1 /* 2 * RTC subsystem, interface functions 3 * 4 * Copyright (C) 2005 Tower Technologies 5 * Author: Alessandro Zummo <a.zummo@towertech.it> 6 * 7 * based on arch/arm/common/rtctime.c 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 14 #include <linux/rtc.h> 15 #include <linux/sched.h> 16 #include <linux/module.h> 17 #include <linux/log2.h> 18 #include <linux/workqueue.h> 19 20 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer); 21 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer); 22 23 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm) 24 { 25 int err; 26 if (!rtc->ops) 27 err = -ENODEV; 28 else if (!rtc->ops->read_time) 29 err = -EINVAL; 30 else { 31 memset(tm, 0, sizeof(struct rtc_time)); 32 err = rtc->ops->read_time(rtc->dev.parent, tm); 33 } 34 return err; 35 } 36 37 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm) 38 { 39 int err; 40 41 err = mutex_lock_interruptible(&rtc->ops_lock); 42 if (err) 43 return err; 44 45 err = __rtc_read_time(rtc, tm); 46 mutex_unlock(&rtc->ops_lock); 47 return err; 48 } 49 EXPORT_SYMBOL_GPL(rtc_read_time); 50 51 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm) 52 { 53 int err; 54 55 err = rtc_valid_tm(tm); 56 if (err != 0) 57 return err; 58 59 err = mutex_lock_interruptible(&rtc->ops_lock); 60 if (err) 61 return err; 62 63 if (!rtc->ops) 64 err = -ENODEV; 65 else if (rtc->ops->set_time) 66 err = rtc->ops->set_time(rtc->dev.parent, tm); 67 else if (rtc->ops->set_mmss) { 68 unsigned long secs; 69 err = rtc_tm_to_time(tm, &secs); 70 if (err == 0) 71 err = rtc->ops->set_mmss(rtc->dev.parent, secs); 72 } else 73 err = -EINVAL; 74 75 mutex_unlock(&rtc->ops_lock); 76 /* A timer might have just expired */ 77 schedule_work(&rtc->irqwork); 78 return err; 79 } 80 EXPORT_SYMBOL_GPL(rtc_set_time); 81 82 int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs) 83 { 84 int err; 85 86 err = mutex_lock_interruptible(&rtc->ops_lock); 87 if (err) 88 return err; 89 90 if (!rtc->ops) 91 err = -ENODEV; 92 else if (rtc->ops->set_mmss) 93 err = rtc->ops->set_mmss(rtc->dev.parent, secs); 94 else if (rtc->ops->read_time && rtc->ops->set_time) { 95 struct rtc_time new, old; 96 97 err = rtc->ops->read_time(rtc->dev.parent, &old); 98 if (err == 0) { 99 rtc_time_to_tm(secs, &new); 100 101 /* 102 * avoid writing when we're going to change the day of 103 * the month. We will retry in the next minute. This 104 * basically means that if the RTC must not drift 105 * by more than 1 minute in 11 minutes. 106 */ 107 if (!((old.tm_hour == 23 && old.tm_min == 59) || 108 (new.tm_hour == 23 && new.tm_min == 59))) 109 err = rtc->ops->set_time(rtc->dev.parent, 110 &new); 111 } 112 } 113 else 114 err = -EINVAL; 115 116 mutex_unlock(&rtc->ops_lock); 117 /* A timer might have just expired */ 118 schedule_work(&rtc->irqwork); 119 120 return err; 121 } 122 EXPORT_SYMBOL_GPL(rtc_set_mmss); 123 124 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 125 { 126 int err; 127 128 err = mutex_lock_interruptible(&rtc->ops_lock); 129 if (err) 130 return err; 131 132 if (rtc->ops == NULL) 133 err = -ENODEV; 134 else if (!rtc->ops->read_alarm) 135 err = -EINVAL; 136 else { 137 memset(alarm, 0, sizeof(struct rtc_wkalrm)); 138 err = rtc->ops->read_alarm(rtc->dev.parent, alarm); 139 } 140 141 mutex_unlock(&rtc->ops_lock); 142 return err; 143 } 144 145 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 146 { 147 int err; 148 struct rtc_time before, now; 149 int first_time = 1; 150 unsigned long t_now, t_alm; 151 enum { none, day, month, year } missing = none; 152 unsigned days; 153 154 /* The lower level RTC driver may return -1 in some fields, 155 * creating invalid alarm->time values, for reasons like: 156 * 157 * - The hardware may not be capable of filling them in; 158 * many alarms match only on time-of-day fields, not 159 * day/month/year calendar data. 160 * 161 * - Some hardware uses illegal values as "wildcard" match 162 * values, which non-Linux firmware (like a BIOS) may try 163 * to set up as e.g. "alarm 15 minutes after each hour". 164 * Linux uses only oneshot alarms. 165 * 166 * When we see that here, we deal with it by using values from 167 * a current RTC timestamp for any missing (-1) values. The 168 * RTC driver prevents "periodic alarm" modes. 169 * 170 * But this can be racey, because some fields of the RTC timestamp 171 * may have wrapped in the interval since we read the RTC alarm, 172 * which would lead to us inserting inconsistent values in place 173 * of the -1 fields. 174 * 175 * Reading the alarm and timestamp in the reverse sequence 176 * would have the same race condition, and not solve the issue. 177 * 178 * So, we must first read the RTC timestamp, 179 * then read the RTC alarm value, 180 * and then read a second RTC timestamp. 181 * 182 * If any fields of the second timestamp have changed 183 * when compared with the first timestamp, then we know 184 * our timestamp may be inconsistent with that used by 185 * the low-level rtc_read_alarm_internal() function. 186 * 187 * So, when the two timestamps disagree, we just loop and do 188 * the process again to get a fully consistent set of values. 189 * 190 * This could all instead be done in the lower level driver, 191 * but since more than one lower level RTC implementation needs it, 192 * then it's probably best best to do it here instead of there.. 193 */ 194 195 /* Get the "before" timestamp */ 196 err = rtc_read_time(rtc, &before); 197 if (err < 0) 198 return err; 199 do { 200 if (!first_time) 201 memcpy(&before, &now, sizeof(struct rtc_time)); 202 first_time = 0; 203 204 /* get the RTC alarm values, which may be incomplete */ 205 err = rtc_read_alarm_internal(rtc, alarm); 206 if (err) 207 return err; 208 209 /* full-function RTCs won't have such missing fields */ 210 if (rtc_valid_tm(&alarm->time) == 0) 211 return 0; 212 213 /* get the "after" timestamp, to detect wrapped fields */ 214 err = rtc_read_time(rtc, &now); 215 if (err < 0) 216 return err; 217 218 /* note that tm_sec is a "don't care" value here: */ 219 } while ( before.tm_min != now.tm_min 220 || before.tm_hour != now.tm_hour 221 || before.tm_mon != now.tm_mon 222 || before.tm_year != now.tm_year); 223 224 /* Fill in the missing alarm fields using the timestamp; we 225 * know there's at least one since alarm->time is invalid. 226 */ 227 if (alarm->time.tm_sec == -1) 228 alarm->time.tm_sec = now.tm_sec; 229 if (alarm->time.tm_min == -1) 230 alarm->time.tm_min = now.tm_min; 231 if (alarm->time.tm_hour == -1) 232 alarm->time.tm_hour = now.tm_hour; 233 234 /* For simplicity, only support date rollover for now */ 235 if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) { 236 alarm->time.tm_mday = now.tm_mday; 237 missing = day; 238 } 239 if ((unsigned)alarm->time.tm_mon >= 12) { 240 alarm->time.tm_mon = now.tm_mon; 241 if (missing == none) 242 missing = month; 243 } 244 if (alarm->time.tm_year == -1) { 245 alarm->time.tm_year = now.tm_year; 246 if (missing == none) 247 missing = year; 248 } 249 250 /* with luck, no rollover is needed */ 251 rtc_tm_to_time(&now, &t_now); 252 rtc_tm_to_time(&alarm->time, &t_alm); 253 if (t_now < t_alm) 254 goto done; 255 256 switch (missing) { 257 258 /* 24 hour rollover ... if it's now 10am Monday, an alarm that 259 * that will trigger at 5am will do so at 5am Tuesday, which 260 * could also be in the next month or year. This is a common 261 * case, especially for PCs. 262 */ 263 case day: 264 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day"); 265 t_alm += 24 * 60 * 60; 266 rtc_time_to_tm(t_alm, &alarm->time); 267 break; 268 269 /* Month rollover ... if it's the 31th, an alarm on the 3rd will 270 * be next month. An alarm matching on the 30th, 29th, or 28th 271 * may end up in the month after that! Many newer PCs support 272 * this type of alarm. 273 */ 274 case month: 275 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month"); 276 do { 277 if (alarm->time.tm_mon < 11) 278 alarm->time.tm_mon++; 279 else { 280 alarm->time.tm_mon = 0; 281 alarm->time.tm_year++; 282 } 283 days = rtc_month_days(alarm->time.tm_mon, 284 alarm->time.tm_year); 285 } while (days < alarm->time.tm_mday); 286 break; 287 288 /* Year rollover ... easy except for leap years! */ 289 case year: 290 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year"); 291 do { 292 alarm->time.tm_year++; 293 } while (rtc_valid_tm(&alarm->time) != 0); 294 break; 295 296 default: 297 dev_warn(&rtc->dev, "alarm rollover not handled\n"); 298 } 299 300 done: 301 return 0; 302 } 303 304 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 305 { 306 int err; 307 308 err = mutex_lock_interruptible(&rtc->ops_lock); 309 if (err) 310 return err; 311 if (rtc->ops == NULL) 312 err = -ENODEV; 313 else if (!rtc->ops->read_alarm) 314 err = -EINVAL; 315 else { 316 memset(alarm, 0, sizeof(struct rtc_wkalrm)); 317 alarm->enabled = rtc->aie_timer.enabled; 318 alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires); 319 } 320 mutex_unlock(&rtc->ops_lock); 321 322 return err; 323 } 324 EXPORT_SYMBOL_GPL(rtc_read_alarm); 325 326 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 327 { 328 struct rtc_time tm; 329 long now, scheduled; 330 int err; 331 332 err = rtc_valid_tm(&alarm->time); 333 if (err) 334 return err; 335 rtc_tm_to_time(&alarm->time, &scheduled); 336 337 /* Make sure we're not setting alarms in the past */ 338 err = __rtc_read_time(rtc, &tm); 339 rtc_tm_to_time(&tm, &now); 340 if (scheduled <= now) 341 return -ETIME; 342 /* 343 * XXX - We just checked to make sure the alarm time is not 344 * in the past, but there is still a race window where if 345 * the is alarm set for the next second and the second ticks 346 * over right here, before we set the alarm. 347 */ 348 349 if (!rtc->ops) 350 err = -ENODEV; 351 else if (!rtc->ops->set_alarm) 352 err = -EINVAL; 353 else 354 err = rtc->ops->set_alarm(rtc->dev.parent, alarm); 355 356 return err; 357 } 358 359 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 360 { 361 int err; 362 363 err = rtc_valid_tm(&alarm->time); 364 if (err != 0) 365 return err; 366 367 err = mutex_lock_interruptible(&rtc->ops_lock); 368 if (err) 369 return err; 370 if (rtc->aie_timer.enabled) { 371 rtc_timer_remove(rtc, &rtc->aie_timer); 372 } 373 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time); 374 rtc->aie_timer.period = ktime_set(0, 0); 375 if (alarm->enabled) { 376 err = rtc_timer_enqueue(rtc, &rtc->aie_timer); 377 } 378 mutex_unlock(&rtc->ops_lock); 379 return err; 380 } 381 EXPORT_SYMBOL_GPL(rtc_set_alarm); 382 383 /* Called once per device from rtc_device_register */ 384 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 385 { 386 int err; 387 struct rtc_time now; 388 389 err = rtc_valid_tm(&alarm->time); 390 if (err != 0) 391 return err; 392 393 err = rtc_read_time(rtc, &now); 394 if (err) 395 return err; 396 397 err = mutex_lock_interruptible(&rtc->ops_lock); 398 if (err) 399 return err; 400 401 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time); 402 rtc->aie_timer.period = ktime_set(0, 0); 403 404 /* Alarm has to be enabled & in the futrure for us to enqueue it */ 405 if (alarm->enabled && (rtc_tm_to_ktime(now).tv64 < 406 rtc->aie_timer.node.expires.tv64)) { 407 408 rtc->aie_timer.enabled = 1; 409 timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node); 410 } 411 mutex_unlock(&rtc->ops_lock); 412 return err; 413 } 414 EXPORT_SYMBOL_GPL(rtc_initialize_alarm); 415 416 417 418 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled) 419 { 420 int err = mutex_lock_interruptible(&rtc->ops_lock); 421 if (err) 422 return err; 423 424 if (rtc->aie_timer.enabled != enabled) { 425 if (enabled) 426 err = rtc_timer_enqueue(rtc, &rtc->aie_timer); 427 else 428 rtc_timer_remove(rtc, &rtc->aie_timer); 429 } 430 431 if (err) 432 /* nothing */; 433 else if (!rtc->ops) 434 err = -ENODEV; 435 else if (!rtc->ops->alarm_irq_enable) 436 err = -EINVAL; 437 else 438 err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled); 439 440 mutex_unlock(&rtc->ops_lock); 441 return err; 442 } 443 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable); 444 445 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled) 446 { 447 int err = mutex_lock_interruptible(&rtc->ops_lock); 448 if (err) 449 return err; 450 451 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL 452 if (enabled == 0 && rtc->uie_irq_active) { 453 mutex_unlock(&rtc->ops_lock); 454 return rtc_dev_update_irq_enable_emul(rtc, 0); 455 } 456 #endif 457 /* make sure we're changing state */ 458 if (rtc->uie_rtctimer.enabled == enabled) 459 goto out; 460 461 if (rtc->uie_unsupported) { 462 err = -EINVAL; 463 goto out; 464 } 465 466 if (enabled) { 467 struct rtc_time tm; 468 ktime_t now, onesec; 469 470 __rtc_read_time(rtc, &tm); 471 onesec = ktime_set(1, 0); 472 now = rtc_tm_to_ktime(tm); 473 rtc->uie_rtctimer.node.expires = ktime_add(now, onesec); 474 rtc->uie_rtctimer.period = ktime_set(1, 0); 475 err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer); 476 } else 477 rtc_timer_remove(rtc, &rtc->uie_rtctimer); 478 479 out: 480 mutex_unlock(&rtc->ops_lock); 481 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL 482 /* 483 * Enable emulation if the driver did not provide 484 * the update_irq_enable function pointer or if returned 485 * -EINVAL to signal that it has been configured without 486 * interrupts or that are not available at the moment. 487 */ 488 if (err == -EINVAL) 489 err = rtc_dev_update_irq_enable_emul(rtc, enabled); 490 #endif 491 return err; 492 493 } 494 EXPORT_SYMBOL_GPL(rtc_update_irq_enable); 495 496 497 /** 498 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook 499 * @rtc: pointer to the rtc device 500 * 501 * This function is called when an AIE, UIE or PIE mode interrupt 502 * has occurred (or been emulated). 503 * 504 * Triggers the registered irq_task function callback. 505 */ 506 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode) 507 { 508 unsigned long flags; 509 510 /* mark one irq of the appropriate mode */ 511 spin_lock_irqsave(&rtc->irq_lock, flags); 512 rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode); 513 spin_unlock_irqrestore(&rtc->irq_lock, flags); 514 515 /* call the task func */ 516 spin_lock_irqsave(&rtc->irq_task_lock, flags); 517 if (rtc->irq_task) 518 rtc->irq_task->func(rtc->irq_task->private_data); 519 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 520 521 wake_up_interruptible(&rtc->irq_queue); 522 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN); 523 } 524 525 526 /** 527 * rtc_aie_update_irq - AIE mode rtctimer hook 528 * @private: pointer to the rtc_device 529 * 530 * This functions is called when the aie_timer expires. 531 */ 532 void rtc_aie_update_irq(void *private) 533 { 534 struct rtc_device *rtc = (struct rtc_device *)private; 535 rtc_handle_legacy_irq(rtc, 1, RTC_AF); 536 } 537 538 539 /** 540 * rtc_uie_update_irq - UIE mode rtctimer hook 541 * @private: pointer to the rtc_device 542 * 543 * This functions is called when the uie_timer expires. 544 */ 545 void rtc_uie_update_irq(void *private) 546 { 547 struct rtc_device *rtc = (struct rtc_device *)private; 548 rtc_handle_legacy_irq(rtc, 1, RTC_UF); 549 } 550 551 552 /** 553 * rtc_pie_update_irq - PIE mode hrtimer hook 554 * @timer: pointer to the pie mode hrtimer 555 * 556 * This function is used to emulate PIE mode interrupts 557 * using an hrtimer. This function is called when the periodic 558 * hrtimer expires. 559 */ 560 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer) 561 { 562 struct rtc_device *rtc; 563 ktime_t period; 564 int count; 565 rtc = container_of(timer, struct rtc_device, pie_timer); 566 567 period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq); 568 count = hrtimer_forward_now(timer, period); 569 570 rtc_handle_legacy_irq(rtc, count, RTC_PF); 571 572 return HRTIMER_RESTART; 573 } 574 575 /** 576 * rtc_update_irq - Triggered when a RTC interrupt occurs. 577 * @rtc: the rtc device 578 * @num: how many irqs are being reported (usually one) 579 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF 580 * Context: any 581 */ 582 void rtc_update_irq(struct rtc_device *rtc, 583 unsigned long num, unsigned long events) 584 { 585 pm_stay_awake(rtc->dev.parent); 586 schedule_work(&rtc->irqwork); 587 } 588 EXPORT_SYMBOL_GPL(rtc_update_irq); 589 590 static int __rtc_match(struct device *dev, void *data) 591 { 592 char *name = (char *)data; 593 594 if (strcmp(dev_name(dev), name) == 0) 595 return 1; 596 return 0; 597 } 598 599 struct rtc_device *rtc_class_open(char *name) 600 { 601 struct device *dev; 602 struct rtc_device *rtc = NULL; 603 604 dev = class_find_device(rtc_class, NULL, name, __rtc_match); 605 if (dev) 606 rtc = to_rtc_device(dev); 607 608 if (rtc) { 609 if (!try_module_get(rtc->owner)) { 610 put_device(dev); 611 rtc = NULL; 612 } 613 } 614 615 return rtc; 616 } 617 EXPORT_SYMBOL_GPL(rtc_class_open); 618 619 void rtc_class_close(struct rtc_device *rtc) 620 { 621 module_put(rtc->owner); 622 put_device(&rtc->dev); 623 } 624 EXPORT_SYMBOL_GPL(rtc_class_close); 625 626 int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task) 627 { 628 int retval = -EBUSY; 629 630 if (task == NULL || task->func == NULL) 631 return -EINVAL; 632 633 /* Cannot register while the char dev is in use */ 634 if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags)) 635 return -EBUSY; 636 637 spin_lock_irq(&rtc->irq_task_lock); 638 if (rtc->irq_task == NULL) { 639 rtc->irq_task = task; 640 retval = 0; 641 } 642 spin_unlock_irq(&rtc->irq_task_lock); 643 644 clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags); 645 646 return retval; 647 } 648 EXPORT_SYMBOL_GPL(rtc_irq_register); 649 650 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task) 651 { 652 spin_lock_irq(&rtc->irq_task_lock); 653 if (rtc->irq_task == task) 654 rtc->irq_task = NULL; 655 spin_unlock_irq(&rtc->irq_task_lock); 656 } 657 EXPORT_SYMBOL_GPL(rtc_irq_unregister); 658 659 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled) 660 { 661 /* 662 * We always cancel the timer here first, because otherwise 663 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK); 664 * when we manage to start the timer before the callback 665 * returns HRTIMER_RESTART. 666 * 667 * We cannot use hrtimer_cancel() here as a running callback 668 * could be blocked on rtc->irq_task_lock and hrtimer_cancel() 669 * would spin forever. 670 */ 671 if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0) 672 return -1; 673 674 if (enabled) { 675 ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq); 676 677 hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL); 678 } 679 return 0; 680 } 681 682 /** 683 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs 684 * @rtc: the rtc device 685 * @task: currently registered with rtc_irq_register() 686 * @enabled: true to enable periodic IRQs 687 * Context: any 688 * 689 * Note that rtc_irq_set_freq() should previously have been used to 690 * specify the desired frequency of periodic IRQ task->func() callbacks. 691 */ 692 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled) 693 { 694 int err = 0; 695 unsigned long flags; 696 697 retry: 698 spin_lock_irqsave(&rtc->irq_task_lock, flags); 699 if (rtc->irq_task != NULL && task == NULL) 700 err = -EBUSY; 701 if (rtc->irq_task != task) 702 err = -EACCES; 703 if (!err) { 704 if (rtc_update_hrtimer(rtc, enabled) < 0) { 705 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 706 cpu_relax(); 707 goto retry; 708 } 709 rtc->pie_enabled = enabled; 710 } 711 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 712 return err; 713 } 714 EXPORT_SYMBOL_GPL(rtc_irq_set_state); 715 716 /** 717 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ 718 * @rtc: the rtc device 719 * @task: currently registered with rtc_irq_register() 720 * @freq: positive frequency with which task->func() will be called 721 * Context: any 722 * 723 * Note that rtc_irq_set_state() is used to enable or disable the 724 * periodic IRQs. 725 */ 726 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq) 727 { 728 int err = 0; 729 unsigned long flags; 730 731 if (freq <= 0 || freq > RTC_MAX_FREQ) 732 return -EINVAL; 733 retry: 734 spin_lock_irqsave(&rtc->irq_task_lock, flags); 735 if (rtc->irq_task != NULL && task == NULL) 736 err = -EBUSY; 737 if (rtc->irq_task != task) 738 err = -EACCES; 739 if (!err) { 740 rtc->irq_freq = freq; 741 if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) { 742 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 743 cpu_relax(); 744 goto retry; 745 } 746 } 747 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 748 return err; 749 } 750 EXPORT_SYMBOL_GPL(rtc_irq_set_freq); 751 752 /** 753 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue 754 * @rtc rtc device 755 * @timer timer being added. 756 * 757 * Enqueues a timer onto the rtc devices timerqueue and sets 758 * the next alarm event appropriately. 759 * 760 * Sets the enabled bit on the added timer. 761 * 762 * Must hold ops_lock for proper serialization of timerqueue 763 */ 764 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer) 765 { 766 timer->enabled = 1; 767 timerqueue_add(&rtc->timerqueue, &timer->node); 768 if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) { 769 struct rtc_wkalrm alarm; 770 int err; 771 alarm.time = rtc_ktime_to_tm(timer->node.expires); 772 alarm.enabled = 1; 773 err = __rtc_set_alarm(rtc, &alarm); 774 if (err == -ETIME) 775 schedule_work(&rtc->irqwork); 776 else if (err) { 777 timerqueue_del(&rtc->timerqueue, &timer->node); 778 timer->enabled = 0; 779 return err; 780 } 781 } 782 return 0; 783 } 784 785 static void rtc_alarm_disable(struct rtc_device *rtc) 786 { 787 if (!rtc->ops || !rtc->ops->alarm_irq_enable) 788 return; 789 790 rtc->ops->alarm_irq_enable(rtc->dev.parent, false); 791 } 792 793 /** 794 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue 795 * @rtc rtc device 796 * @timer timer being removed. 797 * 798 * Removes a timer onto the rtc devices timerqueue and sets 799 * the next alarm event appropriately. 800 * 801 * Clears the enabled bit on the removed timer. 802 * 803 * Must hold ops_lock for proper serialization of timerqueue 804 */ 805 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer) 806 { 807 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue); 808 timerqueue_del(&rtc->timerqueue, &timer->node); 809 timer->enabled = 0; 810 if (next == &timer->node) { 811 struct rtc_wkalrm alarm; 812 int err; 813 next = timerqueue_getnext(&rtc->timerqueue); 814 if (!next) { 815 rtc_alarm_disable(rtc); 816 return; 817 } 818 alarm.time = rtc_ktime_to_tm(next->expires); 819 alarm.enabled = 1; 820 err = __rtc_set_alarm(rtc, &alarm); 821 if (err == -ETIME) 822 schedule_work(&rtc->irqwork); 823 } 824 } 825 826 /** 827 * rtc_timer_do_work - Expires rtc timers 828 * @rtc rtc device 829 * @timer timer being removed. 830 * 831 * Expires rtc timers. Reprograms next alarm event if needed. 832 * Called via worktask. 833 * 834 * Serializes access to timerqueue via ops_lock mutex 835 */ 836 void rtc_timer_do_work(struct work_struct *work) 837 { 838 struct rtc_timer *timer; 839 struct timerqueue_node *next; 840 ktime_t now; 841 struct rtc_time tm; 842 843 struct rtc_device *rtc = 844 container_of(work, struct rtc_device, irqwork); 845 846 mutex_lock(&rtc->ops_lock); 847 again: 848 pm_relax(rtc->dev.parent); 849 __rtc_read_time(rtc, &tm); 850 now = rtc_tm_to_ktime(tm); 851 while ((next = timerqueue_getnext(&rtc->timerqueue))) { 852 if (next->expires.tv64 > now.tv64) 853 break; 854 855 /* expire timer */ 856 timer = container_of(next, struct rtc_timer, node); 857 timerqueue_del(&rtc->timerqueue, &timer->node); 858 timer->enabled = 0; 859 if (timer->task.func) 860 timer->task.func(timer->task.private_data); 861 862 /* Re-add/fwd periodic timers */ 863 if (ktime_to_ns(timer->period)) { 864 timer->node.expires = ktime_add(timer->node.expires, 865 timer->period); 866 timer->enabled = 1; 867 timerqueue_add(&rtc->timerqueue, &timer->node); 868 } 869 } 870 871 /* Set next alarm */ 872 if (next) { 873 struct rtc_wkalrm alarm; 874 int err; 875 alarm.time = rtc_ktime_to_tm(next->expires); 876 alarm.enabled = 1; 877 err = __rtc_set_alarm(rtc, &alarm); 878 if (err == -ETIME) 879 goto again; 880 } else 881 rtc_alarm_disable(rtc); 882 883 mutex_unlock(&rtc->ops_lock); 884 } 885 886 887 /* rtc_timer_init - Initializes an rtc_timer 888 * @timer: timer to be intiialized 889 * @f: function pointer to be called when timer fires 890 * @data: private data passed to function pointer 891 * 892 * Kernel interface to initializing an rtc_timer. 893 */ 894 void rtc_timer_init(struct rtc_timer *timer, void (*f)(void* p), void* data) 895 { 896 timerqueue_init(&timer->node); 897 timer->enabled = 0; 898 timer->task.func = f; 899 timer->task.private_data = data; 900 } 901 902 /* rtc_timer_start - Sets an rtc_timer to fire in the future 903 * @ rtc: rtc device to be used 904 * @ timer: timer being set 905 * @ expires: time at which to expire the timer 906 * @ period: period that the timer will recur 907 * 908 * Kernel interface to set an rtc_timer 909 */ 910 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer* timer, 911 ktime_t expires, ktime_t period) 912 { 913 int ret = 0; 914 mutex_lock(&rtc->ops_lock); 915 if (timer->enabled) 916 rtc_timer_remove(rtc, timer); 917 918 timer->node.expires = expires; 919 timer->period = period; 920 921 ret = rtc_timer_enqueue(rtc, timer); 922 923 mutex_unlock(&rtc->ops_lock); 924 return ret; 925 } 926 927 /* rtc_timer_cancel - Stops an rtc_timer 928 * @ rtc: rtc device to be used 929 * @ timer: timer being set 930 * 931 * Kernel interface to cancel an rtc_timer 932 */ 933 int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer* timer) 934 { 935 int ret = 0; 936 mutex_lock(&rtc->ops_lock); 937 if (timer->enabled) 938 rtc_timer_remove(rtc, timer); 939 mutex_unlock(&rtc->ops_lock); 940 return ret; 941 } 942 943 944