = (struct rtc_device *)private; 532 rtc_handle_legacy_irq(rtc, 1, RTC_AF); 533 } 534 535 536 /** 537 * rtc_uie_update_irq - UIE mode rtctimer hook 538 * @private: pointer to the rtc_device 539 * 540 * This functions is called when the uie_timer expires. 541 */ 542 void rtc_uie_update_irq(void *private) 543 { 544 struct rtc_device *rtc = (struct rtc_device *)private; 545 rtc_handle_legacy_irq(rtc, 1, RTC_UF); 546 } 547 548 549 /** 550 * rtc_pie_update_irq - PIE mode hrtimer hook 551 * @timer: pointer to the pie mode hrtimer 552 * 553 * This function is used to emulate PIE mode interrupts 554 * using an hrtimer. This function is called when the periodic 555 * hrtimer expires. 556 */ 557 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer) 558 { 559 struct rtc_device *rtc; 560 ktime_t period; 561 int count; 562 rtc = container_of(timer, struct rtc_device, pie_timer); 563 564 period = NSEC_PER_SEC / rtc->irq_freq; 565 count = hrtimer_forward_now(timer, period); 566 567 rtc_handle_legacy_irq(rtc, count, RTC_PF); 568 569 return HRTIMER_RESTART; 570 } 571 572 /** 573 * rtc_update_irq - Triggered when a RTC interrupt occurs. 574 * @rtc: the rtc device 575 * @num: how many irqs are being reported (usually one) 576 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF 577 * Context: any 578 */ 579 void rtc_update_irq(struct rtc_device *rtc, 580 unsigned long num, unsigned long events) 581 { 582 if (IS_ERR_OR_NULL(rtc)) 583 return; 584 585 pm_stay_awake(rtc->dev.parent); 586 schedule_work(&rtc->irqwork); 587 } 588 EXPORT_SYMBOL_GPL(rtc_update_irq); 589 590 static int __rtc_match(struct device *dev, const void *data) 591 { 592 const char *name = data; 593 594 if (strcmp(dev_name(dev), name) == 0) 595 return 1; 596 return 0; 597 } 598 599 struct rtc_device *rtc_class_open(const char *name) 600 { 601 struct device *dev; 602 struct rtc_device *rtc = NULL; 603 604 dev = class_find_device(rtc_class, NULL, name, __rtc_match); 605 if (dev) 606 rtc = to_rtc_device(dev); 607 608 if (rtc) { 609 if (!try_module_get(rtc->owner)) { 610 put_device(dev); 611 rtc = NULL; 612 } 613 } 614 615 return rtc; 616 } 617 EXPORT_SYMBOL_GPL(rtc_class_open); 618 619 void rtc_class_close(struct rtc_device *rtc) 620 { 621 module_put(rtc->owner); 622 put_device(&rtc->dev); 623 } 624 EXPORT_SYMBOL_GPL(rtc_class_close); 625 626 int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task) 627 { 628 int retval = -EBUSY; 629 630 if (task == NULL || task->func == NULL) 631 return -EINVAL; 632 633 /* Cannot register while the char dev is in use */ 634 if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags)) 635 return -EBUSY; 636 637 spin_lock_irq(&rtc->irq_task_lock); 638 if (rtc->irq_task == NULL) { 639 rtc->irq_task = task; 640 retval = 0; 641 } 642 spin_unlock_irq(&rtc->irq_task_lock); 643 644 clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags); 645 646 return retval; 647 } 648 EXPORT_SYMBOL_GPL(rtc_irq_register); 649 650 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task) 651 { 652 spin_lock_irq(&rtc->irq_task_lock); 653 if (rtc->irq_task == task) 654 rtc->irq_task = NULL; 655 spin_unlock_irq(&rtc->irq_task_lock); 656 } 657 EXPORT_SYMBOL_GPL(rtc_irq_unregister); 658 659 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled) 660 { 661 /* 662 * We always cancel the timer here first, because otherwise 663 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK); 664 * when we manage to start the timer before the callback 665 * returns HRTIMER_RESTART. 666 * 667 * We cannot use hrtimer_cancel() here as a running callback 668 * could be blocked on rtc->irq_task_lock and hrtimer_cancel() 669 * would spin forever. 670 */ 671 if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0) 672 return -1; 673 674 if (enabled) { 675 ktime_t period = NSEC_PER_SEC / rtc->irq_freq; 676 677 hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL); 678 } 679 return 0; 680 } 681 682 /** 683 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs 684 * @rtc: the rtc device 685 * @task: currently registered with rtc_irq_register() 686 * @enabled: true to enable periodic IRQs 687 * Context: any 688 * 689 * Note that rtc_irq_set_freq() should previously have been used to 690 * specify the desired frequency of periodic IRQ task->func() callbacks. 691 */ 692 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled) 693 { 694 int err = 0; 695 unsigned long flags; 696 697 retry: 698 spin_lock_irqsave(&rtc->irq_task_lock, flags); 699 if (rtc->irq_task != NULL && task == NULL) 700 err = -EBUSY; 701 else if (rtc->irq_task != task) 702 err = -EACCES; 703 else { 704 if (rtc_update_hrtimer(rtc, enabled) < 0) { 705 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 706 cpu_relax(); 707 goto retry; 708 } 709 rtc->pie_enabled = enabled; 710 } 711 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 712 return err; 713 } 714 EXPORT_SYMBOL_GPL(rtc_irq_set_state); 715 716 /** 717 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ 718 * @rtc: the rtc device 719 * @task: currently registered with rtc_irq_register() 720 * @freq: positive frequency with which task->func() will be called 721 * Context: any 722 * 723 * Note that rtc_irq_set_state() is used to enable or disable the 724 * periodic IRQs. 725 */ 726 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq) 727 { 728 int err = 0; 729 unsigned long flags; 730 731 if (freq <= 0 || freq > RTC_MAX_FREQ) 732 return -EINVAL; 733 retry: 734 spin_lock_irqsave(&rtc->irq_task_lock, flags); 735 if (rtc->irq_task != NULL && task == NULL) 736 err = -EBUSY; 737 else if (rtc->irq_task != task) 738 err = -EACCES; 739 else { 740 rtc->irq_freq = freq; 741 if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) { 742 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 743 cpu_relax(); 744 goto retry; 745 } 746 } 747 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 748 return err; 749 } 750 EXPORT_SYMBOL_GPL(rtc_irq_set_freq); 751 752 /** 753 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue 754 * @rtc rtc device 755 * @timer timer being added. 756 * 757 * Enqueues a timer onto the rtc devices timerqueue and sets 758 * the next alarm event appropriately. 759 * 760 * Sets the enabled bit on the added timer. 761 * 762 * Must hold ops_lock for proper serialization of timerqueue 763 */ 764 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer) 765 { 766 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue); 767 struct rtc_time tm; 768 ktime_t now; 769 770 timer->enabled = 1; 771 __rtc_read_time(rtc, &tm); 772 now = rtc_tm_to_ktime(tm); 773 774 /* Skip over expired timers */ 775 while (next) { 776 if (next->expires >= now) 777 break; 778 next = timerqueue_iterate_next(next); 779 } 780 781 timerqueue_add(&rtc->timerqueue, &timer->node); 782 if (!next) { 783 struct rtc_wkalrm alarm; 784 int err; 785 alarm.time = rtc_ktime_to_tm(timer->node.expires); 786 alarm.enabled = 1; 787 err = __rtc_set_alarm(rtc, &alarm); 788 if (err == -ETIME) { 789 pm_stay_awake(rtc->dev.parent); 790 schedule_work(&rtc->irqwork); 791 } else if (err) { 792 timerqueue_del(&rtc->timerqueue, &timer->node); 793 timer->enabled = 0; 794 return err; 795 } 796 } 797 return 0; 798 } 799 800 static void rtc_alarm_disable(struct rtc_device *rtc) 801 { 802 if (!rtc->ops || !rtc->ops->alarm_irq_enable) 803 return; 804 805 rtc->ops->alarm_irq_enable(rtc->dev.parent, false); 806 } 807 808 /** 809 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue 810 * @rtc rtc device 811 * @timer timer being removed. 812 * 813 * Removes a timer onto the rtc devices timerqueue and sets 814 * the next alarm event appropriately. 815 * 816 * Clears the enabled bit on the removed timer. 817 * 818 * Must hold ops_lock for proper serialization of timerqueue 819 */ 820 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer) 821 { 822 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue); 823 timerqueue_del(&rtc->timerqueue, &timer->node); 824 timer->enabled = 0; 825 if (next == &timer->node) { 826 struct rtc_wkalrm alarm; 827 int err; 828 next = timerqueue_getnext(&rtc->timerqueue); 829 if (!next) { 830 rtc_alarm_disable(rtc); 831 return; 832 } 833 alarm.time = rtc_ktime_to_tm(next->expires); 834 alarm.enabled = 1; 835 err = __rtc_set_alarm(rtc, &alarm); 836 if (err == -ETIME) { 837 pm_stay_awake(rtc->dev.parent); 838 schedule_work(&rtc->irqwork); 839 } 840 } 841 } 842 843 /** 844 * rtc_timer_do_work - Expires rtc timers 845 * @rtc rtc device 846 * @timer timer being removed. 847 * 848 * Expires rtc timers. Reprograms next alarm event if needed. 849 * Called via worktask. 850 * 851 * Serializes access to timerqueue via ops_lock mutex 852 */ 853 void rtc_timer_do_work(struct work_struct *work) 854 { 855 struct rtc_timer *timer; 856 struct timerqueue_node *next; 857 ktime_t now; 858 struct rtc_time tm; 859 860 struct rtc_device *rtc = 861 container_of(work, struct rtc_device, irqwork); 862 863 mutex_lock(&rtc->ops_lock); 864 again: 865 __rtc_read_time(rtc, &tm); 866 now = rtc_tm_to_ktime(tm); 867 while ((next = timerqueue_getnext(&rtc->timerqueue))) { 868 if (next->expires > now) 869 break; 870 871 /* expire timer */ 872 timer = container_of(next, struct rtc_timer, node); 873 timerqueue_del(&rtc->timerqueue, &timer->node); 874 timer->enabled = 0; 875 if (timer->task.func) 876 timer->task.func(timer->task.private_data); 877 878 /* Re-add/fwd periodic timers */ 879 if (ktime_to_ns(timer->period)) { 880 timer->node.expires = ktime_add(timer->node.expires, 881 timer->period); 882 timer->enabled = 1; 883 timerqueue_add(&rtc->timerqueue, &timer->node); 884 } 885 } 886 887 /* Set next alarm */ 888 if (next) { 889 struct rtc_wkalrm alarm; 890 int err; 891 int retry = 3; 892 893 alarm.time = rtc_ktime_to_tm(next->expires); 894 alarm.enabled = 1; 895 reprogram: 896 err = __rtc_set_alarm(rtc, &alarm); 897 if (err == -ETIME) 898 goto again; 899 else if (err) { 900 if (retry-- > 0) 901 goto reprogram; 902 903 timer = container_of(next, struct rtc_timer, node); 904 timerqueue_del(&rtc->timerqueue, &timer->node); 905 timer->enabled = 0; 906 dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err); 907 goto again; 908 } 909 } else 910 rtc_alarm_disable(rtc); 911 912 pm_relax(rtc->dev.parent); 913 mutex_unlock(&rtc->ops_lock); 914 } 915 916 917 /* rtc_timer_init - Initializes an rtc_timer 918 * @timer: timer to be intiialized 919 * @f: function pointer to be called when timer fires 920 * @data: private data passed to function pointer 921 * 922 * Kernel interface to initializing an rtc_timer. 923 */ 924 void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data) 925 { 926 timerqueue_init(&timer->node); 927 timer->enabled = 0; 928 timer->task.func = f; 929 timer->task.private_data = data; 930 } 931 932 /* rtc_timer_start - Sets an rtc_timer to fire in the future 933 * @ rtc: rtc device to be used 934 * @ timer: timer being set 935 * @ expires: time at which to expire the timer 936 * @ period: period that the timer will recur 937 * 938 * Kernel interface to set an rtc_timer 939 */ 940 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer, 941 ktime_t expires, ktime_t period) 942 { 943 int ret = 0; 944 mutex_lock(&rtc->ops_lock); 945 if (timer->enabled) 946 rtc_timer_remove(rtc, timer); 947 948 timer->node.expires = expires; 949 timer->period = period; 950 951 ret = rtc_timer_enqueue(rtc, timer); 952 953 mutex_unlock(&rtc->ops_lock); 954 return ret; 955 } 956 957 /* rtc_timer_cancel - Stops an rtc_timer 958 * @ rtc: rtc device to be used 959 * @ timer: timer being set 960 * 961 * Kernel interface to cancel an rtc_timer 962 */ 963 void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer) 964 { 965 mutex_lock(&rtc->ops_lock); 966 if (timer->enabled) 967 rtc_timer_remove(rtc, timer); 968 mutex_unlock(&rtc->ops_lock); 969 } 970 971 /** 972 * rtc_read_offset - Read the amount of rtc offset in parts per billion 973 * @ rtc: rtc device to be used 974 * @ offset: the offset in parts per billion 975 * 976 * see below for details. 977 * 978 * Kernel interface to read rtc clock offset 979 * Returns 0 on success, or a negative number on error. 980 * If read_offset() is not implemented for the rtc, return -EINVAL 981 */ 982 int rtc_read_offset(struct rtc_device *rtc, long *offset) 983 { 984 int ret; 985 986 if (!rtc->ops) 987 return -ENODEV; 988 989 if (!rtc->ops->read_offset) 990 return -EINVAL; 991 992 mutex_lock(&rtc->ops_lock); 993 ret = rtc->ops->read_offset(rtc->dev.parent, offset); 994 mutex_unlock(&rtc->ops_lock); 995 return ret; 996 } 997 998 /** 999 * rtc_set_offset - Adjusts the duration of the average second 1000 * @ rtc: rtc device to be used 1001 * @ offset: the offset in parts per billion 1002 * 1003 * Some rtc's allow an adjustment to the average duration of a second 1004 * to compensate for differences in the actual clock rate due to temperature, 1005 * the crystal, capacitor, etc. 1006 * 1007 * Kernel interface to adjust an rtc clock offset. 1008 * Return 0 on success, or a negative number on error. 1009 * If the rtc offset is not setable (or not implemented), return -EINVAL 1010 */ 1011 int rtc_set_offset(struct rtc_device *rtc, long offset) 1012 { 1013 int ret; 1014 1015 if (!rtc->ops) 1016 return -ENODEV; 1017 1018 if (!rtc->ops->set_offset) 1019 return -EINVAL; 1020 1021 mutex_lock(&rtc->ops_lock); 1022 ret = rtc->ops->set_offset(rtc->dev.parent, offset); 1023 mutex_unlock(&rtc->ops_lock); 1024 return ret; 1025 } 1026