xref: /openbmc/linux/drivers/rtc/interface.c (revision 7dd65feb)
1 /*
2  * RTC subsystem, interface functions
3  *
4  * Copyright (C) 2005 Tower Technologies
5  * Author: Alessandro Zummo <a.zummo@towertech.it>
6  *
7  * based on arch/arm/common/rtctime.c
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12 */
13 
14 #include <linux/rtc.h>
15 #include <linux/sched.h>
16 #include <linux/log2.h>
17 
18 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
19 {
20 	int err;
21 
22 	err = mutex_lock_interruptible(&rtc->ops_lock);
23 	if (err)
24 		return err;
25 
26 	if (!rtc->ops)
27 		err = -ENODEV;
28 	else if (!rtc->ops->read_time)
29 		err = -EINVAL;
30 	else {
31 		memset(tm, 0, sizeof(struct rtc_time));
32 		err = rtc->ops->read_time(rtc->dev.parent, tm);
33 	}
34 
35 	mutex_unlock(&rtc->ops_lock);
36 	return err;
37 }
38 EXPORT_SYMBOL_GPL(rtc_read_time);
39 
40 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
41 {
42 	int err;
43 
44 	err = rtc_valid_tm(tm);
45 	if (err != 0)
46 		return err;
47 
48 	err = mutex_lock_interruptible(&rtc->ops_lock);
49 	if (err)
50 		return err;
51 
52 	if (!rtc->ops)
53 		err = -ENODEV;
54 	else if (rtc->ops->set_time)
55 		err = rtc->ops->set_time(rtc->dev.parent, tm);
56 	else if (rtc->ops->set_mmss) {
57 		unsigned long secs;
58 		err = rtc_tm_to_time(tm, &secs);
59 		if (err == 0)
60 			err = rtc->ops->set_mmss(rtc->dev.parent, secs);
61 	} else
62 		err = -EINVAL;
63 
64 	mutex_unlock(&rtc->ops_lock);
65 	return err;
66 }
67 EXPORT_SYMBOL_GPL(rtc_set_time);
68 
69 int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
70 {
71 	int err;
72 
73 	err = mutex_lock_interruptible(&rtc->ops_lock);
74 	if (err)
75 		return err;
76 
77 	if (!rtc->ops)
78 		err = -ENODEV;
79 	else if (rtc->ops->set_mmss)
80 		err = rtc->ops->set_mmss(rtc->dev.parent, secs);
81 	else if (rtc->ops->read_time && rtc->ops->set_time) {
82 		struct rtc_time new, old;
83 
84 		err = rtc->ops->read_time(rtc->dev.parent, &old);
85 		if (err == 0) {
86 			rtc_time_to_tm(secs, &new);
87 
88 			/*
89 			 * avoid writing when we're going to change the day of
90 			 * the month. We will retry in the next minute. This
91 			 * basically means that if the RTC must not drift
92 			 * by more than 1 minute in 11 minutes.
93 			 */
94 			if (!((old.tm_hour == 23 && old.tm_min == 59) ||
95 				(new.tm_hour == 23 && new.tm_min == 59)))
96 				err = rtc->ops->set_time(rtc->dev.parent,
97 						&new);
98 		}
99 	}
100 	else
101 		err = -EINVAL;
102 
103 	mutex_unlock(&rtc->ops_lock);
104 
105 	return err;
106 }
107 EXPORT_SYMBOL_GPL(rtc_set_mmss);
108 
109 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
110 {
111 	int err;
112 
113 	err = mutex_lock_interruptible(&rtc->ops_lock);
114 	if (err)
115 		return err;
116 
117 	if (rtc->ops == NULL)
118 		err = -ENODEV;
119 	else if (!rtc->ops->read_alarm)
120 		err = -EINVAL;
121 	else {
122 		memset(alarm, 0, sizeof(struct rtc_wkalrm));
123 		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
124 	}
125 
126 	mutex_unlock(&rtc->ops_lock);
127 	return err;
128 }
129 
130 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
131 {
132 	int err;
133 	struct rtc_time before, now;
134 	int first_time = 1;
135 	unsigned long t_now, t_alm;
136 	enum { none, day, month, year } missing = none;
137 	unsigned days;
138 
139 	/* The lower level RTC driver may return -1 in some fields,
140 	 * creating invalid alarm->time values, for reasons like:
141 	 *
142 	 *   - The hardware may not be capable of filling them in;
143 	 *     many alarms match only on time-of-day fields, not
144 	 *     day/month/year calendar data.
145 	 *
146 	 *   - Some hardware uses illegal values as "wildcard" match
147 	 *     values, which non-Linux firmware (like a BIOS) may try
148 	 *     to set up as e.g. "alarm 15 minutes after each hour".
149 	 *     Linux uses only oneshot alarms.
150 	 *
151 	 * When we see that here, we deal with it by using values from
152 	 * a current RTC timestamp for any missing (-1) values.  The
153 	 * RTC driver prevents "periodic alarm" modes.
154 	 *
155 	 * But this can be racey, because some fields of the RTC timestamp
156 	 * may have wrapped in the interval since we read the RTC alarm,
157 	 * which would lead to us inserting inconsistent values in place
158 	 * of the -1 fields.
159 	 *
160 	 * Reading the alarm and timestamp in the reverse sequence
161 	 * would have the same race condition, and not solve the issue.
162 	 *
163 	 * So, we must first read the RTC timestamp,
164 	 * then read the RTC alarm value,
165 	 * and then read a second RTC timestamp.
166 	 *
167 	 * If any fields of the second timestamp have changed
168 	 * when compared with the first timestamp, then we know
169 	 * our timestamp may be inconsistent with that used by
170 	 * the low-level rtc_read_alarm_internal() function.
171 	 *
172 	 * So, when the two timestamps disagree, we just loop and do
173 	 * the process again to get a fully consistent set of values.
174 	 *
175 	 * This could all instead be done in the lower level driver,
176 	 * but since more than one lower level RTC implementation needs it,
177 	 * then it's probably best best to do it here instead of there..
178 	 */
179 
180 	/* Get the "before" timestamp */
181 	err = rtc_read_time(rtc, &before);
182 	if (err < 0)
183 		return err;
184 	do {
185 		if (!first_time)
186 			memcpy(&before, &now, sizeof(struct rtc_time));
187 		first_time = 0;
188 
189 		/* get the RTC alarm values, which may be incomplete */
190 		err = rtc_read_alarm_internal(rtc, alarm);
191 		if (err)
192 			return err;
193 		if (!alarm->enabled)
194 			return 0;
195 
196 		/* full-function RTCs won't have such missing fields */
197 		if (rtc_valid_tm(&alarm->time) == 0)
198 			return 0;
199 
200 		/* get the "after" timestamp, to detect wrapped fields */
201 		err = rtc_read_time(rtc, &now);
202 		if (err < 0)
203 			return err;
204 
205 		/* note that tm_sec is a "don't care" value here: */
206 	} while (   before.tm_min   != now.tm_min
207 		 || before.tm_hour  != now.tm_hour
208 		 || before.tm_mon   != now.tm_mon
209 		 || before.tm_year  != now.tm_year);
210 
211 	/* Fill in the missing alarm fields using the timestamp; we
212 	 * know there's at least one since alarm->time is invalid.
213 	 */
214 	if (alarm->time.tm_sec == -1)
215 		alarm->time.tm_sec = now.tm_sec;
216 	if (alarm->time.tm_min == -1)
217 		alarm->time.tm_min = now.tm_min;
218 	if (alarm->time.tm_hour == -1)
219 		alarm->time.tm_hour = now.tm_hour;
220 
221 	/* For simplicity, only support date rollover for now */
222 	if (alarm->time.tm_mday == -1) {
223 		alarm->time.tm_mday = now.tm_mday;
224 		missing = day;
225 	}
226 	if (alarm->time.tm_mon == -1) {
227 		alarm->time.tm_mon = now.tm_mon;
228 		if (missing == none)
229 			missing = month;
230 	}
231 	if (alarm->time.tm_year == -1) {
232 		alarm->time.tm_year = now.tm_year;
233 		if (missing == none)
234 			missing = year;
235 	}
236 
237 	/* with luck, no rollover is needed */
238 	rtc_tm_to_time(&now, &t_now);
239 	rtc_tm_to_time(&alarm->time, &t_alm);
240 	if (t_now < t_alm)
241 		goto done;
242 
243 	switch (missing) {
244 
245 	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
246 	 * that will trigger at 5am will do so at 5am Tuesday, which
247 	 * could also be in the next month or year.  This is a common
248 	 * case, especially for PCs.
249 	 */
250 	case day:
251 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
252 		t_alm += 24 * 60 * 60;
253 		rtc_time_to_tm(t_alm, &alarm->time);
254 		break;
255 
256 	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
257 	 * be next month.  An alarm matching on the 30th, 29th, or 28th
258 	 * may end up in the month after that!  Many newer PCs support
259 	 * this type of alarm.
260 	 */
261 	case month:
262 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
263 		do {
264 			if (alarm->time.tm_mon < 11)
265 				alarm->time.tm_mon++;
266 			else {
267 				alarm->time.tm_mon = 0;
268 				alarm->time.tm_year++;
269 			}
270 			days = rtc_month_days(alarm->time.tm_mon,
271 					alarm->time.tm_year);
272 		} while (days < alarm->time.tm_mday);
273 		break;
274 
275 	/* Year rollover ... easy except for leap years! */
276 	case year:
277 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
278 		do {
279 			alarm->time.tm_year++;
280 		} while (rtc_valid_tm(&alarm->time) != 0);
281 		break;
282 
283 	default:
284 		dev_warn(&rtc->dev, "alarm rollover not handled\n");
285 	}
286 
287 done:
288 	return 0;
289 }
290 EXPORT_SYMBOL_GPL(rtc_read_alarm);
291 
292 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
293 {
294 	int err;
295 
296 	err = rtc_valid_tm(&alarm->time);
297 	if (err != 0)
298 		return err;
299 
300 	err = mutex_lock_interruptible(&rtc->ops_lock);
301 	if (err)
302 		return err;
303 
304 	if (!rtc->ops)
305 		err = -ENODEV;
306 	else if (!rtc->ops->set_alarm)
307 		err = -EINVAL;
308 	else
309 		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
310 
311 	mutex_unlock(&rtc->ops_lock);
312 	return err;
313 }
314 EXPORT_SYMBOL_GPL(rtc_set_alarm);
315 
316 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
317 {
318 	int err = mutex_lock_interruptible(&rtc->ops_lock);
319 	if (err)
320 		return err;
321 
322 	if (!rtc->ops)
323 		err = -ENODEV;
324 	else if (!rtc->ops->alarm_irq_enable)
325 		err = -EINVAL;
326 	else
327 		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
328 
329 	mutex_unlock(&rtc->ops_lock);
330 	return err;
331 }
332 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
333 
334 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
335 {
336 	int err = mutex_lock_interruptible(&rtc->ops_lock);
337 	if (err)
338 		return err;
339 
340 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
341 	if (enabled == 0 && rtc->uie_irq_active) {
342 		mutex_unlock(&rtc->ops_lock);
343 		return rtc_dev_update_irq_enable_emul(rtc, enabled);
344 	}
345 #endif
346 
347 	if (!rtc->ops)
348 		err = -ENODEV;
349 	else if (!rtc->ops->update_irq_enable)
350 		err = -EINVAL;
351 	else
352 		err = rtc->ops->update_irq_enable(rtc->dev.parent, enabled);
353 
354 	mutex_unlock(&rtc->ops_lock);
355 
356 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
357 	/*
358 	 * Enable emulation if the driver did not provide
359 	 * the update_irq_enable function pointer or if returned
360 	 * -EINVAL to signal that it has been configured without
361 	 * interrupts or that are not available at the moment.
362 	 */
363 	if (err == -EINVAL)
364 		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
365 #endif
366 	return err;
367 }
368 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
369 
370 /**
371  * rtc_update_irq - report RTC periodic, alarm, and/or update irqs
372  * @rtc: the rtc device
373  * @num: how many irqs are being reported (usually one)
374  * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
375  * Context: any
376  */
377 void rtc_update_irq(struct rtc_device *rtc,
378 		unsigned long num, unsigned long events)
379 {
380 	unsigned long flags;
381 
382 	spin_lock_irqsave(&rtc->irq_lock, flags);
383 	rtc->irq_data = (rtc->irq_data + (num << 8)) | events;
384 	spin_unlock_irqrestore(&rtc->irq_lock, flags);
385 
386 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
387 	if (rtc->irq_task)
388 		rtc->irq_task->func(rtc->irq_task->private_data);
389 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
390 
391 	wake_up_interruptible(&rtc->irq_queue);
392 	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
393 }
394 EXPORT_SYMBOL_GPL(rtc_update_irq);
395 
396 static int __rtc_match(struct device *dev, void *data)
397 {
398 	char *name = (char *)data;
399 
400 	if (strcmp(dev_name(dev), name) == 0)
401 		return 1;
402 	return 0;
403 }
404 
405 struct rtc_device *rtc_class_open(char *name)
406 {
407 	struct device *dev;
408 	struct rtc_device *rtc = NULL;
409 
410 	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
411 	if (dev)
412 		rtc = to_rtc_device(dev);
413 
414 	if (rtc) {
415 		if (!try_module_get(rtc->owner)) {
416 			put_device(dev);
417 			rtc = NULL;
418 		}
419 	}
420 
421 	return rtc;
422 }
423 EXPORT_SYMBOL_GPL(rtc_class_open);
424 
425 void rtc_class_close(struct rtc_device *rtc)
426 {
427 	module_put(rtc->owner);
428 	put_device(&rtc->dev);
429 }
430 EXPORT_SYMBOL_GPL(rtc_class_close);
431 
432 int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
433 {
434 	int retval = -EBUSY;
435 
436 	if (task == NULL || task->func == NULL)
437 		return -EINVAL;
438 
439 	/* Cannot register while the char dev is in use */
440 	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
441 		return -EBUSY;
442 
443 	spin_lock_irq(&rtc->irq_task_lock);
444 	if (rtc->irq_task == NULL) {
445 		rtc->irq_task = task;
446 		retval = 0;
447 	}
448 	spin_unlock_irq(&rtc->irq_task_lock);
449 
450 	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
451 
452 	return retval;
453 }
454 EXPORT_SYMBOL_GPL(rtc_irq_register);
455 
456 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
457 {
458 	spin_lock_irq(&rtc->irq_task_lock);
459 	if (rtc->irq_task == task)
460 		rtc->irq_task = NULL;
461 	spin_unlock_irq(&rtc->irq_task_lock);
462 }
463 EXPORT_SYMBOL_GPL(rtc_irq_unregister);
464 
465 /**
466  * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
467  * @rtc: the rtc device
468  * @task: currently registered with rtc_irq_register()
469  * @enabled: true to enable periodic IRQs
470  * Context: any
471  *
472  * Note that rtc_irq_set_freq() should previously have been used to
473  * specify the desired frequency of periodic IRQ task->func() callbacks.
474  */
475 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
476 {
477 	int err = 0;
478 	unsigned long flags;
479 
480 	if (rtc->ops->irq_set_state == NULL)
481 		return -ENXIO;
482 
483 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
484 	if (rtc->irq_task != NULL && task == NULL)
485 		err = -EBUSY;
486 	if (rtc->irq_task != task)
487 		err = -EACCES;
488 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
489 
490 	if (err == 0)
491 		err = rtc->ops->irq_set_state(rtc->dev.parent, enabled);
492 
493 	return err;
494 }
495 EXPORT_SYMBOL_GPL(rtc_irq_set_state);
496 
497 /**
498  * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
499  * @rtc: the rtc device
500  * @task: currently registered with rtc_irq_register()
501  * @freq: positive frequency with which task->func() will be called
502  * Context: any
503  *
504  * Note that rtc_irq_set_state() is used to enable or disable the
505  * periodic IRQs.
506  */
507 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
508 {
509 	int err = 0;
510 	unsigned long flags;
511 
512 	if (rtc->ops->irq_set_freq == NULL)
513 		return -ENXIO;
514 
515 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
516 	if (rtc->irq_task != NULL && task == NULL)
517 		err = -EBUSY;
518 	if (rtc->irq_task != task)
519 		err = -EACCES;
520 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
521 
522 	if (err == 0) {
523 		err = rtc->ops->irq_set_freq(rtc->dev.parent, freq);
524 		if (err == 0)
525 			rtc->irq_freq = freq;
526 	}
527 	return err;
528 }
529 EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
530