xref: /openbmc/linux/drivers/rtc/interface.c (revision bbccf83f)
1 /*
2  * RTC subsystem, interface functions
3  *
4  * Copyright (C) 2005 Tower Technologies
5  * Author: Alessandro Zummo <a.zummo@towertech.it>
6  *
7  * based on arch/arm/common/rtctime.c
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12 */
13 
14 #include <linux/rtc.h>
15 #include <linux/log2.h>
16 
17 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
18 {
19 	int err;
20 
21 	err = mutex_lock_interruptible(&rtc->ops_lock);
22 	if (err)
23 		return err;
24 
25 	if (!rtc->ops)
26 		err = -ENODEV;
27 	else if (!rtc->ops->read_time)
28 		err = -EINVAL;
29 	else {
30 		memset(tm, 0, sizeof(struct rtc_time));
31 		err = rtc->ops->read_time(rtc->dev.parent, tm);
32 	}
33 
34 	mutex_unlock(&rtc->ops_lock);
35 	return err;
36 }
37 EXPORT_SYMBOL_GPL(rtc_read_time);
38 
39 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
40 {
41 	int err;
42 
43 	err = rtc_valid_tm(tm);
44 	if (err != 0)
45 		return err;
46 
47 	err = mutex_lock_interruptible(&rtc->ops_lock);
48 	if (err)
49 		return err;
50 
51 	if (!rtc->ops)
52 		err = -ENODEV;
53 	else if (rtc->ops->set_time)
54 		err = rtc->ops->set_time(rtc->dev.parent, tm);
55 	else if (rtc->ops->set_mmss) {
56 		unsigned long secs;
57 		err = rtc_tm_to_time(tm, &secs);
58 		if (err == 0)
59 			err = rtc->ops->set_mmss(rtc->dev.parent, secs);
60 	} else
61 		err = -EINVAL;
62 
63 	mutex_unlock(&rtc->ops_lock);
64 	return err;
65 }
66 EXPORT_SYMBOL_GPL(rtc_set_time);
67 
68 int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
69 {
70 	int err;
71 
72 	err = mutex_lock_interruptible(&rtc->ops_lock);
73 	if (err)
74 		return err;
75 
76 	if (!rtc->ops)
77 		err = -ENODEV;
78 	else if (rtc->ops->set_mmss)
79 		err = rtc->ops->set_mmss(rtc->dev.parent, secs);
80 	else if (rtc->ops->read_time && rtc->ops->set_time) {
81 		struct rtc_time new, old;
82 
83 		err = rtc->ops->read_time(rtc->dev.parent, &old);
84 		if (err == 0) {
85 			rtc_time_to_tm(secs, &new);
86 
87 			/*
88 			 * avoid writing when we're going to change the day of
89 			 * the month. We will retry in the next minute. This
90 			 * basically means that if the RTC must not drift
91 			 * by more than 1 minute in 11 minutes.
92 			 */
93 			if (!((old.tm_hour == 23 && old.tm_min == 59) ||
94 				(new.tm_hour == 23 && new.tm_min == 59)))
95 				err = rtc->ops->set_time(rtc->dev.parent,
96 						&new);
97 		}
98 	}
99 	else
100 		err = -EINVAL;
101 
102 	mutex_unlock(&rtc->ops_lock);
103 
104 	return err;
105 }
106 EXPORT_SYMBOL_GPL(rtc_set_mmss);
107 
108 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
109 {
110 	int err;
111 
112 	err = mutex_lock_interruptible(&rtc->ops_lock);
113 	if (err)
114 		return err;
115 
116 	if (rtc->ops == NULL)
117 		err = -ENODEV;
118 	else if (!rtc->ops->read_alarm)
119 		err = -EINVAL;
120 	else {
121 		memset(alarm, 0, sizeof(struct rtc_wkalrm));
122 		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
123 	}
124 
125 	mutex_unlock(&rtc->ops_lock);
126 	return err;
127 }
128 
129 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
130 {
131 	int err;
132 	struct rtc_time before, now;
133 	int first_time = 1;
134 	unsigned long t_now, t_alm;
135 	enum { none, day, month, year } missing = none;
136 	unsigned days;
137 
138 	/* The lower level RTC driver may return -1 in some fields,
139 	 * creating invalid alarm->time values, for reasons like:
140 	 *
141 	 *   - The hardware may not be capable of filling them in;
142 	 *     many alarms match only on time-of-day fields, not
143 	 *     day/month/year calendar data.
144 	 *
145 	 *   - Some hardware uses illegal values as "wildcard" match
146 	 *     values, which non-Linux firmware (like a BIOS) may try
147 	 *     to set up as e.g. "alarm 15 minutes after each hour".
148 	 *     Linux uses only oneshot alarms.
149 	 *
150 	 * When we see that here, we deal with it by using values from
151 	 * a current RTC timestamp for any missing (-1) values.  The
152 	 * RTC driver prevents "periodic alarm" modes.
153 	 *
154 	 * But this can be racey, because some fields of the RTC timestamp
155 	 * may have wrapped in the interval since we read the RTC alarm,
156 	 * which would lead to us inserting inconsistent values in place
157 	 * of the -1 fields.
158 	 *
159 	 * Reading the alarm and timestamp in the reverse sequence
160 	 * would have the same race condition, and not solve the issue.
161 	 *
162 	 * So, we must first read the RTC timestamp,
163 	 * then read the RTC alarm value,
164 	 * and then read a second RTC timestamp.
165 	 *
166 	 * If any fields of the second timestamp have changed
167 	 * when compared with the first timestamp, then we know
168 	 * our timestamp may be inconsistent with that used by
169 	 * the low-level rtc_read_alarm_internal() function.
170 	 *
171 	 * So, when the two timestamps disagree, we just loop and do
172 	 * the process again to get a fully consistent set of values.
173 	 *
174 	 * This could all instead be done in the lower level driver,
175 	 * but since more than one lower level RTC implementation needs it,
176 	 * then it's probably best best to do it here instead of there..
177 	 */
178 
179 	/* Get the "before" timestamp */
180 	err = rtc_read_time(rtc, &before);
181 	if (err < 0)
182 		return err;
183 	do {
184 		if (!first_time)
185 			memcpy(&before, &now, sizeof(struct rtc_time));
186 		first_time = 0;
187 
188 		/* get the RTC alarm values, which may be incomplete */
189 		err = rtc_read_alarm_internal(rtc, alarm);
190 		if (err)
191 			return err;
192 		if (!alarm->enabled)
193 			return 0;
194 
195 		/* full-function RTCs won't have such missing fields */
196 		if (rtc_valid_tm(&alarm->time) == 0)
197 			return 0;
198 
199 		/* get the "after" timestamp, to detect wrapped fields */
200 		err = rtc_read_time(rtc, &now);
201 		if (err < 0)
202 			return err;
203 
204 		/* note that tm_sec is a "don't care" value here: */
205 	} while (   before.tm_min   != now.tm_min
206 		 || before.tm_hour  != now.tm_hour
207 		 || before.tm_mon   != now.tm_mon
208 		 || before.tm_year  != now.tm_year);
209 
210 	/* Fill in the missing alarm fields using the timestamp; we
211 	 * know there's at least one since alarm->time is invalid.
212 	 */
213 	if (alarm->time.tm_sec == -1)
214 		alarm->time.tm_sec = now.tm_sec;
215 	if (alarm->time.tm_min == -1)
216 		alarm->time.tm_min = now.tm_min;
217 	if (alarm->time.tm_hour == -1)
218 		alarm->time.tm_hour = now.tm_hour;
219 
220 	/* For simplicity, only support date rollover for now */
221 	if (alarm->time.tm_mday == -1) {
222 		alarm->time.tm_mday = now.tm_mday;
223 		missing = day;
224 	}
225 	if (alarm->time.tm_mon == -1) {
226 		alarm->time.tm_mon = now.tm_mon;
227 		if (missing == none)
228 			missing = month;
229 	}
230 	if (alarm->time.tm_year == -1) {
231 		alarm->time.tm_year = now.tm_year;
232 		if (missing == none)
233 			missing = year;
234 	}
235 
236 	/* with luck, no rollover is needed */
237 	rtc_tm_to_time(&now, &t_now);
238 	rtc_tm_to_time(&alarm->time, &t_alm);
239 	if (t_now < t_alm)
240 		goto done;
241 
242 	switch (missing) {
243 
244 	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
245 	 * that will trigger at 5am will do so at 5am Tuesday, which
246 	 * could also be in the next month or year.  This is a common
247 	 * case, especially for PCs.
248 	 */
249 	case day:
250 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
251 		t_alm += 24 * 60 * 60;
252 		rtc_time_to_tm(t_alm, &alarm->time);
253 		break;
254 
255 	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
256 	 * be next month.  An alarm matching on the 30th, 29th, or 28th
257 	 * may end up in the month after that!  Many newer PCs support
258 	 * this type of alarm.
259 	 */
260 	case month:
261 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
262 		do {
263 			if (alarm->time.tm_mon < 11)
264 				alarm->time.tm_mon++;
265 			else {
266 				alarm->time.tm_mon = 0;
267 				alarm->time.tm_year++;
268 			}
269 			days = rtc_month_days(alarm->time.tm_mon,
270 					alarm->time.tm_year);
271 		} while (days < alarm->time.tm_mday);
272 		break;
273 
274 	/* Year rollover ... easy except for leap years! */
275 	case year:
276 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
277 		do {
278 			alarm->time.tm_year++;
279 		} while (rtc_valid_tm(&alarm->time) != 0);
280 		break;
281 
282 	default:
283 		dev_warn(&rtc->dev, "alarm rollover not handled\n");
284 	}
285 
286 done:
287 	return 0;
288 }
289 EXPORT_SYMBOL_GPL(rtc_read_alarm);
290 
291 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
292 {
293 	int err;
294 
295 	err = rtc_valid_tm(&alarm->time);
296 	if (err != 0)
297 		return err;
298 
299 	err = mutex_lock_interruptible(&rtc->ops_lock);
300 	if (err)
301 		return err;
302 
303 	if (!rtc->ops)
304 		err = -ENODEV;
305 	else if (!rtc->ops->set_alarm)
306 		err = -EINVAL;
307 	else
308 		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
309 
310 	mutex_unlock(&rtc->ops_lock);
311 	return err;
312 }
313 EXPORT_SYMBOL_GPL(rtc_set_alarm);
314 
315 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
316 {
317 	int err = mutex_lock_interruptible(&rtc->ops_lock);
318 	if (err)
319 		return err;
320 
321 	if (!rtc->ops)
322 		err = -ENODEV;
323 	else if (!rtc->ops->alarm_irq_enable)
324 		err = -EINVAL;
325 	else
326 		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
327 
328 	mutex_unlock(&rtc->ops_lock);
329 	return err;
330 }
331 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
332 
333 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
334 {
335 	int err = mutex_lock_interruptible(&rtc->ops_lock);
336 	if (err)
337 		return err;
338 
339 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
340 	if (enabled == 0 && rtc->uie_irq_active) {
341 		mutex_unlock(&rtc->ops_lock);
342 		return rtc_dev_update_irq_enable_emul(rtc, enabled);
343 	}
344 #endif
345 
346 	if (!rtc->ops)
347 		err = -ENODEV;
348 	else if (!rtc->ops->update_irq_enable)
349 		err = -EINVAL;
350 	else
351 		err = rtc->ops->update_irq_enable(rtc->dev.parent, enabled);
352 
353 	mutex_unlock(&rtc->ops_lock);
354 
355 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
356 	/*
357 	 * Enable emulation if the driver did not provide
358 	 * the update_irq_enable function pointer or if returned
359 	 * -EINVAL to signal that it has been configured without
360 	 * interrupts or that are not available at the moment.
361 	 */
362 	if (err == -EINVAL)
363 		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
364 #endif
365 	return err;
366 }
367 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
368 
369 /**
370  * rtc_update_irq - report RTC periodic, alarm, and/or update irqs
371  * @rtc: the rtc device
372  * @num: how many irqs are being reported (usually one)
373  * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
374  * Context: in_interrupt(), irqs blocked
375  */
376 void rtc_update_irq(struct rtc_device *rtc,
377 		unsigned long num, unsigned long events)
378 {
379 	spin_lock(&rtc->irq_lock);
380 	rtc->irq_data = (rtc->irq_data + (num << 8)) | events;
381 	spin_unlock(&rtc->irq_lock);
382 
383 	spin_lock(&rtc->irq_task_lock);
384 	if (rtc->irq_task)
385 		rtc->irq_task->func(rtc->irq_task->private_data);
386 	spin_unlock(&rtc->irq_task_lock);
387 
388 	wake_up_interruptible(&rtc->irq_queue);
389 	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
390 }
391 EXPORT_SYMBOL_GPL(rtc_update_irq);
392 
393 static int __rtc_match(struct device *dev, void *data)
394 {
395 	char *name = (char *)data;
396 
397 	if (strcmp(dev_name(dev), name) == 0)
398 		return 1;
399 	return 0;
400 }
401 
402 struct rtc_device *rtc_class_open(char *name)
403 {
404 	struct device *dev;
405 	struct rtc_device *rtc = NULL;
406 
407 	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
408 	if (dev)
409 		rtc = to_rtc_device(dev);
410 
411 	if (rtc) {
412 		if (!try_module_get(rtc->owner)) {
413 			put_device(dev);
414 			rtc = NULL;
415 		}
416 	}
417 
418 	return rtc;
419 }
420 EXPORT_SYMBOL_GPL(rtc_class_open);
421 
422 void rtc_class_close(struct rtc_device *rtc)
423 {
424 	module_put(rtc->owner);
425 	put_device(&rtc->dev);
426 }
427 EXPORT_SYMBOL_GPL(rtc_class_close);
428 
429 int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
430 {
431 	int retval = -EBUSY;
432 
433 	if (task == NULL || task->func == NULL)
434 		return -EINVAL;
435 
436 	/* Cannot register while the char dev is in use */
437 	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
438 		return -EBUSY;
439 
440 	spin_lock_irq(&rtc->irq_task_lock);
441 	if (rtc->irq_task == NULL) {
442 		rtc->irq_task = task;
443 		retval = 0;
444 	}
445 	spin_unlock_irq(&rtc->irq_task_lock);
446 
447 	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
448 
449 	return retval;
450 }
451 EXPORT_SYMBOL_GPL(rtc_irq_register);
452 
453 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
454 {
455 	spin_lock_irq(&rtc->irq_task_lock);
456 	if (rtc->irq_task == task)
457 		rtc->irq_task = NULL;
458 	spin_unlock_irq(&rtc->irq_task_lock);
459 }
460 EXPORT_SYMBOL_GPL(rtc_irq_unregister);
461 
462 /**
463  * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
464  * @rtc: the rtc device
465  * @task: currently registered with rtc_irq_register()
466  * @enabled: true to enable periodic IRQs
467  * Context: any
468  *
469  * Note that rtc_irq_set_freq() should previously have been used to
470  * specify the desired frequency of periodic IRQ task->func() callbacks.
471  */
472 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
473 {
474 	int err = 0;
475 	unsigned long flags;
476 
477 	if (rtc->ops->irq_set_state == NULL)
478 		return -ENXIO;
479 
480 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
481 	if (rtc->irq_task != NULL && task == NULL)
482 		err = -EBUSY;
483 	if (rtc->irq_task != task)
484 		err = -EACCES;
485 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
486 
487 	if (err == 0)
488 		err = rtc->ops->irq_set_state(rtc->dev.parent, enabled);
489 
490 	return err;
491 }
492 EXPORT_SYMBOL_GPL(rtc_irq_set_state);
493 
494 /**
495  * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
496  * @rtc: the rtc device
497  * @task: currently registered with rtc_irq_register()
498  * @freq: positive frequency with which task->func() will be called
499  * Context: any
500  *
501  * Note that rtc_irq_set_state() is used to enable or disable the
502  * periodic IRQs.
503  */
504 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
505 {
506 	int err = 0;
507 	unsigned long flags;
508 
509 	if (rtc->ops->irq_set_freq == NULL)
510 		return -ENXIO;
511 
512 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
513 	if (rtc->irq_task != NULL && task == NULL)
514 		err = -EBUSY;
515 	if (rtc->irq_task != task)
516 		err = -EACCES;
517 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
518 
519 	if (err == 0) {
520 		err = rtc->ops->irq_set_freq(rtc->dev.parent, freq);
521 		if (err == 0)
522 			rtc->irq_freq = freq;
523 	}
524 	return err;
525 }
526 EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
527