1 /* 2 * RTC subsystem, interface functions 3 * 4 * Copyright (C) 2005 Tower Technologies 5 * Author: Alessandro Zummo <a.zummo@towertech.it> 6 * 7 * based on arch/arm/common/rtctime.c 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 14 #include <linux/rtc.h> 15 #include <linux/sched.h> 16 #include <linux/module.h> 17 #include <linux/log2.h> 18 #include <linux/workqueue.h> 19 20 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer); 21 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer); 22 23 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm) 24 { 25 int err; 26 if (!rtc->ops) 27 err = -ENODEV; 28 else if (!rtc->ops->read_time) 29 err = -EINVAL; 30 else { 31 memset(tm, 0, sizeof(struct rtc_time)); 32 err = rtc->ops->read_time(rtc->dev.parent, tm); 33 if (err < 0) { 34 dev_err(&rtc->dev, "read_time: fail to read\n"); 35 return err; 36 } 37 38 err = rtc_valid_tm(tm); 39 if (err < 0) 40 dev_err(&rtc->dev, "read_time: rtc_time isn't valid\n"); 41 } 42 return err; 43 } 44 45 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm) 46 { 47 int err; 48 49 err = mutex_lock_interruptible(&rtc->ops_lock); 50 if (err) 51 return err; 52 53 err = __rtc_read_time(rtc, tm); 54 mutex_unlock(&rtc->ops_lock); 55 return err; 56 } 57 EXPORT_SYMBOL_GPL(rtc_read_time); 58 59 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm) 60 { 61 int err; 62 63 err = rtc_valid_tm(tm); 64 if (err != 0) 65 return err; 66 67 err = mutex_lock_interruptible(&rtc->ops_lock); 68 if (err) 69 return err; 70 71 if (!rtc->ops) 72 err = -ENODEV; 73 else if (rtc->ops->set_time) 74 err = rtc->ops->set_time(rtc->dev.parent, tm); 75 else if (rtc->ops->set_mmss) { 76 unsigned long secs; 77 err = rtc_tm_to_time(tm, &secs); 78 if (err == 0) 79 err = rtc->ops->set_mmss(rtc->dev.parent, secs); 80 } else 81 err = -EINVAL; 82 83 pm_stay_awake(rtc->dev.parent); 84 mutex_unlock(&rtc->ops_lock); 85 /* A timer might have just expired */ 86 schedule_work(&rtc->irqwork); 87 return err; 88 } 89 EXPORT_SYMBOL_GPL(rtc_set_time); 90 91 int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs) 92 { 93 int err; 94 95 err = mutex_lock_interruptible(&rtc->ops_lock); 96 if (err) 97 return err; 98 99 if (!rtc->ops) 100 err = -ENODEV; 101 else if (rtc->ops->set_mmss) 102 err = rtc->ops->set_mmss(rtc->dev.parent, secs); 103 else if (rtc->ops->read_time && rtc->ops->set_time) { 104 struct rtc_time new, old; 105 106 err = rtc->ops->read_time(rtc->dev.parent, &old); 107 if (err == 0) { 108 rtc_time_to_tm(secs, &new); 109 110 /* 111 * avoid writing when we're going to change the day of 112 * the month. We will retry in the next minute. This 113 * basically means that if the RTC must not drift 114 * by more than 1 minute in 11 minutes. 115 */ 116 if (!((old.tm_hour == 23 && old.tm_min == 59) || 117 (new.tm_hour == 23 && new.tm_min == 59))) 118 err = rtc->ops->set_time(rtc->dev.parent, 119 &new); 120 } 121 } else { 122 err = -EINVAL; 123 } 124 125 pm_stay_awake(rtc->dev.parent); 126 mutex_unlock(&rtc->ops_lock); 127 /* A timer might have just expired */ 128 schedule_work(&rtc->irqwork); 129 130 return err; 131 } 132 EXPORT_SYMBOL_GPL(rtc_set_mmss); 133 134 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 135 { 136 int err; 137 138 err = mutex_lock_interruptible(&rtc->ops_lock); 139 if (err) 140 return err; 141 142 if (rtc->ops == NULL) 143 err = -ENODEV; 144 else if (!rtc->ops->read_alarm) 145 err = -EINVAL; 146 else { 147 memset(alarm, 0, sizeof(struct rtc_wkalrm)); 148 err = rtc->ops->read_alarm(rtc->dev.parent, alarm); 149 } 150 151 mutex_unlock(&rtc->ops_lock); 152 return err; 153 } 154 155 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 156 { 157 int err; 158 struct rtc_time before, now; 159 int first_time = 1; 160 unsigned long t_now, t_alm; 161 enum { none, day, month, year } missing = none; 162 unsigned days; 163 164 /* The lower level RTC driver may return -1 in some fields, 165 * creating invalid alarm->time values, for reasons like: 166 * 167 * - The hardware may not be capable of filling them in; 168 * many alarms match only on time-of-day fields, not 169 * day/month/year calendar data. 170 * 171 * - Some hardware uses illegal values as "wildcard" match 172 * values, which non-Linux firmware (like a BIOS) may try 173 * to set up as e.g. "alarm 15 minutes after each hour". 174 * Linux uses only oneshot alarms. 175 * 176 * When we see that here, we deal with it by using values from 177 * a current RTC timestamp for any missing (-1) values. The 178 * RTC driver prevents "periodic alarm" modes. 179 * 180 * But this can be racey, because some fields of the RTC timestamp 181 * may have wrapped in the interval since we read the RTC alarm, 182 * which would lead to us inserting inconsistent values in place 183 * of the -1 fields. 184 * 185 * Reading the alarm and timestamp in the reverse sequence 186 * would have the same race condition, and not solve the issue. 187 * 188 * So, we must first read the RTC timestamp, 189 * then read the RTC alarm value, 190 * and then read a second RTC timestamp. 191 * 192 * If any fields of the second timestamp have changed 193 * when compared with the first timestamp, then we know 194 * our timestamp may be inconsistent with that used by 195 * the low-level rtc_read_alarm_internal() function. 196 * 197 * So, when the two timestamps disagree, we just loop and do 198 * the process again to get a fully consistent set of values. 199 * 200 * This could all instead be done in the lower level driver, 201 * but since more than one lower level RTC implementation needs it, 202 * then it's probably best best to do it here instead of there.. 203 */ 204 205 /* Get the "before" timestamp */ 206 err = rtc_read_time(rtc, &before); 207 if (err < 0) 208 return err; 209 do { 210 if (!first_time) 211 memcpy(&before, &now, sizeof(struct rtc_time)); 212 first_time = 0; 213 214 /* get the RTC alarm values, which may be incomplete */ 215 err = rtc_read_alarm_internal(rtc, alarm); 216 if (err) 217 return err; 218 219 /* full-function RTCs won't have such missing fields */ 220 if (rtc_valid_tm(&alarm->time) == 0) 221 return 0; 222 223 /* get the "after" timestamp, to detect wrapped fields */ 224 err = rtc_read_time(rtc, &now); 225 if (err < 0) 226 return err; 227 228 /* note that tm_sec is a "don't care" value here: */ 229 } while ( before.tm_min != now.tm_min 230 || before.tm_hour != now.tm_hour 231 || before.tm_mon != now.tm_mon 232 || before.tm_year != now.tm_year); 233 234 /* Fill in the missing alarm fields using the timestamp; we 235 * know there's at least one since alarm->time is invalid. 236 */ 237 if (alarm->time.tm_sec == -1) 238 alarm->time.tm_sec = now.tm_sec; 239 if (alarm->time.tm_min == -1) 240 alarm->time.tm_min = now.tm_min; 241 if (alarm->time.tm_hour == -1) 242 alarm->time.tm_hour = now.tm_hour; 243 244 /* For simplicity, only support date rollover for now */ 245 if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) { 246 alarm->time.tm_mday = now.tm_mday; 247 missing = day; 248 } 249 if ((unsigned)alarm->time.tm_mon >= 12) { 250 alarm->time.tm_mon = now.tm_mon; 251 if (missing == none) 252 missing = month; 253 } 254 if (alarm->time.tm_year == -1) { 255 alarm->time.tm_year = now.tm_year; 256 if (missing == none) 257 missing = year; 258 } 259 260 /* with luck, no rollover is needed */ 261 rtc_tm_to_time(&now, &t_now); 262 rtc_tm_to_time(&alarm->time, &t_alm); 263 if (t_now < t_alm) 264 goto done; 265 266 switch (missing) { 267 268 /* 24 hour rollover ... if it's now 10am Monday, an alarm that 269 * that will trigger at 5am will do so at 5am Tuesday, which 270 * could also be in the next month or year. This is a common 271 * case, especially for PCs. 272 */ 273 case day: 274 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day"); 275 t_alm += 24 * 60 * 60; 276 rtc_time_to_tm(t_alm, &alarm->time); 277 break; 278 279 /* Month rollover ... if it's the 31th, an alarm on the 3rd will 280 * be next month. An alarm matching on the 30th, 29th, or 28th 281 * may end up in the month after that! Many newer PCs support 282 * this type of alarm. 283 */ 284 case month: 285 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month"); 286 do { 287 if (alarm->time.tm_mon < 11) 288 alarm->time.tm_mon++; 289 else { 290 alarm->time.tm_mon = 0; 291 alarm->time.tm_year++; 292 } 293 days = rtc_month_days(alarm->time.tm_mon, 294 alarm->time.tm_year); 295 } while (days < alarm->time.tm_mday); 296 break; 297 298 /* Year rollover ... easy except for leap years! */ 299 case year: 300 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year"); 301 do { 302 alarm->time.tm_year++; 303 } while (!is_leap_year(alarm->time.tm_year + 1900) 304 && rtc_valid_tm(&alarm->time) != 0); 305 break; 306 307 default: 308 dev_warn(&rtc->dev, "alarm rollover not handled\n"); 309 } 310 311 done: 312 err = rtc_valid_tm(&alarm->time); 313 314 if (err) { 315 dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n", 316 alarm->time.tm_year + 1900, alarm->time.tm_mon + 1, 317 alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min, 318 alarm->time.tm_sec); 319 } 320 321 return err; 322 } 323 324 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 325 { 326 int err; 327 328 err = mutex_lock_interruptible(&rtc->ops_lock); 329 if (err) 330 return err; 331 if (rtc->ops == NULL) 332 err = -ENODEV; 333 else if (!rtc->ops->read_alarm) 334 err = -EINVAL; 335 else { 336 memset(alarm, 0, sizeof(struct rtc_wkalrm)); 337 alarm->enabled = rtc->aie_timer.enabled; 338 alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires); 339 } 340 mutex_unlock(&rtc->ops_lock); 341 342 return err; 343 } 344 EXPORT_SYMBOL_GPL(rtc_read_alarm); 345 346 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 347 { 348 struct rtc_time tm; 349 long now, scheduled; 350 int err; 351 352 err = rtc_valid_tm(&alarm->time); 353 if (err) 354 return err; 355 rtc_tm_to_time(&alarm->time, &scheduled); 356 357 /* Make sure we're not setting alarms in the past */ 358 err = __rtc_read_time(rtc, &tm); 359 if (err) 360 return err; 361 rtc_tm_to_time(&tm, &now); 362 if (scheduled <= now) 363 return -ETIME; 364 /* 365 * XXX - We just checked to make sure the alarm time is not 366 * in the past, but there is still a race window where if 367 * the is alarm set for the next second and the second ticks 368 * over right here, before we set the alarm. 369 */ 370 371 if (!rtc->ops) 372 err = -ENODEV; 373 else if (!rtc->ops->set_alarm) 374 err = -EINVAL; 375 else 376 err = rtc->ops->set_alarm(rtc->dev.parent, alarm); 377 378 return err; 379 } 380 381 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 382 { 383 int err; 384 385 err = rtc_valid_tm(&alarm->time); 386 if (err != 0) 387 return err; 388 389 err = mutex_lock_interruptible(&rtc->ops_lock); 390 if (err) 391 return err; 392 if (rtc->aie_timer.enabled) 393 rtc_timer_remove(rtc, &rtc->aie_timer); 394 395 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time); 396 rtc->aie_timer.period = ktime_set(0, 0); 397 if (alarm->enabled) 398 err = rtc_timer_enqueue(rtc, &rtc->aie_timer); 399 400 mutex_unlock(&rtc->ops_lock); 401 return err; 402 } 403 EXPORT_SYMBOL_GPL(rtc_set_alarm); 404 405 /* Called once per device from rtc_device_register */ 406 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 407 { 408 int err; 409 struct rtc_time now; 410 411 err = rtc_valid_tm(&alarm->time); 412 if (err != 0) 413 return err; 414 415 err = rtc_read_time(rtc, &now); 416 if (err) 417 return err; 418 419 err = mutex_lock_interruptible(&rtc->ops_lock); 420 if (err) 421 return err; 422 423 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time); 424 rtc->aie_timer.period = ktime_set(0, 0); 425 426 /* Alarm has to be enabled & in the futrure for us to enqueue it */ 427 if (alarm->enabled && (rtc_tm_to_ktime(now).tv64 < 428 rtc->aie_timer.node.expires.tv64)) { 429 430 rtc->aie_timer.enabled = 1; 431 timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node); 432 } 433 mutex_unlock(&rtc->ops_lock); 434 return err; 435 } 436 EXPORT_SYMBOL_GPL(rtc_initialize_alarm); 437 438 439 440 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled) 441 { 442 int err = mutex_lock_interruptible(&rtc->ops_lock); 443 if (err) 444 return err; 445 446 if (rtc->aie_timer.enabled != enabled) { 447 if (enabled) 448 err = rtc_timer_enqueue(rtc, &rtc->aie_timer); 449 else 450 rtc_timer_remove(rtc, &rtc->aie_timer); 451 } 452 453 if (err) 454 /* nothing */; 455 else if (!rtc->ops) 456 err = -ENODEV; 457 else if (!rtc->ops->alarm_irq_enable) 458 err = -EINVAL; 459 else 460 err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled); 461 462 mutex_unlock(&rtc->ops_lock); 463 return err; 464 } 465 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable); 466 467 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled) 468 { 469 int err = mutex_lock_interruptible(&rtc->ops_lock); 470 if (err) 471 return err; 472 473 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL 474 if (enabled == 0 && rtc->uie_irq_active) { 475 mutex_unlock(&rtc->ops_lock); 476 return rtc_dev_update_irq_enable_emul(rtc, 0); 477 } 478 #endif 479 /* make sure we're changing state */ 480 if (rtc->uie_rtctimer.enabled == enabled) 481 goto out; 482 483 if (rtc->uie_unsupported) { 484 err = -EINVAL; 485 goto out; 486 } 487 488 if (enabled) { 489 struct rtc_time tm; 490 ktime_t now, onesec; 491 492 __rtc_read_time(rtc, &tm); 493 onesec = ktime_set(1, 0); 494 now = rtc_tm_to_ktime(tm); 495 rtc->uie_rtctimer.node.expires = ktime_add(now, onesec); 496 rtc->uie_rtctimer.period = ktime_set(1, 0); 497 err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer); 498 } else 499 rtc_timer_remove(rtc, &rtc->uie_rtctimer); 500 501 out: 502 mutex_unlock(&rtc->ops_lock); 503 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL 504 /* 505 * Enable emulation if the driver did not provide 506 * the update_irq_enable function pointer or if returned 507 * -EINVAL to signal that it has been configured without 508 * interrupts or that are not available at the moment. 509 */ 510 if (err == -EINVAL) 511 err = rtc_dev_update_irq_enable_emul(rtc, enabled); 512 #endif 513 return err; 514 515 } 516 EXPORT_SYMBOL_GPL(rtc_update_irq_enable); 517 518 519 /** 520 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook 521 * @rtc: pointer to the rtc device 522 * 523 * This function is called when an AIE, UIE or PIE mode interrupt 524 * has occurred (or been emulated). 525 * 526 * Triggers the registered irq_task function callback. 527 */ 528 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode) 529 { 530 unsigned long flags; 531 532 /* mark one irq of the appropriate mode */ 533 spin_lock_irqsave(&rtc->irq_lock, flags); 534 rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode); 535 spin_unlock_irqrestore(&rtc->irq_lock, flags); 536 537 /* call the task func */ 538 spin_lock_irqsave(&rtc->irq_task_lock, flags); 539 if (rtc->irq_task) 540 rtc->irq_task->func(rtc->irq_task->private_data); 541 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 542 543 wake_up_interruptible(&rtc->irq_queue); 544 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN); 545 } 546 547 548 /** 549 * rtc_aie_update_irq - AIE mode rtctimer hook 550 * @private: pointer to the rtc_device 551 * 552 * This functions is called when the aie_timer expires. 553 */ 554 void rtc_aie_update_irq(void *private) 555 { 556 struct rtc_device *rtc = (struct rtc_device *)private; 557 rtc_handle_legacy_irq(rtc, 1, RTC_AF); 558 } 559 560 561 /** 562 * rtc_uie_update_irq - UIE mode rtctimer hook 563 * @private: pointer to the rtc_device 564 * 565 * This functions is called when the uie_timer expires. 566 */ 567 void rtc_uie_update_irq(void *private) 568 { 569 struct rtc_device *rtc = (struct rtc_device *)private; 570 rtc_handle_legacy_irq(rtc, 1, RTC_UF); 571 } 572 573 574 /** 575 * rtc_pie_update_irq - PIE mode hrtimer hook 576 * @timer: pointer to the pie mode hrtimer 577 * 578 * This function is used to emulate PIE mode interrupts 579 * using an hrtimer. This function is called when the periodic 580 * hrtimer expires. 581 */ 582 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer) 583 { 584 struct rtc_device *rtc; 585 ktime_t period; 586 int count; 587 rtc = container_of(timer, struct rtc_device, pie_timer); 588 589 period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq); 590 count = hrtimer_forward_now(timer, period); 591 592 rtc_handle_legacy_irq(rtc, count, RTC_PF); 593 594 return HRTIMER_RESTART; 595 } 596 597 /** 598 * rtc_update_irq - Triggered when a RTC interrupt occurs. 599 * @rtc: the rtc device 600 * @num: how many irqs are being reported (usually one) 601 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF 602 * Context: any 603 */ 604 void rtc_update_irq(struct rtc_device *rtc, 605 unsigned long num, unsigned long events) 606 { 607 if (unlikely(IS_ERR_OR_NULL(rtc))) 608 return; 609 610 pm_stay_awake(rtc->dev.parent); 611 schedule_work(&rtc->irqwork); 612 } 613 EXPORT_SYMBOL_GPL(rtc_update_irq); 614 615 static int __rtc_match(struct device *dev, const void *data) 616 { 617 const char *name = data; 618 619 if (strcmp(dev_name(dev), name) == 0) 620 return 1; 621 return 0; 622 } 623 624 struct rtc_device *rtc_class_open(const char *name) 625 { 626 struct device *dev; 627 struct rtc_device *rtc = NULL; 628 629 dev = class_find_device(rtc_class, NULL, name, __rtc_match); 630 if (dev) 631 rtc = to_rtc_device(dev); 632 633 if (rtc) { 634 if (!try_module_get(rtc->owner)) { 635 put_device(dev); 636 rtc = NULL; 637 } 638 } 639 640 return rtc; 641 } 642 EXPORT_SYMBOL_GPL(rtc_class_open); 643 644 void rtc_class_close(struct rtc_device *rtc) 645 { 646 module_put(rtc->owner); 647 put_device(&rtc->dev); 648 } 649 EXPORT_SYMBOL_GPL(rtc_class_close); 650 651 int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task) 652 { 653 int retval = -EBUSY; 654 655 if (task == NULL || task->func == NULL) 656 return -EINVAL; 657 658 /* Cannot register while the char dev is in use */ 659 if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags)) 660 return -EBUSY; 661 662 spin_lock_irq(&rtc->irq_task_lock); 663 if (rtc->irq_task == NULL) { 664 rtc->irq_task = task; 665 retval = 0; 666 } 667 spin_unlock_irq(&rtc->irq_task_lock); 668 669 clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags); 670 671 return retval; 672 } 673 EXPORT_SYMBOL_GPL(rtc_irq_register); 674 675 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task) 676 { 677 spin_lock_irq(&rtc->irq_task_lock); 678 if (rtc->irq_task == task) 679 rtc->irq_task = NULL; 680 spin_unlock_irq(&rtc->irq_task_lock); 681 } 682 EXPORT_SYMBOL_GPL(rtc_irq_unregister); 683 684 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled) 685 { 686 /* 687 * We always cancel the timer here first, because otherwise 688 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK); 689 * when we manage to start the timer before the callback 690 * returns HRTIMER_RESTART. 691 * 692 * We cannot use hrtimer_cancel() here as a running callback 693 * could be blocked on rtc->irq_task_lock and hrtimer_cancel() 694 * would spin forever. 695 */ 696 if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0) 697 return -1; 698 699 if (enabled) { 700 ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq); 701 702 hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL); 703 } 704 return 0; 705 } 706 707 /** 708 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs 709 * @rtc: the rtc device 710 * @task: currently registered with rtc_irq_register() 711 * @enabled: true to enable periodic IRQs 712 * Context: any 713 * 714 * Note that rtc_irq_set_freq() should previously have been used to 715 * specify the desired frequency of periodic IRQ task->func() callbacks. 716 */ 717 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled) 718 { 719 int err = 0; 720 unsigned long flags; 721 722 retry: 723 spin_lock_irqsave(&rtc->irq_task_lock, flags); 724 if (rtc->irq_task != NULL && task == NULL) 725 err = -EBUSY; 726 else if (rtc->irq_task != task) 727 err = -EACCES; 728 else { 729 if (rtc_update_hrtimer(rtc, enabled) < 0) { 730 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 731 cpu_relax(); 732 goto retry; 733 } 734 rtc->pie_enabled = enabled; 735 } 736 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 737 return err; 738 } 739 EXPORT_SYMBOL_GPL(rtc_irq_set_state); 740 741 /** 742 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ 743 * @rtc: the rtc device 744 * @task: currently registered with rtc_irq_register() 745 * @freq: positive frequency with which task->func() will be called 746 * Context: any 747 * 748 * Note that rtc_irq_set_state() is used to enable or disable the 749 * periodic IRQs. 750 */ 751 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq) 752 { 753 int err = 0; 754 unsigned long flags; 755 756 if (freq <= 0 || freq > RTC_MAX_FREQ) 757 return -EINVAL; 758 retry: 759 spin_lock_irqsave(&rtc->irq_task_lock, flags); 760 if (rtc->irq_task != NULL && task == NULL) 761 err = -EBUSY; 762 else if (rtc->irq_task != task) 763 err = -EACCES; 764 else { 765 rtc->irq_freq = freq; 766 if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) { 767 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 768 cpu_relax(); 769 goto retry; 770 } 771 } 772 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 773 return err; 774 } 775 EXPORT_SYMBOL_GPL(rtc_irq_set_freq); 776 777 /** 778 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue 779 * @rtc rtc device 780 * @timer timer being added. 781 * 782 * Enqueues a timer onto the rtc devices timerqueue and sets 783 * the next alarm event appropriately. 784 * 785 * Sets the enabled bit on the added timer. 786 * 787 * Must hold ops_lock for proper serialization of timerqueue 788 */ 789 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer) 790 { 791 timer->enabled = 1; 792 timerqueue_add(&rtc->timerqueue, &timer->node); 793 if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) { 794 struct rtc_wkalrm alarm; 795 int err; 796 alarm.time = rtc_ktime_to_tm(timer->node.expires); 797 alarm.enabled = 1; 798 err = __rtc_set_alarm(rtc, &alarm); 799 if (err == -ETIME) { 800 pm_stay_awake(rtc->dev.parent); 801 schedule_work(&rtc->irqwork); 802 } else if (err) { 803 timerqueue_del(&rtc->timerqueue, &timer->node); 804 timer->enabled = 0; 805 return err; 806 } 807 } 808 return 0; 809 } 810 811 static void rtc_alarm_disable(struct rtc_device *rtc) 812 { 813 if (!rtc->ops || !rtc->ops->alarm_irq_enable) 814 return; 815 816 rtc->ops->alarm_irq_enable(rtc->dev.parent, false); 817 } 818 819 /** 820 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue 821 * @rtc rtc device 822 * @timer timer being removed. 823 * 824 * Removes a timer onto the rtc devices timerqueue and sets 825 * the next alarm event appropriately. 826 * 827 * Clears the enabled bit on the removed timer. 828 * 829 * Must hold ops_lock for proper serialization of timerqueue 830 */ 831 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer) 832 { 833 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue); 834 timerqueue_del(&rtc->timerqueue, &timer->node); 835 timer->enabled = 0; 836 if (next == &timer->node) { 837 struct rtc_wkalrm alarm; 838 int err; 839 next = timerqueue_getnext(&rtc->timerqueue); 840 if (!next) { 841 rtc_alarm_disable(rtc); 842 return; 843 } 844 alarm.time = rtc_ktime_to_tm(next->expires); 845 alarm.enabled = 1; 846 err = __rtc_set_alarm(rtc, &alarm); 847 if (err == -ETIME) { 848 pm_stay_awake(rtc->dev.parent); 849 schedule_work(&rtc->irqwork); 850 } 851 } 852 } 853 854 /** 855 * rtc_timer_do_work - Expires rtc timers 856 * @rtc rtc device 857 * @timer timer being removed. 858 * 859 * Expires rtc timers. Reprograms next alarm event if needed. 860 * Called via worktask. 861 * 862 * Serializes access to timerqueue via ops_lock mutex 863 */ 864 void rtc_timer_do_work(struct work_struct *work) 865 { 866 struct rtc_timer *timer; 867 struct timerqueue_node *next; 868 ktime_t now; 869 struct rtc_time tm; 870 871 struct rtc_device *rtc = 872 container_of(work, struct rtc_device, irqwork); 873 874 mutex_lock(&rtc->ops_lock); 875 again: 876 __rtc_read_time(rtc, &tm); 877 now = rtc_tm_to_ktime(tm); 878 while ((next = timerqueue_getnext(&rtc->timerqueue))) { 879 if (next->expires.tv64 > now.tv64) 880 break; 881 882 /* expire timer */ 883 timer = container_of(next, struct rtc_timer, node); 884 timerqueue_del(&rtc->timerqueue, &timer->node); 885 timer->enabled = 0; 886 if (timer->task.func) 887 timer->task.func(timer->task.private_data); 888 889 /* Re-add/fwd periodic timers */ 890 if (ktime_to_ns(timer->period)) { 891 timer->node.expires = ktime_add(timer->node.expires, 892 timer->period); 893 timer->enabled = 1; 894 timerqueue_add(&rtc->timerqueue, &timer->node); 895 } 896 } 897 898 /* Set next alarm */ 899 if (next) { 900 struct rtc_wkalrm alarm; 901 int err; 902 int retry = 3; 903 904 alarm.time = rtc_ktime_to_tm(next->expires); 905 alarm.enabled = 1; 906 reprogram: 907 err = __rtc_set_alarm(rtc, &alarm); 908 if (err == -ETIME) 909 goto again; 910 else if (err) { 911 if (retry-- > 0) 912 goto reprogram; 913 914 timer = container_of(next, struct rtc_timer, node); 915 timerqueue_del(&rtc->timerqueue, &timer->node); 916 timer->enabled = 0; 917 dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err); 918 goto again; 919 } 920 } else 921 rtc_alarm_disable(rtc); 922 923 pm_relax(rtc->dev.parent); 924 mutex_unlock(&rtc->ops_lock); 925 } 926 927 928 /* rtc_timer_init - Initializes an rtc_timer 929 * @timer: timer to be intiialized 930 * @f: function pointer to be called when timer fires 931 * @data: private data passed to function pointer 932 * 933 * Kernel interface to initializing an rtc_timer. 934 */ 935 void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data) 936 { 937 timerqueue_init(&timer->node); 938 timer->enabled = 0; 939 timer->task.func = f; 940 timer->task.private_data = data; 941 } 942 943 /* rtc_timer_start - Sets an rtc_timer to fire in the future 944 * @ rtc: rtc device to be used 945 * @ timer: timer being set 946 * @ expires: time at which to expire the timer 947 * @ period: period that the timer will recur 948 * 949 * Kernel interface to set an rtc_timer 950 */ 951 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer, 952 ktime_t expires, ktime_t period) 953 { 954 int ret = 0; 955 mutex_lock(&rtc->ops_lock); 956 if (timer->enabled) 957 rtc_timer_remove(rtc, timer); 958 959 timer->node.expires = expires; 960 timer->period = period; 961 962 ret = rtc_timer_enqueue(rtc, timer); 963 964 mutex_unlock(&rtc->ops_lock); 965 return ret; 966 } 967 968 /* rtc_timer_cancel - Stops an rtc_timer 969 * @ rtc: rtc device to be used 970 * @ timer: timer being set 971 * 972 * Kernel interface to cancel an rtc_timer 973 */ 974 int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer) 975 { 976 int ret = 0; 977 mutex_lock(&rtc->ops_lock); 978 if (timer->enabled) 979 rtc_timer_remove(rtc, timer); 980 mutex_unlock(&rtc->ops_lock); 981 return ret; 982 } 983 984 985