1 /* 2 * RTC subsystem, interface functions 3 * 4 * Copyright (C) 2005 Tower Technologies 5 * Author: Alessandro Zummo <a.zummo@towertech.it> 6 * 7 * based on arch/arm/common/rtctime.c 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 14 #include <linux/rtc.h> 15 #include <linux/sched.h> 16 #include <linux/module.h> 17 #include <linux/log2.h> 18 #include <linux/workqueue.h> 19 20 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer); 21 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer); 22 23 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm) 24 { 25 int err; 26 if (!rtc->ops) 27 err = -ENODEV; 28 else if (!rtc->ops->read_time) 29 err = -EINVAL; 30 else { 31 memset(tm, 0, sizeof(struct rtc_time)); 32 err = rtc->ops->read_time(rtc->dev.parent, tm); 33 } 34 return err; 35 } 36 37 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm) 38 { 39 int err; 40 41 err = mutex_lock_interruptible(&rtc->ops_lock); 42 if (err) 43 return err; 44 45 err = __rtc_read_time(rtc, tm); 46 mutex_unlock(&rtc->ops_lock); 47 return err; 48 } 49 EXPORT_SYMBOL_GPL(rtc_read_time); 50 51 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm) 52 { 53 int err; 54 55 err = rtc_valid_tm(tm); 56 if (err != 0) 57 return err; 58 59 err = mutex_lock_interruptible(&rtc->ops_lock); 60 if (err) 61 return err; 62 63 if (!rtc->ops) 64 err = -ENODEV; 65 else if (rtc->ops->set_time) 66 err = rtc->ops->set_time(rtc->dev.parent, tm); 67 else if (rtc->ops->set_mmss) { 68 unsigned long secs; 69 err = rtc_tm_to_time(tm, &secs); 70 if (err == 0) 71 err = rtc->ops->set_mmss(rtc->dev.parent, secs); 72 } else 73 err = -EINVAL; 74 75 mutex_unlock(&rtc->ops_lock); 76 /* A timer might have just expired */ 77 schedule_work(&rtc->irqwork); 78 return err; 79 } 80 EXPORT_SYMBOL_GPL(rtc_set_time); 81 82 int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs) 83 { 84 int err; 85 86 err = mutex_lock_interruptible(&rtc->ops_lock); 87 if (err) 88 return err; 89 90 if (!rtc->ops) 91 err = -ENODEV; 92 else if (rtc->ops->set_mmss) 93 err = rtc->ops->set_mmss(rtc->dev.parent, secs); 94 else if (rtc->ops->read_time && rtc->ops->set_time) { 95 struct rtc_time new, old; 96 97 err = rtc->ops->read_time(rtc->dev.parent, &old); 98 if (err == 0) { 99 rtc_time_to_tm(secs, &new); 100 101 /* 102 * avoid writing when we're going to change the day of 103 * the month. We will retry in the next minute. This 104 * basically means that if the RTC must not drift 105 * by more than 1 minute in 11 minutes. 106 */ 107 if (!((old.tm_hour == 23 && old.tm_min == 59) || 108 (new.tm_hour == 23 && new.tm_min == 59))) 109 err = rtc->ops->set_time(rtc->dev.parent, 110 &new); 111 } 112 } 113 else 114 err = -EINVAL; 115 116 mutex_unlock(&rtc->ops_lock); 117 /* A timer might have just expired */ 118 schedule_work(&rtc->irqwork); 119 120 return err; 121 } 122 EXPORT_SYMBOL_GPL(rtc_set_mmss); 123 124 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 125 { 126 int err; 127 128 err = mutex_lock_interruptible(&rtc->ops_lock); 129 if (err) 130 return err; 131 132 if (rtc->ops == NULL) 133 err = -ENODEV; 134 else if (!rtc->ops->read_alarm) 135 err = -EINVAL; 136 else { 137 memset(alarm, 0, sizeof(struct rtc_wkalrm)); 138 err = rtc->ops->read_alarm(rtc->dev.parent, alarm); 139 } 140 141 mutex_unlock(&rtc->ops_lock); 142 return err; 143 } 144 145 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 146 { 147 int err; 148 struct rtc_time before, now; 149 int first_time = 1; 150 unsigned long t_now, t_alm; 151 enum { none, day, month, year } missing = none; 152 unsigned days; 153 154 /* The lower level RTC driver may return -1 in some fields, 155 * creating invalid alarm->time values, for reasons like: 156 * 157 * - The hardware may not be capable of filling them in; 158 * many alarms match only on time-of-day fields, not 159 * day/month/year calendar data. 160 * 161 * - Some hardware uses illegal values as "wildcard" match 162 * values, which non-Linux firmware (like a BIOS) may try 163 * to set up as e.g. "alarm 15 minutes after each hour". 164 * Linux uses only oneshot alarms. 165 * 166 * When we see that here, we deal with it by using values from 167 * a current RTC timestamp for any missing (-1) values. The 168 * RTC driver prevents "periodic alarm" modes. 169 * 170 * But this can be racey, because some fields of the RTC timestamp 171 * may have wrapped in the interval since we read the RTC alarm, 172 * which would lead to us inserting inconsistent values in place 173 * of the -1 fields. 174 * 175 * Reading the alarm and timestamp in the reverse sequence 176 * would have the same race condition, and not solve the issue. 177 * 178 * So, we must first read the RTC timestamp, 179 * then read the RTC alarm value, 180 * and then read a second RTC timestamp. 181 * 182 * If any fields of the second timestamp have changed 183 * when compared with the first timestamp, then we know 184 * our timestamp may be inconsistent with that used by 185 * the low-level rtc_read_alarm_internal() function. 186 * 187 * So, when the two timestamps disagree, we just loop and do 188 * the process again to get a fully consistent set of values. 189 * 190 * This could all instead be done in the lower level driver, 191 * but since more than one lower level RTC implementation needs it, 192 * then it's probably best best to do it here instead of there.. 193 */ 194 195 /* Get the "before" timestamp */ 196 err = rtc_read_time(rtc, &before); 197 if (err < 0) 198 return err; 199 do { 200 if (!first_time) 201 memcpy(&before, &now, sizeof(struct rtc_time)); 202 first_time = 0; 203 204 /* get the RTC alarm values, which may be incomplete */ 205 err = rtc_read_alarm_internal(rtc, alarm); 206 if (err) 207 return err; 208 209 /* full-function RTCs won't have such missing fields */ 210 if (rtc_valid_tm(&alarm->time) == 0) 211 return 0; 212 213 /* get the "after" timestamp, to detect wrapped fields */ 214 err = rtc_read_time(rtc, &now); 215 if (err < 0) 216 return err; 217 218 /* note that tm_sec is a "don't care" value here: */ 219 } while ( before.tm_min != now.tm_min 220 || before.tm_hour != now.tm_hour 221 || before.tm_mon != now.tm_mon 222 || before.tm_year != now.tm_year); 223 224 /* Fill in the missing alarm fields using the timestamp; we 225 * know there's at least one since alarm->time is invalid. 226 */ 227 if (alarm->time.tm_sec == -1) 228 alarm->time.tm_sec = now.tm_sec; 229 if (alarm->time.tm_min == -1) 230 alarm->time.tm_min = now.tm_min; 231 if (alarm->time.tm_hour == -1) 232 alarm->time.tm_hour = now.tm_hour; 233 234 /* For simplicity, only support date rollover for now */ 235 if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) { 236 alarm->time.tm_mday = now.tm_mday; 237 missing = day; 238 } 239 if ((unsigned)alarm->time.tm_mon >= 12) { 240 alarm->time.tm_mon = now.tm_mon; 241 if (missing == none) 242 missing = month; 243 } 244 if (alarm->time.tm_year == -1) { 245 alarm->time.tm_year = now.tm_year; 246 if (missing == none) 247 missing = year; 248 } 249 250 /* with luck, no rollover is needed */ 251 rtc_tm_to_time(&now, &t_now); 252 rtc_tm_to_time(&alarm->time, &t_alm); 253 if (t_now < t_alm) 254 goto done; 255 256 switch (missing) { 257 258 /* 24 hour rollover ... if it's now 10am Monday, an alarm that 259 * that will trigger at 5am will do so at 5am Tuesday, which 260 * could also be in the next month or year. This is a common 261 * case, especially for PCs. 262 */ 263 case day: 264 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day"); 265 t_alm += 24 * 60 * 60; 266 rtc_time_to_tm(t_alm, &alarm->time); 267 break; 268 269 /* Month rollover ... if it's the 31th, an alarm on the 3rd will 270 * be next month. An alarm matching on the 30th, 29th, or 28th 271 * may end up in the month after that! Many newer PCs support 272 * this type of alarm. 273 */ 274 case month: 275 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month"); 276 do { 277 if (alarm->time.tm_mon < 11) 278 alarm->time.tm_mon++; 279 else { 280 alarm->time.tm_mon = 0; 281 alarm->time.tm_year++; 282 } 283 days = rtc_month_days(alarm->time.tm_mon, 284 alarm->time.tm_year); 285 } while (days < alarm->time.tm_mday); 286 break; 287 288 /* Year rollover ... easy except for leap years! */ 289 case year: 290 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year"); 291 do { 292 alarm->time.tm_year++; 293 } while (rtc_valid_tm(&alarm->time) != 0); 294 break; 295 296 default: 297 dev_warn(&rtc->dev, "alarm rollover not handled\n"); 298 } 299 300 done: 301 return 0; 302 } 303 304 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 305 { 306 int err; 307 308 err = mutex_lock_interruptible(&rtc->ops_lock); 309 if (err) 310 return err; 311 if (rtc->ops == NULL) 312 err = -ENODEV; 313 else if (!rtc->ops->read_alarm) 314 err = -EINVAL; 315 else { 316 memset(alarm, 0, sizeof(struct rtc_wkalrm)); 317 alarm->enabled = rtc->aie_timer.enabled; 318 alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires); 319 } 320 mutex_unlock(&rtc->ops_lock); 321 322 return err; 323 } 324 EXPORT_SYMBOL_GPL(rtc_read_alarm); 325 326 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 327 { 328 struct rtc_time tm; 329 long now, scheduled; 330 int err; 331 332 err = rtc_valid_tm(&alarm->time); 333 if (err) 334 return err; 335 rtc_tm_to_time(&alarm->time, &scheduled); 336 337 /* Make sure we're not setting alarms in the past */ 338 err = __rtc_read_time(rtc, &tm); 339 rtc_tm_to_time(&tm, &now); 340 if (scheduled <= now) 341 return -ETIME; 342 /* 343 * XXX - We just checked to make sure the alarm time is not 344 * in the past, but there is still a race window where if 345 * the is alarm set for the next second and the second ticks 346 * over right here, before we set the alarm. 347 */ 348 349 if (!rtc->ops) 350 err = -ENODEV; 351 else if (!rtc->ops->set_alarm) 352 err = -EINVAL; 353 else 354 err = rtc->ops->set_alarm(rtc->dev.parent, alarm); 355 356 return err; 357 } 358 359 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 360 { 361 int err; 362 363 err = rtc_valid_tm(&alarm->time); 364 if (err != 0) 365 return err; 366 367 err = mutex_lock_interruptible(&rtc->ops_lock); 368 if (err) 369 return err; 370 if (rtc->aie_timer.enabled) { 371 rtc_timer_remove(rtc, &rtc->aie_timer); 372 } 373 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time); 374 rtc->aie_timer.period = ktime_set(0, 0); 375 if (alarm->enabled) { 376 err = rtc_timer_enqueue(rtc, &rtc->aie_timer); 377 } 378 mutex_unlock(&rtc->ops_lock); 379 return err; 380 } 381 EXPORT_SYMBOL_GPL(rtc_set_alarm); 382 383 /* Called once per device from rtc_device_register */ 384 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 385 { 386 int err; 387 struct rtc_time now; 388 389 err = rtc_valid_tm(&alarm->time); 390 if (err != 0) 391 return err; 392 393 err = rtc_read_time(rtc, &now); 394 if (err) 395 return err; 396 397 err = mutex_lock_interruptible(&rtc->ops_lock); 398 if (err) 399 return err; 400 401 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time); 402 rtc->aie_timer.period = ktime_set(0, 0); 403 404 /* Alarm has to be enabled & in the futrure for us to enqueue it */ 405 if (alarm->enabled && (rtc_tm_to_ktime(now).tv64 < 406 rtc->aie_timer.node.expires.tv64)) { 407 408 rtc->aie_timer.enabled = 1; 409 timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node); 410 } 411 mutex_unlock(&rtc->ops_lock); 412 return err; 413 } 414 EXPORT_SYMBOL_GPL(rtc_initialize_alarm); 415 416 417 418 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled) 419 { 420 int err = mutex_lock_interruptible(&rtc->ops_lock); 421 if (err) 422 return err; 423 424 if (rtc->aie_timer.enabled != enabled) { 425 if (enabled) 426 err = rtc_timer_enqueue(rtc, &rtc->aie_timer); 427 else 428 rtc_timer_remove(rtc, &rtc->aie_timer); 429 } 430 431 if (err) 432 /* nothing */; 433 else if (!rtc->ops) 434 err = -ENODEV; 435 else if (!rtc->ops->alarm_irq_enable) 436 err = -EINVAL; 437 else 438 err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled); 439 440 mutex_unlock(&rtc->ops_lock); 441 return err; 442 } 443 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable); 444 445 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled) 446 { 447 int err = mutex_lock_interruptible(&rtc->ops_lock); 448 if (err) 449 return err; 450 451 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL 452 if (enabled == 0 && rtc->uie_irq_active) { 453 mutex_unlock(&rtc->ops_lock); 454 return rtc_dev_update_irq_enable_emul(rtc, 0); 455 } 456 #endif 457 /* make sure we're changing state */ 458 if (rtc->uie_rtctimer.enabled == enabled) 459 goto out; 460 461 if (enabled) { 462 struct rtc_time tm; 463 ktime_t now, onesec; 464 465 __rtc_read_time(rtc, &tm); 466 onesec = ktime_set(1, 0); 467 now = rtc_tm_to_ktime(tm); 468 rtc->uie_rtctimer.node.expires = ktime_add(now, onesec); 469 rtc->uie_rtctimer.period = ktime_set(1, 0); 470 err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer); 471 } else 472 rtc_timer_remove(rtc, &rtc->uie_rtctimer); 473 474 out: 475 mutex_unlock(&rtc->ops_lock); 476 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL 477 /* 478 * Enable emulation if the driver did not provide 479 * the update_irq_enable function pointer or if returned 480 * -EINVAL to signal that it has been configured without 481 * interrupts or that are not available at the moment. 482 */ 483 if (err == -EINVAL) 484 err = rtc_dev_update_irq_enable_emul(rtc, enabled); 485 #endif 486 return err; 487 488 } 489 EXPORT_SYMBOL_GPL(rtc_update_irq_enable); 490 491 492 /** 493 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook 494 * @rtc: pointer to the rtc device 495 * 496 * This function is called when an AIE, UIE or PIE mode interrupt 497 * has occurred (or been emulated). 498 * 499 * Triggers the registered irq_task function callback. 500 */ 501 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode) 502 { 503 unsigned long flags; 504 505 /* mark one irq of the appropriate mode */ 506 spin_lock_irqsave(&rtc->irq_lock, flags); 507 rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode); 508 spin_unlock_irqrestore(&rtc->irq_lock, flags); 509 510 /* call the task func */ 511 spin_lock_irqsave(&rtc->irq_task_lock, flags); 512 if (rtc->irq_task) 513 rtc->irq_task->func(rtc->irq_task->private_data); 514 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 515 516 wake_up_interruptible(&rtc->irq_queue); 517 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN); 518 } 519 520 521 /** 522 * rtc_aie_update_irq - AIE mode rtctimer hook 523 * @private: pointer to the rtc_device 524 * 525 * This functions is called when the aie_timer expires. 526 */ 527 void rtc_aie_update_irq(void *private) 528 { 529 struct rtc_device *rtc = (struct rtc_device *)private; 530 rtc_handle_legacy_irq(rtc, 1, RTC_AF); 531 } 532 533 534 /** 535 * rtc_uie_update_irq - UIE mode rtctimer hook 536 * @private: pointer to the rtc_device 537 * 538 * This functions is called when the uie_timer expires. 539 */ 540 void rtc_uie_update_irq(void *private) 541 { 542 struct rtc_device *rtc = (struct rtc_device *)private; 543 rtc_handle_legacy_irq(rtc, 1, RTC_UF); 544 } 545 546 547 /** 548 * rtc_pie_update_irq - PIE mode hrtimer hook 549 * @timer: pointer to the pie mode hrtimer 550 * 551 * This function is used to emulate PIE mode interrupts 552 * using an hrtimer. This function is called when the periodic 553 * hrtimer expires. 554 */ 555 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer) 556 { 557 struct rtc_device *rtc; 558 ktime_t period; 559 int count; 560 rtc = container_of(timer, struct rtc_device, pie_timer); 561 562 period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq); 563 count = hrtimer_forward_now(timer, period); 564 565 rtc_handle_legacy_irq(rtc, count, RTC_PF); 566 567 return HRTIMER_RESTART; 568 } 569 570 /** 571 * rtc_update_irq - Triggered when a RTC interrupt occurs. 572 * @rtc: the rtc device 573 * @num: how many irqs are being reported (usually one) 574 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF 575 * Context: any 576 */ 577 void rtc_update_irq(struct rtc_device *rtc, 578 unsigned long num, unsigned long events) 579 { 580 schedule_work(&rtc->irqwork); 581 } 582 EXPORT_SYMBOL_GPL(rtc_update_irq); 583 584 static int __rtc_match(struct device *dev, void *data) 585 { 586 char *name = (char *)data; 587 588 if (strcmp(dev_name(dev), name) == 0) 589 return 1; 590 return 0; 591 } 592 593 struct rtc_device *rtc_class_open(char *name) 594 { 595 struct device *dev; 596 struct rtc_device *rtc = NULL; 597 598 dev = class_find_device(rtc_class, NULL, name, __rtc_match); 599 if (dev) 600 rtc = to_rtc_device(dev); 601 602 if (rtc) { 603 if (!try_module_get(rtc->owner)) { 604 put_device(dev); 605 rtc = NULL; 606 } 607 } 608 609 return rtc; 610 } 611 EXPORT_SYMBOL_GPL(rtc_class_open); 612 613 void rtc_class_close(struct rtc_device *rtc) 614 { 615 module_put(rtc->owner); 616 put_device(&rtc->dev); 617 } 618 EXPORT_SYMBOL_GPL(rtc_class_close); 619 620 int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task) 621 { 622 int retval = -EBUSY; 623 624 if (task == NULL || task->func == NULL) 625 return -EINVAL; 626 627 /* Cannot register while the char dev is in use */ 628 if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags)) 629 return -EBUSY; 630 631 spin_lock_irq(&rtc->irq_task_lock); 632 if (rtc->irq_task == NULL) { 633 rtc->irq_task = task; 634 retval = 0; 635 } 636 spin_unlock_irq(&rtc->irq_task_lock); 637 638 clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags); 639 640 return retval; 641 } 642 EXPORT_SYMBOL_GPL(rtc_irq_register); 643 644 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task) 645 { 646 spin_lock_irq(&rtc->irq_task_lock); 647 if (rtc->irq_task == task) 648 rtc->irq_task = NULL; 649 spin_unlock_irq(&rtc->irq_task_lock); 650 } 651 EXPORT_SYMBOL_GPL(rtc_irq_unregister); 652 653 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled) 654 { 655 /* 656 * We always cancel the timer here first, because otherwise 657 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK); 658 * when we manage to start the timer before the callback 659 * returns HRTIMER_RESTART. 660 * 661 * We cannot use hrtimer_cancel() here as a running callback 662 * could be blocked on rtc->irq_task_lock and hrtimer_cancel() 663 * would spin forever. 664 */ 665 if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0) 666 return -1; 667 668 if (enabled) { 669 ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq); 670 671 hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL); 672 } 673 return 0; 674 } 675 676 /** 677 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs 678 * @rtc: the rtc device 679 * @task: currently registered with rtc_irq_register() 680 * @enabled: true to enable periodic IRQs 681 * Context: any 682 * 683 * Note that rtc_irq_set_freq() should previously have been used to 684 * specify the desired frequency of periodic IRQ task->func() callbacks. 685 */ 686 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled) 687 { 688 int err = 0; 689 unsigned long flags; 690 691 retry: 692 spin_lock_irqsave(&rtc->irq_task_lock, flags); 693 if (rtc->irq_task != NULL && task == NULL) 694 err = -EBUSY; 695 if (rtc->irq_task != task) 696 err = -EACCES; 697 if (!err) { 698 if (rtc_update_hrtimer(rtc, enabled) < 0) { 699 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 700 cpu_relax(); 701 goto retry; 702 } 703 rtc->pie_enabled = enabled; 704 } 705 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 706 return err; 707 } 708 EXPORT_SYMBOL_GPL(rtc_irq_set_state); 709 710 /** 711 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ 712 * @rtc: the rtc device 713 * @task: currently registered with rtc_irq_register() 714 * @freq: positive frequency with which task->func() will be called 715 * Context: any 716 * 717 * Note that rtc_irq_set_state() is used to enable or disable the 718 * periodic IRQs. 719 */ 720 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq) 721 { 722 int err = 0; 723 unsigned long flags; 724 725 if (freq <= 0 || freq > RTC_MAX_FREQ) 726 return -EINVAL; 727 retry: 728 spin_lock_irqsave(&rtc->irq_task_lock, flags); 729 if (rtc->irq_task != NULL && task == NULL) 730 err = -EBUSY; 731 if (rtc->irq_task != task) 732 err = -EACCES; 733 if (!err) { 734 rtc->irq_freq = freq; 735 if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) { 736 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 737 cpu_relax(); 738 goto retry; 739 } 740 } 741 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 742 return err; 743 } 744 EXPORT_SYMBOL_GPL(rtc_irq_set_freq); 745 746 /** 747 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue 748 * @rtc rtc device 749 * @timer timer being added. 750 * 751 * Enqueues a timer onto the rtc devices timerqueue and sets 752 * the next alarm event appropriately. 753 * 754 * Sets the enabled bit on the added timer. 755 * 756 * Must hold ops_lock for proper serialization of timerqueue 757 */ 758 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer) 759 { 760 timer->enabled = 1; 761 timerqueue_add(&rtc->timerqueue, &timer->node); 762 if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) { 763 struct rtc_wkalrm alarm; 764 int err; 765 alarm.time = rtc_ktime_to_tm(timer->node.expires); 766 alarm.enabled = 1; 767 err = __rtc_set_alarm(rtc, &alarm); 768 if (err == -ETIME) 769 schedule_work(&rtc->irqwork); 770 else if (err) { 771 timerqueue_del(&rtc->timerqueue, &timer->node); 772 timer->enabled = 0; 773 return err; 774 } 775 } 776 return 0; 777 } 778 779 static void rtc_alarm_disable(struct rtc_device *rtc) 780 { 781 if (!rtc->ops || !rtc->ops->alarm_irq_enable) 782 return; 783 784 rtc->ops->alarm_irq_enable(rtc->dev.parent, false); 785 } 786 787 /** 788 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue 789 * @rtc rtc device 790 * @timer timer being removed. 791 * 792 * Removes a timer onto the rtc devices timerqueue and sets 793 * the next alarm event appropriately. 794 * 795 * Clears the enabled bit on the removed timer. 796 * 797 * Must hold ops_lock for proper serialization of timerqueue 798 */ 799 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer) 800 { 801 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue); 802 timerqueue_del(&rtc->timerqueue, &timer->node); 803 timer->enabled = 0; 804 if (next == &timer->node) { 805 struct rtc_wkalrm alarm; 806 int err; 807 next = timerqueue_getnext(&rtc->timerqueue); 808 if (!next) { 809 rtc_alarm_disable(rtc); 810 return; 811 } 812 alarm.time = rtc_ktime_to_tm(next->expires); 813 alarm.enabled = 1; 814 err = __rtc_set_alarm(rtc, &alarm); 815 if (err == -ETIME) 816 schedule_work(&rtc->irqwork); 817 } 818 } 819 820 /** 821 * rtc_timer_do_work - Expires rtc timers 822 * @rtc rtc device 823 * @timer timer being removed. 824 * 825 * Expires rtc timers. Reprograms next alarm event if needed. 826 * Called via worktask. 827 * 828 * Serializes access to timerqueue via ops_lock mutex 829 */ 830 void rtc_timer_do_work(struct work_struct *work) 831 { 832 struct rtc_timer *timer; 833 struct timerqueue_node *next; 834 ktime_t now; 835 struct rtc_time tm; 836 837 struct rtc_device *rtc = 838 container_of(work, struct rtc_device, irqwork); 839 840 mutex_lock(&rtc->ops_lock); 841 again: 842 __rtc_read_time(rtc, &tm); 843 now = rtc_tm_to_ktime(tm); 844 while ((next = timerqueue_getnext(&rtc->timerqueue))) { 845 if (next->expires.tv64 > now.tv64) 846 break; 847 848 /* expire timer */ 849 timer = container_of(next, struct rtc_timer, node); 850 timerqueue_del(&rtc->timerqueue, &timer->node); 851 timer->enabled = 0; 852 if (timer->task.func) 853 timer->task.func(timer->task.private_data); 854 855 /* Re-add/fwd periodic timers */ 856 if (ktime_to_ns(timer->period)) { 857 timer->node.expires = ktime_add(timer->node.expires, 858 timer->period); 859 timer->enabled = 1; 860 timerqueue_add(&rtc->timerqueue, &timer->node); 861 } 862 } 863 864 /* Set next alarm */ 865 if (next) { 866 struct rtc_wkalrm alarm; 867 int err; 868 alarm.time = rtc_ktime_to_tm(next->expires); 869 alarm.enabled = 1; 870 err = __rtc_set_alarm(rtc, &alarm); 871 if (err == -ETIME) 872 goto again; 873 } else 874 rtc_alarm_disable(rtc); 875 876 mutex_unlock(&rtc->ops_lock); 877 } 878 879 880 /* rtc_timer_init - Initializes an rtc_timer 881 * @timer: timer to be intiialized 882 * @f: function pointer to be called when timer fires 883 * @data: private data passed to function pointer 884 * 885 * Kernel interface to initializing an rtc_timer. 886 */ 887 void rtc_timer_init(struct rtc_timer *timer, void (*f)(void* p), void* data) 888 { 889 timerqueue_init(&timer->node); 890 timer->enabled = 0; 891 timer->task.func = f; 892 timer->task.private_data = data; 893 } 894 895 /* rtc_timer_start - Sets an rtc_timer to fire in the future 896 * @ rtc: rtc device to be used 897 * @ timer: timer being set 898 * @ expires: time at which to expire the timer 899 * @ period: period that the timer will recur 900 * 901 * Kernel interface to set an rtc_timer 902 */ 903 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer* timer, 904 ktime_t expires, ktime_t period) 905 { 906 int ret = 0; 907 mutex_lock(&rtc->ops_lock); 908 if (timer->enabled) 909 rtc_timer_remove(rtc, timer); 910 911 timer->node.expires = expires; 912 timer->period = period; 913 914 ret = rtc_timer_enqueue(rtc, timer); 915 916 mutex_unlock(&rtc->ops_lock); 917 return ret; 918 } 919 920 /* rtc_timer_cancel - Stops an rtc_timer 921 * @ rtc: rtc device to be used 922 * @ timer: timer being set 923 * 924 * Kernel interface to cancel an rtc_timer 925 */ 926 int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer* timer) 927 { 928 int ret = 0; 929 mutex_lock(&rtc->ops_lock); 930 if (timer->enabled) 931 rtc_timer_remove(rtc, timer); 932 mutex_unlock(&rtc->ops_lock); 933 return ret; 934 } 935 936 937