1 /* 2 * RTC subsystem, interface functions 3 * 4 * Copyright (C) 2005 Tower Technologies 5 * Author: Alessandro Zummo <a.zummo@towertech.it> 6 * 7 * based on arch/arm/common/rtctime.c 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 14 #include <linux/rtc.h> 15 #include <linux/sched.h> 16 #include <linux/module.h> 17 #include <linux/log2.h> 18 #include <linux/workqueue.h> 19 20 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer); 21 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer); 22 23 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm) 24 { 25 int err; 26 if (!rtc->ops) 27 err = -ENODEV; 28 else if (!rtc->ops->read_time) 29 err = -EINVAL; 30 else { 31 memset(tm, 0, sizeof(struct rtc_time)); 32 err = rtc->ops->read_time(rtc->dev.parent, tm); 33 } 34 return err; 35 } 36 37 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm) 38 { 39 int err; 40 41 err = mutex_lock_interruptible(&rtc->ops_lock); 42 if (err) 43 return err; 44 45 err = __rtc_read_time(rtc, tm); 46 mutex_unlock(&rtc->ops_lock); 47 return err; 48 } 49 EXPORT_SYMBOL_GPL(rtc_read_time); 50 51 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm) 52 { 53 int err; 54 55 err = rtc_valid_tm(tm); 56 if (err != 0) 57 return err; 58 59 err = mutex_lock_interruptible(&rtc->ops_lock); 60 if (err) 61 return err; 62 63 if (!rtc->ops) 64 err = -ENODEV; 65 else if (rtc->ops->set_time) 66 err = rtc->ops->set_time(rtc->dev.parent, tm); 67 else if (rtc->ops->set_mmss) { 68 unsigned long secs; 69 err = rtc_tm_to_time(tm, &secs); 70 if (err == 0) 71 err = rtc->ops->set_mmss(rtc->dev.parent, secs); 72 } else 73 err = -EINVAL; 74 75 pm_stay_awake(rtc->dev.parent); 76 mutex_unlock(&rtc->ops_lock); 77 /* A timer might have just expired */ 78 schedule_work(&rtc->irqwork); 79 return err; 80 } 81 EXPORT_SYMBOL_GPL(rtc_set_time); 82 83 int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs) 84 { 85 int err; 86 87 err = mutex_lock_interruptible(&rtc->ops_lock); 88 if (err) 89 return err; 90 91 if (!rtc->ops) 92 err = -ENODEV; 93 else if (rtc->ops->set_mmss) 94 err = rtc->ops->set_mmss(rtc->dev.parent, secs); 95 else if (rtc->ops->read_time && rtc->ops->set_time) { 96 struct rtc_time new, old; 97 98 err = rtc->ops->read_time(rtc->dev.parent, &old); 99 if (err == 0) { 100 rtc_time_to_tm(secs, &new); 101 102 /* 103 * avoid writing when we're going to change the day of 104 * the month. We will retry in the next minute. This 105 * basically means that if the RTC must not drift 106 * by more than 1 minute in 11 minutes. 107 */ 108 if (!((old.tm_hour == 23 && old.tm_min == 59) || 109 (new.tm_hour == 23 && new.tm_min == 59))) 110 err = rtc->ops->set_time(rtc->dev.parent, 111 &new); 112 } 113 } else { 114 err = -EINVAL; 115 } 116 117 pm_stay_awake(rtc->dev.parent); 118 mutex_unlock(&rtc->ops_lock); 119 /* A timer might have just expired */ 120 schedule_work(&rtc->irqwork); 121 122 return err; 123 } 124 EXPORT_SYMBOL_GPL(rtc_set_mmss); 125 126 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 127 { 128 int err; 129 130 err = mutex_lock_interruptible(&rtc->ops_lock); 131 if (err) 132 return err; 133 134 if (rtc->ops == NULL) 135 err = -ENODEV; 136 else if (!rtc->ops->read_alarm) 137 err = -EINVAL; 138 else { 139 memset(alarm, 0, sizeof(struct rtc_wkalrm)); 140 err = rtc->ops->read_alarm(rtc->dev.parent, alarm); 141 } 142 143 mutex_unlock(&rtc->ops_lock); 144 return err; 145 } 146 147 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 148 { 149 int err; 150 struct rtc_time before, now; 151 int first_time = 1; 152 unsigned long t_now, t_alm; 153 enum { none, day, month, year } missing = none; 154 unsigned days; 155 156 /* The lower level RTC driver may return -1 in some fields, 157 * creating invalid alarm->time values, for reasons like: 158 * 159 * - The hardware may not be capable of filling them in; 160 * many alarms match only on time-of-day fields, not 161 * day/month/year calendar data. 162 * 163 * - Some hardware uses illegal values as "wildcard" match 164 * values, which non-Linux firmware (like a BIOS) may try 165 * to set up as e.g. "alarm 15 minutes after each hour". 166 * Linux uses only oneshot alarms. 167 * 168 * When we see that here, we deal with it by using values from 169 * a current RTC timestamp for any missing (-1) values. The 170 * RTC driver prevents "periodic alarm" modes. 171 * 172 * But this can be racey, because some fields of the RTC timestamp 173 * may have wrapped in the interval since we read the RTC alarm, 174 * which would lead to us inserting inconsistent values in place 175 * of the -1 fields. 176 * 177 * Reading the alarm and timestamp in the reverse sequence 178 * would have the same race condition, and not solve the issue. 179 * 180 * So, we must first read the RTC timestamp, 181 * then read the RTC alarm value, 182 * and then read a second RTC timestamp. 183 * 184 * If any fields of the second timestamp have changed 185 * when compared with the first timestamp, then we know 186 * our timestamp may be inconsistent with that used by 187 * the low-level rtc_read_alarm_internal() function. 188 * 189 * So, when the two timestamps disagree, we just loop and do 190 * the process again to get a fully consistent set of values. 191 * 192 * This could all instead be done in the lower level driver, 193 * but since more than one lower level RTC implementation needs it, 194 * then it's probably best best to do it here instead of there.. 195 */ 196 197 /* Get the "before" timestamp */ 198 err = rtc_read_time(rtc, &before); 199 if (err < 0) 200 return err; 201 do { 202 if (!first_time) 203 memcpy(&before, &now, sizeof(struct rtc_time)); 204 first_time = 0; 205 206 /* get the RTC alarm values, which may be incomplete */ 207 err = rtc_read_alarm_internal(rtc, alarm); 208 if (err) 209 return err; 210 211 /* full-function RTCs won't have such missing fields */ 212 if (rtc_valid_tm(&alarm->time) == 0) 213 return 0; 214 215 /* get the "after" timestamp, to detect wrapped fields */ 216 err = rtc_read_time(rtc, &now); 217 if (err < 0) 218 return err; 219 220 /* note that tm_sec is a "don't care" value here: */ 221 } while ( before.tm_min != now.tm_min 222 || before.tm_hour != now.tm_hour 223 || before.tm_mon != now.tm_mon 224 || before.tm_year != now.tm_year); 225 226 /* Fill in the missing alarm fields using the timestamp; we 227 * know there's at least one since alarm->time is invalid. 228 */ 229 if (alarm->time.tm_sec == -1) 230 alarm->time.tm_sec = now.tm_sec; 231 if (alarm->time.tm_min == -1) 232 alarm->time.tm_min = now.tm_min; 233 if (alarm->time.tm_hour == -1) 234 alarm->time.tm_hour = now.tm_hour; 235 236 /* For simplicity, only support date rollover for now */ 237 if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) { 238 alarm->time.tm_mday = now.tm_mday; 239 missing = day; 240 } 241 if ((unsigned)alarm->time.tm_mon >= 12) { 242 alarm->time.tm_mon = now.tm_mon; 243 if (missing == none) 244 missing = month; 245 } 246 if (alarm->time.tm_year == -1) { 247 alarm->time.tm_year = now.tm_year; 248 if (missing == none) 249 missing = year; 250 } 251 252 /* with luck, no rollover is needed */ 253 rtc_tm_to_time(&now, &t_now); 254 rtc_tm_to_time(&alarm->time, &t_alm); 255 if (t_now < t_alm) 256 goto done; 257 258 switch (missing) { 259 260 /* 24 hour rollover ... if it's now 10am Monday, an alarm that 261 * that will trigger at 5am will do so at 5am Tuesday, which 262 * could also be in the next month or year. This is a common 263 * case, especially for PCs. 264 */ 265 case day: 266 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day"); 267 t_alm += 24 * 60 * 60; 268 rtc_time_to_tm(t_alm, &alarm->time); 269 break; 270 271 /* Month rollover ... if it's the 31th, an alarm on the 3rd will 272 * be next month. An alarm matching on the 30th, 29th, or 28th 273 * may end up in the month after that! Many newer PCs support 274 * this type of alarm. 275 */ 276 case month: 277 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month"); 278 do { 279 if (alarm->time.tm_mon < 11) 280 alarm->time.tm_mon++; 281 else { 282 alarm->time.tm_mon = 0; 283 alarm->time.tm_year++; 284 } 285 days = rtc_month_days(alarm->time.tm_mon, 286 alarm->time.tm_year); 287 } while (days < alarm->time.tm_mday); 288 break; 289 290 /* Year rollover ... easy except for leap years! */ 291 case year: 292 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year"); 293 do { 294 alarm->time.tm_year++; 295 } while (rtc_valid_tm(&alarm->time) != 0); 296 break; 297 298 default: 299 dev_warn(&rtc->dev, "alarm rollover not handled\n"); 300 } 301 302 done: 303 return 0; 304 } 305 306 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 307 { 308 int err; 309 310 err = mutex_lock_interruptible(&rtc->ops_lock); 311 if (err) 312 return err; 313 if (rtc->ops == NULL) 314 err = -ENODEV; 315 else if (!rtc->ops->read_alarm) 316 err = -EINVAL; 317 else { 318 memset(alarm, 0, sizeof(struct rtc_wkalrm)); 319 alarm->enabled = rtc->aie_timer.enabled; 320 alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires); 321 } 322 mutex_unlock(&rtc->ops_lock); 323 324 return err; 325 } 326 EXPORT_SYMBOL_GPL(rtc_read_alarm); 327 328 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 329 { 330 struct rtc_time tm; 331 long now, scheduled; 332 int err; 333 334 err = rtc_valid_tm(&alarm->time); 335 if (err) 336 return err; 337 rtc_tm_to_time(&alarm->time, &scheduled); 338 339 /* Make sure we're not setting alarms in the past */ 340 err = __rtc_read_time(rtc, &tm); 341 rtc_tm_to_time(&tm, &now); 342 if (scheduled <= now) 343 return -ETIME; 344 /* 345 * XXX - We just checked to make sure the alarm time is not 346 * in the past, but there is still a race window where if 347 * the is alarm set for the next second and the second ticks 348 * over right here, before we set the alarm. 349 */ 350 351 if (!rtc->ops) 352 err = -ENODEV; 353 else if (!rtc->ops->set_alarm) 354 err = -EINVAL; 355 else 356 err = rtc->ops->set_alarm(rtc->dev.parent, alarm); 357 358 return err; 359 } 360 361 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 362 { 363 int err; 364 365 err = rtc_valid_tm(&alarm->time); 366 if (err != 0) 367 return err; 368 369 err = mutex_lock_interruptible(&rtc->ops_lock); 370 if (err) 371 return err; 372 if (rtc->aie_timer.enabled) 373 rtc_timer_remove(rtc, &rtc->aie_timer); 374 375 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time); 376 rtc->aie_timer.period = ktime_set(0, 0); 377 if (alarm->enabled) 378 err = rtc_timer_enqueue(rtc, &rtc->aie_timer); 379 380 mutex_unlock(&rtc->ops_lock); 381 return err; 382 } 383 EXPORT_SYMBOL_GPL(rtc_set_alarm); 384 385 /* Called once per device from rtc_device_register */ 386 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 387 { 388 int err; 389 struct rtc_time now; 390 391 err = rtc_valid_tm(&alarm->time); 392 if (err != 0) 393 return err; 394 395 err = rtc_read_time(rtc, &now); 396 if (err) 397 return err; 398 399 err = mutex_lock_interruptible(&rtc->ops_lock); 400 if (err) 401 return err; 402 403 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time); 404 rtc->aie_timer.period = ktime_set(0, 0); 405 406 /* Alarm has to be enabled & in the futrure for us to enqueue it */ 407 if (alarm->enabled && (rtc_tm_to_ktime(now).tv64 < 408 rtc->aie_timer.node.expires.tv64)) { 409 410 rtc->aie_timer.enabled = 1; 411 timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node); 412 } 413 mutex_unlock(&rtc->ops_lock); 414 return err; 415 } 416 EXPORT_SYMBOL_GPL(rtc_initialize_alarm); 417 418 419 420 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled) 421 { 422 int err = mutex_lock_interruptible(&rtc->ops_lock); 423 if (err) 424 return err; 425 426 if (rtc->aie_timer.enabled != enabled) { 427 if (enabled) 428 err = rtc_timer_enqueue(rtc, &rtc->aie_timer); 429 else 430 rtc_timer_remove(rtc, &rtc->aie_timer); 431 } 432 433 if (err) 434 /* nothing */; 435 else if (!rtc->ops) 436 err = -ENODEV; 437 else if (!rtc->ops->alarm_irq_enable) 438 err = -EINVAL; 439 else 440 err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled); 441 442 mutex_unlock(&rtc->ops_lock); 443 return err; 444 } 445 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable); 446 447 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled) 448 { 449 int err = mutex_lock_interruptible(&rtc->ops_lock); 450 if (err) 451 return err; 452 453 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL 454 if (enabled == 0 && rtc->uie_irq_active) { 455 mutex_unlock(&rtc->ops_lock); 456 return rtc_dev_update_irq_enable_emul(rtc, 0); 457 } 458 #endif 459 /* make sure we're changing state */ 460 if (rtc->uie_rtctimer.enabled == enabled) 461 goto out; 462 463 if (rtc->uie_unsupported) { 464 err = -EINVAL; 465 goto out; 466 } 467 468 if (enabled) { 469 struct rtc_time tm; 470 ktime_t now, onesec; 471 472 __rtc_read_time(rtc, &tm); 473 onesec = ktime_set(1, 0); 474 now = rtc_tm_to_ktime(tm); 475 rtc->uie_rtctimer.node.expires = ktime_add(now, onesec); 476 rtc->uie_rtctimer.period = ktime_set(1, 0); 477 err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer); 478 } else 479 rtc_timer_remove(rtc, &rtc->uie_rtctimer); 480 481 out: 482 mutex_unlock(&rtc->ops_lock); 483 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL 484 /* 485 * Enable emulation if the driver did not provide 486 * the update_irq_enable function pointer or if returned 487 * -EINVAL to signal that it has been configured without 488 * interrupts or that are not available at the moment. 489 */ 490 if (err == -EINVAL) 491 err = rtc_dev_update_irq_enable_emul(rtc, enabled); 492 #endif 493 return err; 494 495 } 496 EXPORT_SYMBOL_GPL(rtc_update_irq_enable); 497 498 499 /** 500 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook 501 * @rtc: pointer to the rtc device 502 * 503 * This function is called when an AIE, UIE or PIE mode interrupt 504 * has occurred (or been emulated). 505 * 506 * Triggers the registered irq_task function callback. 507 */ 508 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode) 509 { 510 unsigned long flags; 511 512 /* mark one irq of the appropriate mode */ 513 spin_lock_irqsave(&rtc->irq_lock, flags); 514 rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode); 515 spin_unlock_irqrestore(&rtc->irq_lock, flags); 516 517 /* call the task func */ 518 spin_lock_irqsave(&rtc->irq_task_lock, flags); 519 if (rtc->irq_task) 520 rtc->irq_task->func(rtc->irq_task->private_data); 521 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 522 523 wake_up_interruptible(&rtc->irq_queue); 524 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN); 525 } 526 527 528 /** 529 * rtc_aie_update_irq - AIE mode rtctimer hook 530 * @private: pointer to the rtc_device 531 * 532 * This functions is called when the aie_timer expires. 533 */ 534 void rtc_aie_update_irq(void *private) 535 { 536 struct rtc_device *rtc = (struct rtc_device *)private; 537 rtc_handle_legacy_irq(rtc, 1, RTC_AF); 538 } 539 540 541 /** 542 * rtc_uie_update_irq - UIE mode rtctimer hook 543 * @private: pointer to the rtc_device 544 * 545 * This functions is called when the uie_timer expires. 546 */ 547 void rtc_uie_update_irq(void *private) 548 { 549 struct rtc_device *rtc = (struct rtc_device *)private; 550 rtc_handle_legacy_irq(rtc, 1, RTC_UF); 551 } 552 553 554 /** 555 * rtc_pie_update_irq - PIE mode hrtimer hook 556 * @timer: pointer to the pie mode hrtimer 557 * 558 * This function is used to emulate PIE mode interrupts 559 * using an hrtimer. This function is called when the periodic 560 * hrtimer expires. 561 */ 562 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer) 563 { 564 struct rtc_device *rtc; 565 ktime_t period; 566 int count; 567 rtc = container_of(timer, struct rtc_device, pie_timer); 568 569 period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq); 570 count = hrtimer_forward_now(timer, period); 571 572 rtc_handle_legacy_irq(rtc, count, RTC_PF); 573 574 return HRTIMER_RESTART; 575 } 576 577 /** 578 * rtc_update_irq - Triggered when a RTC interrupt occurs. 579 * @rtc: the rtc device 580 * @num: how many irqs are being reported (usually one) 581 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF 582 * Context: any 583 */ 584 void rtc_update_irq(struct rtc_device *rtc, 585 unsigned long num, unsigned long events) 586 { 587 if (unlikely(IS_ERR_OR_NULL(rtc))) 588 return; 589 590 pm_stay_awake(rtc->dev.parent); 591 schedule_work(&rtc->irqwork); 592 } 593 EXPORT_SYMBOL_GPL(rtc_update_irq); 594 595 static int __rtc_match(struct device *dev, const void *data) 596 { 597 const char *name = data; 598 599 if (strcmp(dev_name(dev), name) == 0) 600 return 1; 601 return 0; 602 } 603 604 struct rtc_device *rtc_class_open(const char *name) 605 { 606 struct device *dev; 607 struct rtc_device *rtc = NULL; 608 609 dev = class_find_device(rtc_class, NULL, name, __rtc_match); 610 if (dev) 611 rtc = to_rtc_device(dev); 612 613 if (rtc) { 614 if (!try_module_get(rtc->owner)) { 615 put_device(dev); 616 rtc = NULL; 617 } 618 } 619 620 return rtc; 621 } 622 EXPORT_SYMBOL_GPL(rtc_class_open); 623 624 void rtc_class_close(struct rtc_device *rtc) 625 { 626 module_put(rtc->owner); 627 put_device(&rtc->dev); 628 } 629 EXPORT_SYMBOL_GPL(rtc_class_close); 630 631 int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task) 632 { 633 int retval = -EBUSY; 634 635 if (task == NULL || task->func == NULL) 636 return -EINVAL; 637 638 /* Cannot register while the char dev is in use */ 639 if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags)) 640 return -EBUSY; 641 642 spin_lock_irq(&rtc->irq_task_lock); 643 if (rtc->irq_task == NULL) { 644 rtc->irq_task = task; 645 retval = 0; 646 } 647 spin_unlock_irq(&rtc->irq_task_lock); 648 649 clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags); 650 651 return retval; 652 } 653 EXPORT_SYMBOL_GPL(rtc_irq_register); 654 655 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task) 656 { 657 spin_lock_irq(&rtc->irq_task_lock); 658 if (rtc->irq_task == task) 659 rtc->irq_task = NULL; 660 spin_unlock_irq(&rtc->irq_task_lock); 661 } 662 EXPORT_SYMBOL_GPL(rtc_irq_unregister); 663 664 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled) 665 { 666 /* 667 * We always cancel the timer here first, because otherwise 668 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK); 669 * when we manage to start the timer before the callback 670 * returns HRTIMER_RESTART. 671 * 672 * We cannot use hrtimer_cancel() here as a running callback 673 * could be blocked on rtc->irq_task_lock and hrtimer_cancel() 674 * would spin forever. 675 */ 676 if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0) 677 return -1; 678 679 if (enabled) { 680 ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq); 681 682 hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL); 683 } 684 return 0; 685 } 686 687 /** 688 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs 689 * @rtc: the rtc device 690 * @task: currently registered with rtc_irq_register() 691 * @enabled: true to enable periodic IRQs 692 * Context: any 693 * 694 * Note that rtc_irq_set_freq() should previously have been used to 695 * specify the desired frequency of periodic IRQ task->func() callbacks. 696 */ 697 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled) 698 { 699 int err = 0; 700 unsigned long flags; 701 702 retry: 703 spin_lock_irqsave(&rtc->irq_task_lock, flags); 704 if (rtc->irq_task != NULL && task == NULL) 705 err = -EBUSY; 706 else if (rtc->irq_task != task) 707 err = -EACCES; 708 else { 709 if (rtc_update_hrtimer(rtc, enabled) < 0) { 710 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 711 cpu_relax(); 712 goto retry; 713 } 714 rtc->pie_enabled = enabled; 715 } 716 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 717 return err; 718 } 719 EXPORT_SYMBOL_GPL(rtc_irq_set_state); 720 721 /** 722 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ 723 * @rtc: the rtc device 724 * @task: currently registered with rtc_irq_register() 725 * @freq: positive frequency with which task->func() will be called 726 * Context: any 727 * 728 * Note that rtc_irq_set_state() is used to enable or disable the 729 * periodic IRQs. 730 */ 731 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq) 732 { 733 int err = 0; 734 unsigned long flags; 735 736 if (freq <= 0 || freq > RTC_MAX_FREQ) 737 return -EINVAL; 738 retry: 739 spin_lock_irqsave(&rtc->irq_task_lock, flags); 740 if (rtc->irq_task != NULL && task == NULL) 741 err = -EBUSY; 742 else if (rtc->irq_task != task) 743 err = -EACCES; 744 else { 745 rtc->irq_freq = freq; 746 if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) { 747 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 748 cpu_relax(); 749 goto retry; 750 } 751 } 752 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 753 return err; 754 } 755 EXPORT_SYMBOL_GPL(rtc_irq_set_freq); 756 757 /** 758 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue 759 * @rtc rtc device 760 * @timer timer being added. 761 * 762 * Enqueues a timer onto the rtc devices timerqueue and sets 763 * the next alarm event appropriately. 764 * 765 * Sets the enabled bit on the added timer. 766 * 767 * Must hold ops_lock for proper serialization of timerqueue 768 */ 769 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer) 770 { 771 timer->enabled = 1; 772 timerqueue_add(&rtc->timerqueue, &timer->node); 773 if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) { 774 struct rtc_wkalrm alarm; 775 int err; 776 alarm.time = rtc_ktime_to_tm(timer->node.expires); 777 alarm.enabled = 1; 778 err = __rtc_set_alarm(rtc, &alarm); 779 if (err == -ETIME) { 780 pm_stay_awake(rtc->dev.parent); 781 schedule_work(&rtc->irqwork); 782 } else if (err) { 783 timerqueue_del(&rtc->timerqueue, &timer->node); 784 timer->enabled = 0; 785 return err; 786 } 787 } 788 return 0; 789 } 790 791 static void rtc_alarm_disable(struct rtc_device *rtc) 792 { 793 if (!rtc->ops || !rtc->ops->alarm_irq_enable) 794 return; 795 796 rtc->ops->alarm_irq_enable(rtc->dev.parent, false); 797 } 798 799 /** 800 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue 801 * @rtc rtc device 802 * @timer timer being removed. 803 * 804 * Removes a timer onto the rtc devices timerqueue and sets 805 * the next alarm event appropriately. 806 * 807 * Clears the enabled bit on the removed timer. 808 * 809 * Must hold ops_lock for proper serialization of timerqueue 810 */ 811 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer) 812 { 813 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue); 814 timerqueue_del(&rtc->timerqueue, &timer->node); 815 timer->enabled = 0; 816 if (next == &timer->node) { 817 struct rtc_wkalrm alarm; 818 int err; 819 next = timerqueue_getnext(&rtc->timerqueue); 820 if (!next) { 821 rtc_alarm_disable(rtc); 822 return; 823 } 824 alarm.time = rtc_ktime_to_tm(next->expires); 825 alarm.enabled = 1; 826 err = __rtc_set_alarm(rtc, &alarm); 827 if (err == -ETIME) { 828 pm_stay_awake(rtc->dev.parent); 829 schedule_work(&rtc->irqwork); 830 } 831 } 832 } 833 834 /** 835 * rtc_timer_do_work - Expires rtc timers 836 * @rtc rtc device 837 * @timer timer being removed. 838 * 839 * Expires rtc timers. Reprograms next alarm event if needed. 840 * Called via worktask. 841 * 842 * Serializes access to timerqueue via ops_lock mutex 843 */ 844 void rtc_timer_do_work(struct work_struct *work) 845 { 846 struct rtc_timer *timer; 847 struct timerqueue_node *next; 848 ktime_t now; 849 struct rtc_time tm; 850 851 struct rtc_device *rtc = 852 container_of(work, struct rtc_device, irqwork); 853 854 mutex_lock(&rtc->ops_lock); 855 again: 856 __rtc_read_time(rtc, &tm); 857 now = rtc_tm_to_ktime(tm); 858 while ((next = timerqueue_getnext(&rtc->timerqueue))) { 859 if (next->expires.tv64 > now.tv64) 860 break; 861 862 /* expire timer */ 863 timer = container_of(next, struct rtc_timer, node); 864 timerqueue_del(&rtc->timerqueue, &timer->node); 865 timer->enabled = 0; 866 if (timer->task.func) 867 timer->task.func(timer->task.private_data); 868 869 /* Re-add/fwd periodic timers */ 870 if (ktime_to_ns(timer->period)) { 871 timer->node.expires = ktime_add(timer->node.expires, 872 timer->period); 873 timer->enabled = 1; 874 timerqueue_add(&rtc->timerqueue, &timer->node); 875 } 876 } 877 878 /* Set next alarm */ 879 if (next) { 880 struct rtc_wkalrm alarm; 881 int err; 882 alarm.time = rtc_ktime_to_tm(next->expires); 883 alarm.enabled = 1; 884 err = __rtc_set_alarm(rtc, &alarm); 885 if (err == -ETIME) 886 goto again; 887 } else 888 rtc_alarm_disable(rtc); 889 890 pm_relax(rtc->dev.parent); 891 mutex_unlock(&rtc->ops_lock); 892 } 893 894 895 /* rtc_timer_init - Initializes an rtc_timer 896 * @timer: timer to be intiialized 897 * @f: function pointer to be called when timer fires 898 * @data: private data passed to function pointer 899 * 900 * Kernel interface to initializing an rtc_timer. 901 */ 902 void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data) 903 { 904 timerqueue_init(&timer->node); 905 timer->enabled = 0; 906 timer->task.func = f; 907 timer->task.private_data = data; 908 } 909 910 /* rtc_timer_start - Sets an rtc_timer to fire in the future 911 * @ rtc: rtc device to be used 912 * @ timer: timer being set 913 * @ expires: time at which to expire the timer 914 * @ period: period that the timer will recur 915 * 916 * Kernel interface to set an rtc_timer 917 */ 918 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer, 919 ktime_t expires, ktime_t period) 920 { 921 int ret = 0; 922 mutex_lock(&rtc->ops_lock); 923 if (timer->enabled) 924 rtc_timer_remove(rtc, timer); 925 926 timer->node.expires = expires; 927 timer->period = period; 928 929 ret = rtc_timer_enqueue(rtc, timer); 930 931 mutex_unlock(&rtc->ops_lock); 932 return ret; 933 } 934 935 /* rtc_timer_cancel - Stops an rtc_timer 936 * @ rtc: rtc device to be used 937 * @ timer: timer being set 938 * 939 * Kernel interface to cancel an rtc_timer 940 */ 941 int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer) 942 { 943 int ret = 0; 944 mutex_lock(&rtc->ops_lock); 945 if (timer->enabled) 946 rtc_timer_remove(rtc, timer); 947 mutex_unlock(&rtc->ops_lock); 948 return ret; 949 } 950 951 952