xref: /openbmc/linux/drivers/rtc/interface.c (revision c819e2cf)
1 /*
2  * RTC subsystem, interface functions
3  *
4  * Copyright (C) 2005 Tower Technologies
5  * Author: Alessandro Zummo <a.zummo@towertech.it>
6  *
7  * based on arch/arm/common/rtctime.c
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12 */
13 
14 #include <linux/rtc.h>
15 #include <linux/sched.h>
16 #include <linux/module.h>
17 #include <linux/log2.h>
18 #include <linux/workqueue.h>
19 
20 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
21 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
22 
23 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
24 {
25 	int err;
26 	if (!rtc->ops)
27 		err = -ENODEV;
28 	else if (!rtc->ops->read_time)
29 		err = -EINVAL;
30 	else {
31 		memset(tm, 0, sizeof(struct rtc_time));
32 		err = rtc->ops->read_time(rtc->dev.parent, tm);
33 		if (err < 0) {
34 			dev_err(&rtc->dev, "read_time: fail to read\n");
35 			return err;
36 		}
37 
38 		err = rtc_valid_tm(tm);
39 		if (err < 0)
40 			dev_err(&rtc->dev, "read_time: rtc_time isn't valid\n");
41 	}
42 	return err;
43 }
44 
45 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
46 {
47 	int err;
48 
49 	err = mutex_lock_interruptible(&rtc->ops_lock);
50 	if (err)
51 		return err;
52 
53 	err = __rtc_read_time(rtc, tm);
54 	mutex_unlock(&rtc->ops_lock);
55 	return err;
56 }
57 EXPORT_SYMBOL_GPL(rtc_read_time);
58 
59 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
60 {
61 	int err;
62 
63 	err = rtc_valid_tm(tm);
64 	if (err != 0)
65 		return err;
66 
67 	err = mutex_lock_interruptible(&rtc->ops_lock);
68 	if (err)
69 		return err;
70 
71 	if (!rtc->ops)
72 		err = -ENODEV;
73 	else if (rtc->ops->set_time)
74 		err = rtc->ops->set_time(rtc->dev.parent, tm);
75 	else if (rtc->ops->set_mmss) {
76 		unsigned long secs;
77 		err = rtc_tm_to_time(tm, &secs);
78 		if (err == 0)
79 			err = rtc->ops->set_mmss(rtc->dev.parent, secs);
80 	} else
81 		err = -EINVAL;
82 
83 	pm_stay_awake(rtc->dev.parent);
84 	mutex_unlock(&rtc->ops_lock);
85 	/* A timer might have just expired */
86 	schedule_work(&rtc->irqwork);
87 	return err;
88 }
89 EXPORT_SYMBOL_GPL(rtc_set_time);
90 
91 int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
92 {
93 	int err;
94 
95 	err = mutex_lock_interruptible(&rtc->ops_lock);
96 	if (err)
97 		return err;
98 
99 	if (!rtc->ops)
100 		err = -ENODEV;
101 	else if (rtc->ops->set_mmss)
102 		err = rtc->ops->set_mmss(rtc->dev.parent, secs);
103 	else if (rtc->ops->read_time && rtc->ops->set_time) {
104 		struct rtc_time new, old;
105 
106 		err = rtc->ops->read_time(rtc->dev.parent, &old);
107 		if (err == 0) {
108 			rtc_time_to_tm(secs, &new);
109 
110 			/*
111 			 * avoid writing when we're going to change the day of
112 			 * the month. We will retry in the next minute. This
113 			 * basically means that if the RTC must not drift
114 			 * by more than 1 minute in 11 minutes.
115 			 */
116 			if (!((old.tm_hour == 23 && old.tm_min == 59) ||
117 				(new.tm_hour == 23 && new.tm_min == 59)))
118 				err = rtc->ops->set_time(rtc->dev.parent,
119 						&new);
120 		}
121 	} else {
122 		err = -EINVAL;
123 	}
124 
125 	pm_stay_awake(rtc->dev.parent);
126 	mutex_unlock(&rtc->ops_lock);
127 	/* A timer might have just expired */
128 	schedule_work(&rtc->irqwork);
129 
130 	return err;
131 }
132 EXPORT_SYMBOL_GPL(rtc_set_mmss);
133 
134 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
135 {
136 	int err;
137 
138 	err = mutex_lock_interruptible(&rtc->ops_lock);
139 	if (err)
140 		return err;
141 
142 	if (rtc->ops == NULL)
143 		err = -ENODEV;
144 	else if (!rtc->ops->read_alarm)
145 		err = -EINVAL;
146 	else {
147 		memset(alarm, 0, sizeof(struct rtc_wkalrm));
148 		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
149 	}
150 
151 	mutex_unlock(&rtc->ops_lock);
152 	return err;
153 }
154 
155 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
156 {
157 	int err;
158 	struct rtc_time before, now;
159 	int first_time = 1;
160 	unsigned long t_now, t_alm;
161 	enum { none, day, month, year } missing = none;
162 	unsigned days;
163 
164 	/* The lower level RTC driver may return -1 in some fields,
165 	 * creating invalid alarm->time values, for reasons like:
166 	 *
167 	 *   - The hardware may not be capable of filling them in;
168 	 *     many alarms match only on time-of-day fields, not
169 	 *     day/month/year calendar data.
170 	 *
171 	 *   - Some hardware uses illegal values as "wildcard" match
172 	 *     values, which non-Linux firmware (like a BIOS) may try
173 	 *     to set up as e.g. "alarm 15 minutes after each hour".
174 	 *     Linux uses only oneshot alarms.
175 	 *
176 	 * When we see that here, we deal with it by using values from
177 	 * a current RTC timestamp for any missing (-1) values.  The
178 	 * RTC driver prevents "periodic alarm" modes.
179 	 *
180 	 * But this can be racey, because some fields of the RTC timestamp
181 	 * may have wrapped in the interval since we read the RTC alarm,
182 	 * which would lead to us inserting inconsistent values in place
183 	 * of the -1 fields.
184 	 *
185 	 * Reading the alarm and timestamp in the reverse sequence
186 	 * would have the same race condition, and not solve the issue.
187 	 *
188 	 * So, we must first read the RTC timestamp,
189 	 * then read the RTC alarm value,
190 	 * and then read a second RTC timestamp.
191 	 *
192 	 * If any fields of the second timestamp have changed
193 	 * when compared with the first timestamp, then we know
194 	 * our timestamp may be inconsistent with that used by
195 	 * the low-level rtc_read_alarm_internal() function.
196 	 *
197 	 * So, when the two timestamps disagree, we just loop and do
198 	 * the process again to get a fully consistent set of values.
199 	 *
200 	 * This could all instead be done in the lower level driver,
201 	 * but since more than one lower level RTC implementation needs it,
202 	 * then it's probably best best to do it here instead of there..
203 	 */
204 
205 	/* Get the "before" timestamp */
206 	err = rtc_read_time(rtc, &before);
207 	if (err < 0)
208 		return err;
209 	do {
210 		if (!first_time)
211 			memcpy(&before, &now, sizeof(struct rtc_time));
212 		first_time = 0;
213 
214 		/* get the RTC alarm values, which may be incomplete */
215 		err = rtc_read_alarm_internal(rtc, alarm);
216 		if (err)
217 			return err;
218 
219 		/* full-function RTCs won't have such missing fields */
220 		if (rtc_valid_tm(&alarm->time) == 0)
221 			return 0;
222 
223 		/* get the "after" timestamp, to detect wrapped fields */
224 		err = rtc_read_time(rtc, &now);
225 		if (err < 0)
226 			return err;
227 
228 		/* note that tm_sec is a "don't care" value here: */
229 	} while (   before.tm_min   != now.tm_min
230 		 || before.tm_hour  != now.tm_hour
231 		 || before.tm_mon   != now.tm_mon
232 		 || before.tm_year  != now.tm_year);
233 
234 	/* Fill in the missing alarm fields using the timestamp; we
235 	 * know there's at least one since alarm->time is invalid.
236 	 */
237 	if (alarm->time.tm_sec == -1)
238 		alarm->time.tm_sec = now.tm_sec;
239 	if (alarm->time.tm_min == -1)
240 		alarm->time.tm_min = now.tm_min;
241 	if (alarm->time.tm_hour == -1)
242 		alarm->time.tm_hour = now.tm_hour;
243 
244 	/* For simplicity, only support date rollover for now */
245 	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
246 		alarm->time.tm_mday = now.tm_mday;
247 		missing = day;
248 	}
249 	if ((unsigned)alarm->time.tm_mon >= 12) {
250 		alarm->time.tm_mon = now.tm_mon;
251 		if (missing == none)
252 			missing = month;
253 	}
254 	if (alarm->time.tm_year == -1) {
255 		alarm->time.tm_year = now.tm_year;
256 		if (missing == none)
257 			missing = year;
258 	}
259 
260 	/* with luck, no rollover is needed */
261 	rtc_tm_to_time(&now, &t_now);
262 	rtc_tm_to_time(&alarm->time, &t_alm);
263 	if (t_now < t_alm)
264 		goto done;
265 
266 	switch (missing) {
267 
268 	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
269 	 * that will trigger at 5am will do so at 5am Tuesday, which
270 	 * could also be in the next month or year.  This is a common
271 	 * case, especially for PCs.
272 	 */
273 	case day:
274 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
275 		t_alm += 24 * 60 * 60;
276 		rtc_time_to_tm(t_alm, &alarm->time);
277 		break;
278 
279 	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
280 	 * be next month.  An alarm matching on the 30th, 29th, or 28th
281 	 * may end up in the month after that!  Many newer PCs support
282 	 * this type of alarm.
283 	 */
284 	case month:
285 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
286 		do {
287 			if (alarm->time.tm_mon < 11)
288 				alarm->time.tm_mon++;
289 			else {
290 				alarm->time.tm_mon = 0;
291 				alarm->time.tm_year++;
292 			}
293 			days = rtc_month_days(alarm->time.tm_mon,
294 					alarm->time.tm_year);
295 		} while (days < alarm->time.tm_mday);
296 		break;
297 
298 	/* Year rollover ... easy except for leap years! */
299 	case year:
300 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
301 		do {
302 			alarm->time.tm_year++;
303 		} while (!is_leap_year(alarm->time.tm_year + 1900)
304 			&& rtc_valid_tm(&alarm->time) != 0);
305 		break;
306 
307 	default:
308 		dev_warn(&rtc->dev, "alarm rollover not handled\n");
309 	}
310 
311 done:
312 	err = rtc_valid_tm(&alarm->time);
313 
314 	if (err) {
315 		dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
316 			alarm->time.tm_year + 1900, alarm->time.tm_mon + 1,
317 			alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min,
318 			alarm->time.tm_sec);
319 	}
320 
321 	return err;
322 }
323 
324 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
325 {
326 	int err;
327 
328 	err = mutex_lock_interruptible(&rtc->ops_lock);
329 	if (err)
330 		return err;
331 	if (rtc->ops == NULL)
332 		err = -ENODEV;
333 	else if (!rtc->ops->read_alarm)
334 		err = -EINVAL;
335 	else {
336 		memset(alarm, 0, sizeof(struct rtc_wkalrm));
337 		alarm->enabled = rtc->aie_timer.enabled;
338 		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
339 	}
340 	mutex_unlock(&rtc->ops_lock);
341 
342 	return err;
343 }
344 EXPORT_SYMBOL_GPL(rtc_read_alarm);
345 
346 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
347 {
348 	struct rtc_time tm;
349 	long now, scheduled;
350 	int err;
351 
352 	err = rtc_valid_tm(&alarm->time);
353 	if (err)
354 		return err;
355 	rtc_tm_to_time(&alarm->time, &scheduled);
356 
357 	/* Make sure we're not setting alarms in the past */
358 	err = __rtc_read_time(rtc, &tm);
359 	if (err)
360 		return err;
361 	rtc_tm_to_time(&tm, &now);
362 	if (scheduled <= now)
363 		return -ETIME;
364 	/*
365 	 * XXX - We just checked to make sure the alarm time is not
366 	 * in the past, but there is still a race window where if
367 	 * the is alarm set for the next second and the second ticks
368 	 * over right here, before we set the alarm.
369 	 */
370 
371 	if (!rtc->ops)
372 		err = -ENODEV;
373 	else if (!rtc->ops->set_alarm)
374 		err = -EINVAL;
375 	else
376 		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
377 
378 	return err;
379 }
380 
381 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
382 {
383 	int err;
384 
385 	err = rtc_valid_tm(&alarm->time);
386 	if (err != 0)
387 		return err;
388 
389 	err = mutex_lock_interruptible(&rtc->ops_lock);
390 	if (err)
391 		return err;
392 	if (rtc->aie_timer.enabled)
393 		rtc_timer_remove(rtc, &rtc->aie_timer);
394 
395 	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
396 	rtc->aie_timer.period = ktime_set(0, 0);
397 	if (alarm->enabled)
398 		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
399 
400 	mutex_unlock(&rtc->ops_lock);
401 	return err;
402 }
403 EXPORT_SYMBOL_GPL(rtc_set_alarm);
404 
405 /* Called once per device from rtc_device_register */
406 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
407 {
408 	int err;
409 	struct rtc_time now;
410 
411 	err = rtc_valid_tm(&alarm->time);
412 	if (err != 0)
413 		return err;
414 
415 	err = rtc_read_time(rtc, &now);
416 	if (err)
417 		return err;
418 
419 	err = mutex_lock_interruptible(&rtc->ops_lock);
420 	if (err)
421 		return err;
422 
423 	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
424 	rtc->aie_timer.period = ktime_set(0, 0);
425 
426 	/* Alarm has to be enabled & in the futrure for us to enqueue it */
427 	if (alarm->enabled && (rtc_tm_to_ktime(now).tv64 <
428 			 rtc->aie_timer.node.expires.tv64)) {
429 
430 		rtc->aie_timer.enabled = 1;
431 		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
432 	}
433 	mutex_unlock(&rtc->ops_lock);
434 	return err;
435 }
436 EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
437 
438 
439 
440 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
441 {
442 	int err = mutex_lock_interruptible(&rtc->ops_lock);
443 	if (err)
444 		return err;
445 
446 	if (rtc->aie_timer.enabled != enabled) {
447 		if (enabled)
448 			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
449 		else
450 			rtc_timer_remove(rtc, &rtc->aie_timer);
451 	}
452 
453 	if (err)
454 		/* nothing */;
455 	else if (!rtc->ops)
456 		err = -ENODEV;
457 	else if (!rtc->ops->alarm_irq_enable)
458 		err = -EINVAL;
459 	else
460 		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
461 
462 	mutex_unlock(&rtc->ops_lock);
463 	return err;
464 }
465 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
466 
467 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
468 {
469 	int err = mutex_lock_interruptible(&rtc->ops_lock);
470 	if (err)
471 		return err;
472 
473 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
474 	if (enabled == 0 && rtc->uie_irq_active) {
475 		mutex_unlock(&rtc->ops_lock);
476 		return rtc_dev_update_irq_enable_emul(rtc, 0);
477 	}
478 #endif
479 	/* make sure we're changing state */
480 	if (rtc->uie_rtctimer.enabled == enabled)
481 		goto out;
482 
483 	if (rtc->uie_unsupported) {
484 		err = -EINVAL;
485 		goto out;
486 	}
487 
488 	if (enabled) {
489 		struct rtc_time tm;
490 		ktime_t now, onesec;
491 
492 		__rtc_read_time(rtc, &tm);
493 		onesec = ktime_set(1, 0);
494 		now = rtc_tm_to_ktime(tm);
495 		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
496 		rtc->uie_rtctimer.period = ktime_set(1, 0);
497 		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
498 	} else
499 		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
500 
501 out:
502 	mutex_unlock(&rtc->ops_lock);
503 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
504 	/*
505 	 * Enable emulation if the driver did not provide
506 	 * the update_irq_enable function pointer or if returned
507 	 * -EINVAL to signal that it has been configured without
508 	 * interrupts or that are not available at the moment.
509 	 */
510 	if (err == -EINVAL)
511 		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
512 #endif
513 	return err;
514 
515 }
516 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
517 
518 
519 /**
520  * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
521  * @rtc: pointer to the rtc device
522  *
523  * This function is called when an AIE, UIE or PIE mode interrupt
524  * has occurred (or been emulated).
525  *
526  * Triggers the registered irq_task function callback.
527  */
528 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
529 {
530 	unsigned long flags;
531 
532 	/* mark one irq of the appropriate mode */
533 	spin_lock_irqsave(&rtc->irq_lock, flags);
534 	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
535 	spin_unlock_irqrestore(&rtc->irq_lock, flags);
536 
537 	/* call the task func */
538 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
539 	if (rtc->irq_task)
540 		rtc->irq_task->func(rtc->irq_task->private_data);
541 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
542 
543 	wake_up_interruptible(&rtc->irq_queue);
544 	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
545 }
546 
547 
548 /**
549  * rtc_aie_update_irq - AIE mode rtctimer hook
550  * @private: pointer to the rtc_device
551  *
552  * This functions is called when the aie_timer expires.
553  */
554 void rtc_aie_update_irq(void *private)
555 {
556 	struct rtc_device *rtc = (struct rtc_device *)private;
557 	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
558 }
559 
560 
561 /**
562  * rtc_uie_update_irq - UIE mode rtctimer hook
563  * @private: pointer to the rtc_device
564  *
565  * This functions is called when the uie_timer expires.
566  */
567 void rtc_uie_update_irq(void *private)
568 {
569 	struct rtc_device *rtc = (struct rtc_device *)private;
570 	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
571 }
572 
573 
574 /**
575  * rtc_pie_update_irq - PIE mode hrtimer hook
576  * @timer: pointer to the pie mode hrtimer
577  *
578  * This function is used to emulate PIE mode interrupts
579  * using an hrtimer. This function is called when the periodic
580  * hrtimer expires.
581  */
582 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
583 {
584 	struct rtc_device *rtc;
585 	ktime_t period;
586 	int count;
587 	rtc = container_of(timer, struct rtc_device, pie_timer);
588 
589 	period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
590 	count = hrtimer_forward_now(timer, period);
591 
592 	rtc_handle_legacy_irq(rtc, count, RTC_PF);
593 
594 	return HRTIMER_RESTART;
595 }
596 
597 /**
598  * rtc_update_irq - Triggered when a RTC interrupt occurs.
599  * @rtc: the rtc device
600  * @num: how many irqs are being reported (usually one)
601  * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
602  * Context: any
603  */
604 void rtc_update_irq(struct rtc_device *rtc,
605 		unsigned long num, unsigned long events)
606 {
607 	if (unlikely(IS_ERR_OR_NULL(rtc)))
608 		return;
609 
610 	pm_stay_awake(rtc->dev.parent);
611 	schedule_work(&rtc->irqwork);
612 }
613 EXPORT_SYMBOL_GPL(rtc_update_irq);
614 
615 static int __rtc_match(struct device *dev, const void *data)
616 {
617 	const char *name = data;
618 
619 	if (strcmp(dev_name(dev), name) == 0)
620 		return 1;
621 	return 0;
622 }
623 
624 struct rtc_device *rtc_class_open(const char *name)
625 {
626 	struct device *dev;
627 	struct rtc_device *rtc = NULL;
628 
629 	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
630 	if (dev)
631 		rtc = to_rtc_device(dev);
632 
633 	if (rtc) {
634 		if (!try_module_get(rtc->owner)) {
635 			put_device(dev);
636 			rtc = NULL;
637 		}
638 	}
639 
640 	return rtc;
641 }
642 EXPORT_SYMBOL_GPL(rtc_class_open);
643 
644 void rtc_class_close(struct rtc_device *rtc)
645 {
646 	module_put(rtc->owner);
647 	put_device(&rtc->dev);
648 }
649 EXPORT_SYMBOL_GPL(rtc_class_close);
650 
651 int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
652 {
653 	int retval = -EBUSY;
654 
655 	if (task == NULL || task->func == NULL)
656 		return -EINVAL;
657 
658 	/* Cannot register while the char dev is in use */
659 	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
660 		return -EBUSY;
661 
662 	spin_lock_irq(&rtc->irq_task_lock);
663 	if (rtc->irq_task == NULL) {
664 		rtc->irq_task = task;
665 		retval = 0;
666 	}
667 	spin_unlock_irq(&rtc->irq_task_lock);
668 
669 	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
670 
671 	return retval;
672 }
673 EXPORT_SYMBOL_GPL(rtc_irq_register);
674 
675 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
676 {
677 	spin_lock_irq(&rtc->irq_task_lock);
678 	if (rtc->irq_task == task)
679 		rtc->irq_task = NULL;
680 	spin_unlock_irq(&rtc->irq_task_lock);
681 }
682 EXPORT_SYMBOL_GPL(rtc_irq_unregister);
683 
684 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
685 {
686 	/*
687 	 * We always cancel the timer here first, because otherwise
688 	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
689 	 * when we manage to start the timer before the callback
690 	 * returns HRTIMER_RESTART.
691 	 *
692 	 * We cannot use hrtimer_cancel() here as a running callback
693 	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
694 	 * would spin forever.
695 	 */
696 	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
697 		return -1;
698 
699 	if (enabled) {
700 		ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
701 
702 		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
703 	}
704 	return 0;
705 }
706 
707 /**
708  * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
709  * @rtc: the rtc device
710  * @task: currently registered with rtc_irq_register()
711  * @enabled: true to enable periodic IRQs
712  * Context: any
713  *
714  * Note that rtc_irq_set_freq() should previously have been used to
715  * specify the desired frequency of periodic IRQ task->func() callbacks.
716  */
717 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
718 {
719 	int err = 0;
720 	unsigned long flags;
721 
722 retry:
723 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
724 	if (rtc->irq_task != NULL && task == NULL)
725 		err = -EBUSY;
726 	else if (rtc->irq_task != task)
727 		err = -EACCES;
728 	else {
729 		if (rtc_update_hrtimer(rtc, enabled) < 0) {
730 			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
731 			cpu_relax();
732 			goto retry;
733 		}
734 		rtc->pie_enabled = enabled;
735 	}
736 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
737 	return err;
738 }
739 EXPORT_SYMBOL_GPL(rtc_irq_set_state);
740 
741 /**
742  * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
743  * @rtc: the rtc device
744  * @task: currently registered with rtc_irq_register()
745  * @freq: positive frequency with which task->func() will be called
746  * Context: any
747  *
748  * Note that rtc_irq_set_state() is used to enable or disable the
749  * periodic IRQs.
750  */
751 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
752 {
753 	int err = 0;
754 	unsigned long flags;
755 
756 	if (freq <= 0 || freq > RTC_MAX_FREQ)
757 		return -EINVAL;
758 retry:
759 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
760 	if (rtc->irq_task != NULL && task == NULL)
761 		err = -EBUSY;
762 	else if (rtc->irq_task != task)
763 		err = -EACCES;
764 	else {
765 		rtc->irq_freq = freq;
766 		if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
767 			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
768 			cpu_relax();
769 			goto retry;
770 		}
771 	}
772 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
773 	return err;
774 }
775 EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
776 
777 /**
778  * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
779  * @rtc rtc device
780  * @timer timer being added.
781  *
782  * Enqueues a timer onto the rtc devices timerqueue and sets
783  * the next alarm event appropriately.
784  *
785  * Sets the enabled bit on the added timer.
786  *
787  * Must hold ops_lock for proper serialization of timerqueue
788  */
789 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
790 {
791 	timer->enabled = 1;
792 	timerqueue_add(&rtc->timerqueue, &timer->node);
793 	if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
794 		struct rtc_wkalrm alarm;
795 		int err;
796 		alarm.time = rtc_ktime_to_tm(timer->node.expires);
797 		alarm.enabled = 1;
798 		err = __rtc_set_alarm(rtc, &alarm);
799 		if (err == -ETIME) {
800 			pm_stay_awake(rtc->dev.parent);
801 			schedule_work(&rtc->irqwork);
802 		} else if (err) {
803 			timerqueue_del(&rtc->timerqueue, &timer->node);
804 			timer->enabled = 0;
805 			return err;
806 		}
807 	}
808 	return 0;
809 }
810 
811 static void rtc_alarm_disable(struct rtc_device *rtc)
812 {
813 	if (!rtc->ops || !rtc->ops->alarm_irq_enable)
814 		return;
815 
816 	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
817 }
818 
819 /**
820  * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
821  * @rtc rtc device
822  * @timer timer being removed.
823  *
824  * Removes a timer onto the rtc devices timerqueue and sets
825  * the next alarm event appropriately.
826  *
827  * Clears the enabled bit on the removed timer.
828  *
829  * Must hold ops_lock for proper serialization of timerqueue
830  */
831 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
832 {
833 	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
834 	timerqueue_del(&rtc->timerqueue, &timer->node);
835 	timer->enabled = 0;
836 	if (next == &timer->node) {
837 		struct rtc_wkalrm alarm;
838 		int err;
839 		next = timerqueue_getnext(&rtc->timerqueue);
840 		if (!next) {
841 			rtc_alarm_disable(rtc);
842 			return;
843 		}
844 		alarm.time = rtc_ktime_to_tm(next->expires);
845 		alarm.enabled = 1;
846 		err = __rtc_set_alarm(rtc, &alarm);
847 		if (err == -ETIME) {
848 			pm_stay_awake(rtc->dev.parent);
849 			schedule_work(&rtc->irqwork);
850 		}
851 	}
852 }
853 
854 /**
855  * rtc_timer_do_work - Expires rtc timers
856  * @rtc rtc device
857  * @timer timer being removed.
858  *
859  * Expires rtc timers. Reprograms next alarm event if needed.
860  * Called via worktask.
861  *
862  * Serializes access to timerqueue via ops_lock mutex
863  */
864 void rtc_timer_do_work(struct work_struct *work)
865 {
866 	struct rtc_timer *timer;
867 	struct timerqueue_node *next;
868 	ktime_t now;
869 	struct rtc_time tm;
870 
871 	struct rtc_device *rtc =
872 		container_of(work, struct rtc_device, irqwork);
873 
874 	mutex_lock(&rtc->ops_lock);
875 again:
876 	__rtc_read_time(rtc, &tm);
877 	now = rtc_tm_to_ktime(tm);
878 	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
879 		if (next->expires.tv64 > now.tv64)
880 			break;
881 
882 		/* expire timer */
883 		timer = container_of(next, struct rtc_timer, node);
884 		timerqueue_del(&rtc->timerqueue, &timer->node);
885 		timer->enabled = 0;
886 		if (timer->task.func)
887 			timer->task.func(timer->task.private_data);
888 
889 		/* Re-add/fwd periodic timers */
890 		if (ktime_to_ns(timer->period)) {
891 			timer->node.expires = ktime_add(timer->node.expires,
892 							timer->period);
893 			timer->enabled = 1;
894 			timerqueue_add(&rtc->timerqueue, &timer->node);
895 		}
896 	}
897 
898 	/* Set next alarm */
899 	if (next) {
900 		struct rtc_wkalrm alarm;
901 		int err;
902 		int retry = 3;
903 
904 		alarm.time = rtc_ktime_to_tm(next->expires);
905 		alarm.enabled = 1;
906 reprogram:
907 		err = __rtc_set_alarm(rtc, &alarm);
908 		if (err == -ETIME)
909 			goto again;
910 		else if (err) {
911 			if (retry-- > 0)
912 				goto reprogram;
913 
914 			timer = container_of(next, struct rtc_timer, node);
915 			timerqueue_del(&rtc->timerqueue, &timer->node);
916 			timer->enabled = 0;
917 			dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
918 			goto again;
919 		}
920 	} else
921 		rtc_alarm_disable(rtc);
922 
923 	pm_relax(rtc->dev.parent);
924 	mutex_unlock(&rtc->ops_lock);
925 }
926 
927 
928 /* rtc_timer_init - Initializes an rtc_timer
929  * @timer: timer to be intiialized
930  * @f: function pointer to be called when timer fires
931  * @data: private data passed to function pointer
932  *
933  * Kernel interface to initializing an rtc_timer.
934  */
935 void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
936 {
937 	timerqueue_init(&timer->node);
938 	timer->enabled = 0;
939 	timer->task.func = f;
940 	timer->task.private_data = data;
941 }
942 
943 /* rtc_timer_start - Sets an rtc_timer to fire in the future
944  * @ rtc: rtc device to be used
945  * @ timer: timer being set
946  * @ expires: time at which to expire the timer
947  * @ period: period that the timer will recur
948  *
949  * Kernel interface to set an rtc_timer
950  */
951 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
952 			ktime_t expires, ktime_t period)
953 {
954 	int ret = 0;
955 	mutex_lock(&rtc->ops_lock);
956 	if (timer->enabled)
957 		rtc_timer_remove(rtc, timer);
958 
959 	timer->node.expires = expires;
960 	timer->period = period;
961 
962 	ret = rtc_timer_enqueue(rtc, timer);
963 
964 	mutex_unlock(&rtc->ops_lock);
965 	return ret;
966 }
967 
968 /* rtc_timer_cancel - Stops an rtc_timer
969  * @ rtc: rtc device to be used
970  * @ timer: timer being set
971  *
972  * Kernel interface to cancel an rtc_timer
973  */
974 int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
975 {
976 	int ret = 0;
977 	mutex_lock(&rtc->ops_lock);
978 	if (timer->enabled)
979 		rtc_timer_remove(rtc, timer);
980 	mutex_unlock(&rtc->ops_lock);
981 	return ret;
982 }
983 
984 
985