xref: /openbmc/linux/drivers/rtc/interface.c (revision 83a06bf5)
1 /*
2  * RTC subsystem, interface functions
3  *
4  * Copyright (C) 2005 Tower Technologies
5  * Author: Alessandro Zummo <a.zummo@towertech.it>
6  *
7  * based on arch/arm/common/rtctime.c
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12 */
13 
14 #include <linux/rtc.h>
15 #include <linux/sched.h>
16 #include <linux/log2.h>
17 #include <linux/workqueue.h>
18 
19 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
20 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
21 
22 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
23 {
24 	int err;
25 	if (!rtc->ops)
26 		err = -ENODEV;
27 	else if (!rtc->ops->read_time)
28 		err = -EINVAL;
29 	else {
30 		memset(tm, 0, sizeof(struct rtc_time));
31 		err = rtc->ops->read_time(rtc->dev.parent, tm);
32 	}
33 	return err;
34 }
35 
36 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
37 {
38 	int err;
39 
40 	err = mutex_lock_interruptible(&rtc->ops_lock);
41 	if (err)
42 		return err;
43 
44 	err = __rtc_read_time(rtc, tm);
45 	mutex_unlock(&rtc->ops_lock);
46 	return err;
47 }
48 EXPORT_SYMBOL_GPL(rtc_read_time);
49 
50 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
51 {
52 	int err;
53 
54 	err = rtc_valid_tm(tm);
55 	if (err != 0)
56 		return err;
57 
58 	err = mutex_lock_interruptible(&rtc->ops_lock);
59 	if (err)
60 		return err;
61 
62 	if (!rtc->ops)
63 		err = -ENODEV;
64 	else if (rtc->ops->set_time)
65 		err = rtc->ops->set_time(rtc->dev.parent, tm);
66 	else if (rtc->ops->set_mmss) {
67 		unsigned long secs;
68 		err = rtc_tm_to_time(tm, &secs);
69 		if (err == 0)
70 			err = rtc->ops->set_mmss(rtc->dev.parent, secs);
71 	} else
72 		err = -EINVAL;
73 
74 	mutex_unlock(&rtc->ops_lock);
75 	return err;
76 }
77 EXPORT_SYMBOL_GPL(rtc_set_time);
78 
79 int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
80 {
81 	int err;
82 
83 	err = mutex_lock_interruptible(&rtc->ops_lock);
84 	if (err)
85 		return err;
86 
87 	if (!rtc->ops)
88 		err = -ENODEV;
89 	else if (rtc->ops->set_mmss)
90 		err = rtc->ops->set_mmss(rtc->dev.parent, secs);
91 	else if (rtc->ops->read_time && rtc->ops->set_time) {
92 		struct rtc_time new, old;
93 
94 		err = rtc->ops->read_time(rtc->dev.parent, &old);
95 		if (err == 0) {
96 			rtc_time_to_tm(secs, &new);
97 
98 			/*
99 			 * avoid writing when we're going to change the day of
100 			 * the month. We will retry in the next minute. This
101 			 * basically means that if the RTC must not drift
102 			 * by more than 1 minute in 11 minutes.
103 			 */
104 			if (!((old.tm_hour == 23 && old.tm_min == 59) ||
105 				(new.tm_hour == 23 && new.tm_min == 59)))
106 				err = rtc->ops->set_time(rtc->dev.parent,
107 						&new);
108 		}
109 	}
110 	else
111 		err = -EINVAL;
112 
113 	mutex_unlock(&rtc->ops_lock);
114 
115 	return err;
116 }
117 EXPORT_SYMBOL_GPL(rtc_set_mmss);
118 
119 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
120 {
121 	int err;
122 
123 	err = mutex_lock_interruptible(&rtc->ops_lock);
124 	if (err)
125 		return err;
126 	if (rtc->ops == NULL)
127 		err = -ENODEV;
128 	else if (!rtc->ops->read_alarm)
129 		err = -EINVAL;
130 	else {
131 		memset(alarm, 0, sizeof(struct rtc_wkalrm));
132 		alarm->enabled = rtc->aie_timer.enabled;
133 		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
134 	}
135 	mutex_unlock(&rtc->ops_lock);
136 
137 	return err;
138 }
139 EXPORT_SYMBOL_GPL(rtc_read_alarm);
140 
141 int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
142 {
143 	struct rtc_time tm;
144 	long now, scheduled;
145 	int err;
146 
147 	err = rtc_valid_tm(&alarm->time);
148 	if (err)
149 		return err;
150 	rtc_tm_to_time(&alarm->time, &scheduled);
151 
152 	/* Make sure we're not setting alarms in the past */
153 	err = __rtc_read_time(rtc, &tm);
154 	rtc_tm_to_time(&tm, &now);
155 	if (scheduled <= now)
156 		return -ETIME;
157 	/*
158 	 * XXX - We just checked to make sure the alarm time is not
159 	 * in the past, but there is still a race window where if
160 	 * the is alarm set for the next second and the second ticks
161 	 * over right here, before we set the alarm.
162 	 */
163 
164 	if (!rtc->ops)
165 		err = -ENODEV;
166 	else if (!rtc->ops->set_alarm)
167 		err = -EINVAL;
168 	else
169 		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
170 
171 	return err;
172 }
173 
174 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
175 {
176 	int err;
177 
178 	err = rtc_valid_tm(&alarm->time);
179 	if (err != 0)
180 		return err;
181 
182 	err = mutex_lock_interruptible(&rtc->ops_lock);
183 	if (err)
184 		return err;
185 	if (rtc->aie_timer.enabled) {
186 		rtc_timer_remove(rtc, &rtc->aie_timer);
187 	}
188 	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
189 	rtc->aie_timer.period = ktime_set(0, 0);
190 	if (alarm->enabled) {
191 		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
192 	}
193 	mutex_unlock(&rtc->ops_lock);
194 	return err;
195 }
196 EXPORT_SYMBOL_GPL(rtc_set_alarm);
197 
198 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
199 {
200 	int err = mutex_lock_interruptible(&rtc->ops_lock);
201 	if (err)
202 		return err;
203 
204 	if (rtc->aie_timer.enabled != enabled) {
205 		if (enabled)
206 			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
207 		else
208 			rtc_timer_remove(rtc, &rtc->aie_timer);
209 	}
210 
211 	if (err)
212 		return err;
213 
214 	if (!rtc->ops)
215 		err = -ENODEV;
216 	else if (!rtc->ops->alarm_irq_enable)
217 		err = -EINVAL;
218 	else
219 		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
220 
221 	mutex_unlock(&rtc->ops_lock);
222 	return err;
223 }
224 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
225 
226 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
227 {
228 	int err = mutex_lock_interruptible(&rtc->ops_lock);
229 	if (err)
230 		return err;
231 
232 	/* make sure we're changing state */
233 	if (rtc->uie_rtctimer.enabled == enabled)
234 		goto out;
235 
236 	if (enabled) {
237 		struct rtc_time tm;
238 		ktime_t now, onesec;
239 
240 		__rtc_read_time(rtc, &tm);
241 		onesec = ktime_set(1, 0);
242 		now = rtc_tm_to_ktime(tm);
243 		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
244 		rtc->uie_rtctimer.period = ktime_set(1, 0);
245 		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
246 	} else
247 		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
248 
249 out:
250 	mutex_unlock(&rtc->ops_lock);
251 	return err;
252 
253 }
254 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
255 
256 
257 /**
258  * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
259  * @rtc: pointer to the rtc device
260  *
261  * This function is called when an AIE, UIE or PIE mode interrupt
262  * has occured (or been emulated).
263  *
264  * Triggers the registered irq_task function callback.
265  */
266 static void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
267 {
268 	unsigned long flags;
269 
270 	/* mark one irq of the appropriate mode */
271 	spin_lock_irqsave(&rtc->irq_lock, flags);
272 	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
273 	spin_unlock_irqrestore(&rtc->irq_lock, flags);
274 
275 	/* call the task func */
276 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
277 	if (rtc->irq_task)
278 		rtc->irq_task->func(rtc->irq_task->private_data);
279 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
280 
281 	wake_up_interruptible(&rtc->irq_queue);
282 	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
283 }
284 
285 
286 /**
287  * rtc_aie_update_irq - AIE mode rtctimer hook
288  * @private: pointer to the rtc_device
289  *
290  * This functions is called when the aie_timer expires.
291  */
292 void rtc_aie_update_irq(void *private)
293 {
294 	struct rtc_device *rtc = (struct rtc_device *)private;
295 	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
296 }
297 
298 
299 /**
300  * rtc_uie_update_irq - UIE mode rtctimer hook
301  * @private: pointer to the rtc_device
302  *
303  * This functions is called when the uie_timer expires.
304  */
305 void rtc_uie_update_irq(void *private)
306 {
307 	struct rtc_device *rtc = (struct rtc_device *)private;
308 	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
309 }
310 
311 
312 /**
313  * rtc_pie_update_irq - PIE mode hrtimer hook
314  * @timer: pointer to the pie mode hrtimer
315  *
316  * This function is used to emulate PIE mode interrupts
317  * using an hrtimer. This function is called when the periodic
318  * hrtimer expires.
319  */
320 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
321 {
322 	struct rtc_device *rtc;
323 	ktime_t period;
324 	int count;
325 	rtc = container_of(timer, struct rtc_device, pie_timer);
326 
327 	period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
328 	count = hrtimer_forward_now(timer, period);
329 
330 	rtc_handle_legacy_irq(rtc, count, RTC_PF);
331 
332 	return HRTIMER_RESTART;
333 }
334 
335 /**
336  * rtc_update_irq - Triggered when a RTC interrupt occurs.
337  * @rtc: the rtc device
338  * @num: how many irqs are being reported (usually one)
339  * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
340  * Context: any
341  */
342 void rtc_update_irq(struct rtc_device *rtc,
343 		unsigned long num, unsigned long events)
344 {
345 	schedule_work(&rtc->irqwork);
346 }
347 EXPORT_SYMBOL_GPL(rtc_update_irq);
348 
349 static int __rtc_match(struct device *dev, void *data)
350 {
351 	char *name = (char *)data;
352 
353 	if (strcmp(dev_name(dev), name) == 0)
354 		return 1;
355 	return 0;
356 }
357 
358 struct rtc_device *rtc_class_open(char *name)
359 {
360 	struct device *dev;
361 	struct rtc_device *rtc = NULL;
362 
363 	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
364 	if (dev)
365 		rtc = to_rtc_device(dev);
366 
367 	if (rtc) {
368 		if (!try_module_get(rtc->owner)) {
369 			put_device(dev);
370 			rtc = NULL;
371 		}
372 	}
373 
374 	return rtc;
375 }
376 EXPORT_SYMBOL_GPL(rtc_class_open);
377 
378 void rtc_class_close(struct rtc_device *rtc)
379 {
380 	module_put(rtc->owner);
381 	put_device(&rtc->dev);
382 }
383 EXPORT_SYMBOL_GPL(rtc_class_close);
384 
385 int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
386 {
387 	int retval = -EBUSY;
388 
389 	if (task == NULL || task->func == NULL)
390 		return -EINVAL;
391 
392 	/* Cannot register while the char dev is in use */
393 	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
394 		return -EBUSY;
395 
396 	spin_lock_irq(&rtc->irq_task_lock);
397 	if (rtc->irq_task == NULL) {
398 		rtc->irq_task = task;
399 		retval = 0;
400 	}
401 	spin_unlock_irq(&rtc->irq_task_lock);
402 
403 	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
404 
405 	return retval;
406 }
407 EXPORT_SYMBOL_GPL(rtc_irq_register);
408 
409 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
410 {
411 	spin_lock_irq(&rtc->irq_task_lock);
412 	if (rtc->irq_task == task)
413 		rtc->irq_task = NULL;
414 	spin_unlock_irq(&rtc->irq_task_lock);
415 }
416 EXPORT_SYMBOL_GPL(rtc_irq_unregister);
417 
418 /**
419  * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
420  * @rtc: the rtc device
421  * @task: currently registered with rtc_irq_register()
422  * @enabled: true to enable periodic IRQs
423  * Context: any
424  *
425  * Note that rtc_irq_set_freq() should previously have been used to
426  * specify the desired frequency of periodic IRQ task->func() callbacks.
427  */
428 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
429 {
430 	int err = 0;
431 	unsigned long flags;
432 
433 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
434 	if (rtc->irq_task != NULL && task == NULL)
435 		err = -EBUSY;
436 	if (rtc->irq_task != task)
437 		err = -EACCES;
438 
439 	if (enabled) {
440 		ktime_t period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
441 		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
442 	} else {
443 		hrtimer_cancel(&rtc->pie_timer);
444 	}
445 	rtc->pie_enabled = enabled;
446 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
447 
448 	return err;
449 }
450 EXPORT_SYMBOL_GPL(rtc_irq_set_state);
451 
452 /**
453  * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
454  * @rtc: the rtc device
455  * @task: currently registered with rtc_irq_register()
456  * @freq: positive frequency with which task->func() will be called
457  * Context: any
458  *
459  * Note that rtc_irq_set_state() is used to enable or disable the
460  * periodic IRQs.
461  */
462 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
463 {
464 	int err = 0;
465 	unsigned long flags;
466 
467 	if (freq <= 0)
468 		return -EINVAL;
469 
470 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
471 	if (rtc->irq_task != NULL && task == NULL)
472 		err = -EBUSY;
473 	if (rtc->irq_task != task)
474 		err = -EACCES;
475 	if (err == 0) {
476 		rtc->irq_freq = freq;
477 		if (rtc->pie_enabled) {
478 			ktime_t period;
479 			hrtimer_cancel(&rtc->pie_timer);
480 			period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
481 			hrtimer_start(&rtc->pie_timer, period,
482 					HRTIMER_MODE_REL);
483 		}
484 	}
485 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
486 	return err;
487 }
488 EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
489 
490 /**
491  * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
492  * @rtc rtc device
493  * @timer timer being added.
494  *
495  * Enqueues a timer onto the rtc devices timerqueue and sets
496  * the next alarm event appropriately.
497  *
498  * Sets the enabled bit on the added timer.
499  *
500  * Must hold ops_lock for proper serialization of timerqueue
501  */
502 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
503 {
504 	timer->enabled = 1;
505 	timerqueue_add(&rtc->timerqueue, &timer->node);
506 	if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
507 		struct rtc_wkalrm alarm;
508 		int err;
509 		alarm.time = rtc_ktime_to_tm(timer->node.expires);
510 		alarm.enabled = 1;
511 		err = __rtc_set_alarm(rtc, &alarm);
512 		if (err == -ETIME)
513 			schedule_work(&rtc->irqwork);
514 		else if (err) {
515 			timerqueue_del(&rtc->timerqueue, &timer->node);
516 			timer->enabled = 0;
517 			return err;
518 		}
519 	}
520 	return 0;
521 }
522 
523 /**
524  * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
525  * @rtc rtc device
526  * @timer timer being removed.
527  *
528  * Removes a timer onto the rtc devices timerqueue and sets
529  * the next alarm event appropriately.
530  *
531  * Clears the enabled bit on the removed timer.
532  *
533  * Must hold ops_lock for proper serialization of timerqueue
534  */
535 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
536 {
537 	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
538 	timerqueue_del(&rtc->timerqueue, &timer->node);
539 	timer->enabled = 0;
540 	if (next == &timer->node) {
541 		struct rtc_wkalrm alarm;
542 		int err;
543 		next = timerqueue_getnext(&rtc->timerqueue);
544 		if (!next)
545 			return;
546 		alarm.time = rtc_ktime_to_tm(next->expires);
547 		alarm.enabled = 1;
548 		err = __rtc_set_alarm(rtc, &alarm);
549 		if (err == -ETIME)
550 			schedule_work(&rtc->irqwork);
551 	}
552 }
553 
554 /**
555  * rtc_timer_do_work - Expires rtc timers
556  * @rtc rtc device
557  * @timer timer being removed.
558  *
559  * Expires rtc timers. Reprograms next alarm event if needed.
560  * Called via worktask.
561  *
562  * Serializes access to timerqueue via ops_lock mutex
563  */
564 void rtc_timer_do_work(struct work_struct *work)
565 {
566 	struct rtc_timer *timer;
567 	struct timerqueue_node *next;
568 	ktime_t now;
569 	struct rtc_time tm;
570 
571 	struct rtc_device *rtc =
572 		container_of(work, struct rtc_device, irqwork);
573 
574 	mutex_lock(&rtc->ops_lock);
575 again:
576 	__rtc_read_time(rtc, &tm);
577 	now = rtc_tm_to_ktime(tm);
578 	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
579 		if (next->expires.tv64 > now.tv64)
580 			break;
581 
582 		/* expire timer */
583 		timer = container_of(next, struct rtc_timer, node);
584 		timerqueue_del(&rtc->timerqueue, &timer->node);
585 		timer->enabled = 0;
586 		if (timer->task.func)
587 			timer->task.func(timer->task.private_data);
588 
589 		/* Re-add/fwd periodic timers */
590 		if (ktime_to_ns(timer->period)) {
591 			timer->node.expires = ktime_add(timer->node.expires,
592 							timer->period);
593 			timer->enabled = 1;
594 			timerqueue_add(&rtc->timerqueue, &timer->node);
595 		}
596 	}
597 
598 	/* Set next alarm */
599 	if (next) {
600 		struct rtc_wkalrm alarm;
601 		int err;
602 		alarm.time = rtc_ktime_to_tm(next->expires);
603 		alarm.enabled = 1;
604 		err = __rtc_set_alarm(rtc, &alarm);
605 		if (err == -ETIME)
606 			goto again;
607 	}
608 
609 	mutex_unlock(&rtc->ops_lock);
610 }
611 
612 
613 /* rtc_timer_init - Initializes an rtc_timer
614  * @timer: timer to be intiialized
615  * @f: function pointer to be called when timer fires
616  * @data: private data passed to function pointer
617  *
618  * Kernel interface to initializing an rtc_timer.
619  */
620 void rtc_timer_init(struct rtc_timer *timer, void (*f)(void* p), void* data)
621 {
622 	timerqueue_init(&timer->node);
623 	timer->enabled = 0;
624 	timer->task.func = f;
625 	timer->task.private_data = data;
626 }
627 
628 /* rtc_timer_start - Sets an rtc_timer to fire in the future
629  * @ rtc: rtc device to be used
630  * @ timer: timer being set
631  * @ expires: time at which to expire the timer
632  * @ period: period that the timer will recur
633  *
634  * Kernel interface to set an rtc_timer
635  */
636 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer* timer,
637 			ktime_t expires, ktime_t period)
638 {
639 	int ret = 0;
640 	mutex_lock(&rtc->ops_lock);
641 	if (timer->enabled)
642 		rtc_timer_remove(rtc, timer);
643 
644 	timer->node.expires = expires;
645 	timer->period = period;
646 
647 	ret = rtc_timer_enqueue(rtc, timer);
648 
649 	mutex_unlock(&rtc->ops_lock);
650 	return ret;
651 }
652 
653 /* rtc_timer_cancel - Stops an rtc_timer
654  * @ rtc: rtc device to be used
655  * @ timer: timer being set
656  *
657  * Kernel interface to cancel an rtc_timer
658  */
659 int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer* timer)
660 {
661 	int ret = 0;
662 	mutex_lock(&rtc->ops_lock);
663 	if (timer->enabled)
664 		rtc_timer_remove(rtc, timer);
665 	mutex_unlock(&rtc->ops_lock);
666 	return ret;
667 }
668 
669 
670