xref: /openbmc/linux/drivers/rtc/interface.c (revision 7b7dfdd2)
1 /*
2  * RTC subsystem, interface functions
3  *
4  * Copyright (C) 2005 Tower Technologies
5  * Author: Alessandro Zummo <a.zummo@towertech.it>
6  *
7  * based on arch/arm/common/rtctime.c
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12 */
13 
14 #include <linux/rtc.h>
15 #include <linux/sched.h>
16 #include <linux/module.h>
17 #include <linux/log2.h>
18 #include <linux/workqueue.h>
19 
20 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
21 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
22 
23 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
24 {
25 	int err;
26 	if (!rtc->ops)
27 		err = -ENODEV;
28 	else if (!rtc->ops->read_time)
29 		err = -EINVAL;
30 	else {
31 		memset(tm, 0, sizeof(struct rtc_time));
32 		err = rtc->ops->read_time(rtc->dev.parent, tm);
33 	}
34 	return err;
35 }
36 
37 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
38 {
39 	int err;
40 
41 	err = mutex_lock_interruptible(&rtc->ops_lock);
42 	if (err)
43 		return err;
44 
45 	err = __rtc_read_time(rtc, tm);
46 	mutex_unlock(&rtc->ops_lock);
47 	return err;
48 }
49 EXPORT_SYMBOL_GPL(rtc_read_time);
50 
51 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
52 {
53 	int err;
54 
55 	err = rtc_valid_tm(tm);
56 	if (err != 0)
57 		return err;
58 
59 	err = mutex_lock_interruptible(&rtc->ops_lock);
60 	if (err)
61 		return err;
62 
63 	if (!rtc->ops)
64 		err = -ENODEV;
65 	else if (rtc->ops->set_time)
66 		err = rtc->ops->set_time(rtc->dev.parent, tm);
67 	else if (rtc->ops->set_mmss) {
68 		unsigned long secs;
69 		err = rtc_tm_to_time(tm, &secs);
70 		if (err == 0)
71 			err = rtc->ops->set_mmss(rtc->dev.parent, secs);
72 	} else
73 		err = -EINVAL;
74 
75 	pm_stay_awake(rtc->dev.parent);
76 	mutex_unlock(&rtc->ops_lock);
77 	/* A timer might have just expired */
78 	schedule_work(&rtc->irqwork);
79 	return err;
80 }
81 EXPORT_SYMBOL_GPL(rtc_set_time);
82 
83 int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
84 {
85 	int err;
86 
87 	err = mutex_lock_interruptible(&rtc->ops_lock);
88 	if (err)
89 		return err;
90 
91 	if (!rtc->ops)
92 		err = -ENODEV;
93 	else if (rtc->ops->set_mmss)
94 		err = rtc->ops->set_mmss(rtc->dev.parent, secs);
95 	else if (rtc->ops->read_time && rtc->ops->set_time) {
96 		struct rtc_time new, old;
97 
98 		err = rtc->ops->read_time(rtc->dev.parent, &old);
99 		if (err == 0) {
100 			rtc_time_to_tm(secs, &new);
101 
102 			/*
103 			 * avoid writing when we're going to change the day of
104 			 * the month. We will retry in the next minute. This
105 			 * basically means that if the RTC must not drift
106 			 * by more than 1 minute in 11 minutes.
107 			 */
108 			if (!((old.tm_hour == 23 && old.tm_min == 59) ||
109 				(new.tm_hour == 23 && new.tm_min == 59)))
110 				err = rtc->ops->set_time(rtc->dev.parent,
111 						&new);
112 		}
113 	} else {
114 		err = -EINVAL;
115 	}
116 
117 	pm_stay_awake(rtc->dev.parent);
118 	mutex_unlock(&rtc->ops_lock);
119 	/* A timer might have just expired */
120 	schedule_work(&rtc->irqwork);
121 
122 	return err;
123 }
124 EXPORT_SYMBOL_GPL(rtc_set_mmss);
125 
126 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
127 {
128 	int err;
129 
130 	err = mutex_lock_interruptible(&rtc->ops_lock);
131 	if (err)
132 		return err;
133 
134 	if (rtc->ops == NULL)
135 		err = -ENODEV;
136 	else if (!rtc->ops->read_alarm)
137 		err = -EINVAL;
138 	else {
139 		memset(alarm, 0, sizeof(struct rtc_wkalrm));
140 		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
141 	}
142 
143 	mutex_unlock(&rtc->ops_lock);
144 	return err;
145 }
146 
147 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
148 {
149 	int err;
150 	struct rtc_time before, now;
151 	int first_time = 1;
152 	unsigned long t_now, t_alm;
153 	enum { none, day, month, year } missing = none;
154 	unsigned days;
155 
156 	/* The lower level RTC driver may return -1 in some fields,
157 	 * creating invalid alarm->time values, for reasons like:
158 	 *
159 	 *   - The hardware may not be capable of filling them in;
160 	 *     many alarms match only on time-of-day fields, not
161 	 *     day/month/year calendar data.
162 	 *
163 	 *   - Some hardware uses illegal values as "wildcard" match
164 	 *     values, which non-Linux firmware (like a BIOS) may try
165 	 *     to set up as e.g. "alarm 15 minutes after each hour".
166 	 *     Linux uses only oneshot alarms.
167 	 *
168 	 * When we see that here, we deal with it by using values from
169 	 * a current RTC timestamp for any missing (-1) values.  The
170 	 * RTC driver prevents "periodic alarm" modes.
171 	 *
172 	 * But this can be racey, because some fields of the RTC timestamp
173 	 * may have wrapped in the interval since we read the RTC alarm,
174 	 * which would lead to us inserting inconsistent values in place
175 	 * of the -1 fields.
176 	 *
177 	 * Reading the alarm and timestamp in the reverse sequence
178 	 * would have the same race condition, and not solve the issue.
179 	 *
180 	 * So, we must first read the RTC timestamp,
181 	 * then read the RTC alarm value,
182 	 * and then read a second RTC timestamp.
183 	 *
184 	 * If any fields of the second timestamp have changed
185 	 * when compared with the first timestamp, then we know
186 	 * our timestamp may be inconsistent with that used by
187 	 * the low-level rtc_read_alarm_internal() function.
188 	 *
189 	 * So, when the two timestamps disagree, we just loop and do
190 	 * the process again to get a fully consistent set of values.
191 	 *
192 	 * This could all instead be done in the lower level driver,
193 	 * but since more than one lower level RTC implementation needs it,
194 	 * then it's probably best best to do it here instead of there..
195 	 */
196 
197 	/* Get the "before" timestamp */
198 	err = rtc_read_time(rtc, &before);
199 	if (err < 0)
200 		return err;
201 	do {
202 		if (!first_time)
203 			memcpy(&before, &now, sizeof(struct rtc_time));
204 		first_time = 0;
205 
206 		/* get the RTC alarm values, which may be incomplete */
207 		err = rtc_read_alarm_internal(rtc, alarm);
208 		if (err)
209 			return err;
210 
211 		/* full-function RTCs won't have such missing fields */
212 		if (rtc_valid_tm(&alarm->time) == 0)
213 			return 0;
214 
215 		/* get the "after" timestamp, to detect wrapped fields */
216 		err = rtc_read_time(rtc, &now);
217 		if (err < 0)
218 			return err;
219 
220 		/* note that tm_sec is a "don't care" value here: */
221 	} while (   before.tm_min   != now.tm_min
222 		 || before.tm_hour  != now.tm_hour
223 		 || before.tm_mon   != now.tm_mon
224 		 || before.tm_year  != now.tm_year);
225 
226 	/* Fill in the missing alarm fields using the timestamp; we
227 	 * know there's at least one since alarm->time is invalid.
228 	 */
229 	if (alarm->time.tm_sec == -1)
230 		alarm->time.tm_sec = now.tm_sec;
231 	if (alarm->time.tm_min == -1)
232 		alarm->time.tm_min = now.tm_min;
233 	if (alarm->time.tm_hour == -1)
234 		alarm->time.tm_hour = now.tm_hour;
235 
236 	/* For simplicity, only support date rollover for now */
237 	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
238 		alarm->time.tm_mday = now.tm_mday;
239 		missing = day;
240 	}
241 	if ((unsigned)alarm->time.tm_mon >= 12) {
242 		alarm->time.tm_mon = now.tm_mon;
243 		if (missing == none)
244 			missing = month;
245 	}
246 	if (alarm->time.tm_year == -1) {
247 		alarm->time.tm_year = now.tm_year;
248 		if (missing == none)
249 			missing = year;
250 	}
251 
252 	/* with luck, no rollover is needed */
253 	rtc_tm_to_time(&now, &t_now);
254 	rtc_tm_to_time(&alarm->time, &t_alm);
255 	if (t_now < t_alm)
256 		goto done;
257 
258 	switch (missing) {
259 
260 	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
261 	 * that will trigger at 5am will do so at 5am Tuesday, which
262 	 * could also be in the next month or year.  This is a common
263 	 * case, especially for PCs.
264 	 */
265 	case day:
266 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
267 		t_alm += 24 * 60 * 60;
268 		rtc_time_to_tm(t_alm, &alarm->time);
269 		break;
270 
271 	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
272 	 * be next month.  An alarm matching on the 30th, 29th, or 28th
273 	 * may end up in the month after that!  Many newer PCs support
274 	 * this type of alarm.
275 	 */
276 	case month:
277 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
278 		do {
279 			if (alarm->time.tm_mon < 11)
280 				alarm->time.tm_mon++;
281 			else {
282 				alarm->time.tm_mon = 0;
283 				alarm->time.tm_year++;
284 			}
285 			days = rtc_month_days(alarm->time.tm_mon,
286 					alarm->time.tm_year);
287 		} while (days < alarm->time.tm_mday);
288 		break;
289 
290 	/* Year rollover ... easy except for leap years! */
291 	case year:
292 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
293 		do {
294 			alarm->time.tm_year++;
295 		} while (!is_leap_year(alarm->time.tm_year + 1900)
296 			&& rtc_valid_tm(&alarm->time) != 0);
297 		break;
298 
299 	default:
300 		dev_warn(&rtc->dev, "alarm rollover not handled\n");
301 	}
302 
303 done:
304 	err = rtc_valid_tm(&alarm->time);
305 
306 	if (err) {
307 		dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
308 			alarm->time.tm_year + 1900, alarm->time.tm_mon + 1,
309 			alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min,
310 			alarm->time.tm_sec);
311 	}
312 
313 	return err;
314 }
315 
316 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
317 {
318 	int err;
319 
320 	err = mutex_lock_interruptible(&rtc->ops_lock);
321 	if (err)
322 		return err;
323 	if (rtc->ops == NULL)
324 		err = -ENODEV;
325 	else if (!rtc->ops->read_alarm)
326 		err = -EINVAL;
327 	else {
328 		memset(alarm, 0, sizeof(struct rtc_wkalrm));
329 		alarm->enabled = rtc->aie_timer.enabled;
330 		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
331 	}
332 	mutex_unlock(&rtc->ops_lock);
333 
334 	return err;
335 }
336 EXPORT_SYMBOL_GPL(rtc_read_alarm);
337 
338 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
339 {
340 	struct rtc_time tm;
341 	long now, scheduled;
342 	int err;
343 
344 	err = rtc_valid_tm(&alarm->time);
345 	if (err)
346 		return err;
347 	rtc_tm_to_time(&alarm->time, &scheduled);
348 
349 	/* Make sure we're not setting alarms in the past */
350 	err = __rtc_read_time(rtc, &tm);
351 	rtc_tm_to_time(&tm, &now);
352 	if (scheduled <= now)
353 		return -ETIME;
354 	/*
355 	 * XXX - We just checked to make sure the alarm time is not
356 	 * in the past, but there is still a race window where if
357 	 * the is alarm set for the next second and the second ticks
358 	 * over right here, before we set the alarm.
359 	 */
360 
361 	if (!rtc->ops)
362 		err = -ENODEV;
363 	else if (!rtc->ops->set_alarm)
364 		err = -EINVAL;
365 	else
366 		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
367 
368 	return err;
369 }
370 
371 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
372 {
373 	int err;
374 
375 	err = rtc_valid_tm(&alarm->time);
376 	if (err != 0)
377 		return err;
378 
379 	err = mutex_lock_interruptible(&rtc->ops_lock);
380 	if (err)
381 		return err;
382 	if (rtc->aie_timer.enabled)
383 		rtc_timer_remove(rtc, &rtc->aie_timer);
384 
385 	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
386 	rtc->aie_timer.period = ktime_set(0, 0);
387 	if (alarm->enabled)
388 		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
389 
390 	mutex_unlock(&rtc->ops_lock);
391 	return err;
392 }
393 EXPORT_SYMBOL_GPL(rtc_set_alarm);
394 
395 /* Called once per device from rtc_device_register */
396 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
397 {
398 	int err;
399 	struct rtc_time now;
400 
401 	err = rtc_valid_tm(&alarm->time);
402 	if (err != 0)
403 		return err;
404 
405 	err = rtc_read_time(rtc, &now);
406 	if (err)
407 		return err;
408 
409 	err = mutex_lock_interruptible(&rtc->ops_lock);
410 	if (err)
411 		return err;
412 
413 	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
414 	rtc->aie_timer.period = ktime_set(0, 0);
415 
416 	/* Alarm has to be enabled & in the futrure for us to enqueue it */
417 	if (alarm->enabled && (rtc_tm_to_ktime(now).tv64 <
418 			 rtc->aie_timer.node.expires.tv64)) {
419 
420 		rtc->aie_timer.enabled = 1;
421 		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
422 	}
423 	mutex_unlock(&rtc->ops_lock);
424 	return err;
425 }
426 EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
427 
428 
429 
430 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
431 {
432 	int err = mutex_lock_interruptible(&rtc->ops_lock);
433 	if (err)
434 		return err;
435 
436 	if (rtc->aie_timer.enabled != enabled) {
437 		if (enabled)
438 			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
439 		else
440 			rtc_timer_remove(rtc, &rtc->aie_timer);
441 	}
442 
443 	if (err)
444 		/* nothing */;
445 	else if (!rtc->ops)
446 		err = -ENODEV;
447 	else if (!rtc->ops->alarm_irq_enable)
448 		err = -EINVAL;
449 	else
450 		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
451 
452 	mutex_unlock(&rtc->ops_lock);
453 	return err;
454 }
455 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
456 
457 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
458 {
459 	int err = mutex_lock_interruptible(&rtc->ops_lock);
460 	if (err)
461 		return err;
462 
463 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
464 	if (enabled == 0 && rtc->uie_irq_active) {
465 		mutex_unlock(&rtc->ops_lock);
466 		return rtc_dev_update_irq_enable_emul(rtc, 0);
467 	}
468 #endif
469 	/* make sure we're changing state */
470 	if (rtc->uie_rtctimer.enabled == enabled)
471 		goto out;
472 
473 	if (rtc->uie_unsupported) {
474 		err = -EINVAL;
475 		goto out;
476 	}
477 
478 	if (enabled) {
479 		struct rtc_time tm;
480 		ktime_t now, onesec;
481 
482 		__rtc_read_time(rtc, &tm);
483 		onesec = ktime_set(1, 0);
484 		now = rtc_tm_to_ktime(tm);
485 		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
486 		rtc->uie_rtctimer.period = ktime_set(1, 0);
487 		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
488 	} else
489 		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
490 
491 out:
492 	mutex_unlock(&rtc->ops_lock);
493 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
494 	/*
495 	 * Enable emulation if the driver did not provide
496 	 * the update_irq_enable function pointer or if returned
497 	 * -EINVAL to signal that it has been configured without
498 	 * interrupts or that are not available at the moment.
499 	 */
500 	if (err == -EINVAL)
501 		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
502 #endif
503 	return err;
504 
505 }
506 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
507 
508 
509 /**
510  * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
511  * @rtc: pointer to the rtc device
512  *
513  * This function is called when an AIE, UIE or PIE mode interrupt
514  * has occurred (or been emulated).
515  *
516  * Triggers the registered irq_task function callback.
517  */
518 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
519 {
520 	unsigned long flags;
521 
522 	/* mark one irq of the appropriate mode */
523 	spin_lock_irqsave(&rtc->irq_lock, flags);
524 	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
525 	spin_unlock_irqrestore(&rtc->irq_lock, flags);
526 
527 	/* call the task func */
528 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
529 	if (rtc->irq_task)
530 		rtc->irq_task->func(rtc->irq_task->private_data);
531 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
532 
533 	wake_up_interruptible(&rtc->irq_queue);
534 	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
535 }
536 
537 
538 /**
539  * rtc_aie_update_irq - AIE mode rtctimer hook
540  * @private: pointer to the rtc_device
541  *
542  * This functions is called when the aie_timer expires.
543  */
544 void rtc_aie_update_irq(void *private)
545 {
546 	struct rtc_device *rtc = (struct rtc_device *)private;
547 	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
548 }
549 
550 
551 /**
552  * rtc_uie_update_irq - UIE mode rtctimer hook
553  * @private: pointer to the rtc_device
554  *
555  * This functions is called when the uie_timer expires.
556  */
557 void rtc_uie_update_irq(void *private)
558 {
559 	struct rtc_device *rtc = (struct rtc_device *)private;
560 	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
561 }
562 
563 
564 /**
565  * rtc_pie_update_irq - PIE mode hrtimer hook
566  * @timer: pointer to the pie mode hrtimer
567  *
568  * This function is used to emulate PIE mode interrupts
569  * using an hrtimer. This function is called when the periodic
570  * hrtimer expires.
571  */
572 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
573 {
574 	struct rtc_device *rtc;
575 	ktime_t period;
576 	int count;
577 	rtc = container_of(timer, struct rtc_device, pie_timer);
578 
579 	period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
580 	count = hrtimer_forward_now(timer, period);
581 
582 	rtc_handle_legacy_irq(rtc, count, RTC_PF);
583 
584 	return HRTIMER_RESTART;
585 }
586 
587 /**
588  * rtc_update_irq - Triggered when a RTC interrupt occurs.
589  * @rtc: the rtc device
590  * @num: how many irqs are being reported (usually one)
591  * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
592  * Context: any
593  */
594 void rtc_update_irq(struct rtc_device *rtc,
595 		unsigned long num, unsigned long events)
596 {
597 	if (unlikely(IS_ERR_OR_NULL(rtc)))
598 		return;
599 
600 	pm_stay_awake(rtc->dev.parent);
601 	schedule_work(&rtc->irqwork);
602 }
603 EXPORT_SYMBOL_GPL(rtc_update_irq);
604 
605 static int __rtc_match(struct device *dev, const void *data)
606 {
607 	const char *name = data;
608 
609 	if (strcmp(dev_name(dev), name) == 0)
610 		return 1;
611 	return 0;
612 }
613 
614 struct rtc_device *rtc_class_open(const char *name)
615 {
616 	struct device *dev;
617 	struct rtc_device *rtc = NULL;
618 
619 	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
620 	if (dev)
621 		rtc = to_rtc_device(dev);
622 
623 	if (rtc) {
624 		if (!try_module_get(rtc->owner)) {
625 			put_device(dev);
626 			rtc = NULL;
627 		}
628 	}
629 
630 	return rtc;
631 }
632 EXPORT_SYMBOL_GPL(rtc_class_open);
633 
634 void rtc_class_close(struct rtc_device *rtc)
635 {
636 	module_put(rtc->owner);
637 	put_device(&rtc->dev);
638 }
639 EXPORT_SYMBOL_GPL(rtc_class_close);
640 
641 int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
642 {
643 	int retval = -EBUSY;
644 
645 	if (task == NULL || task->func == NULL)
646 		return -EINVAL;
647 
648 	/* Cannot register while the char dev is in use */
649 	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
650 		return -EBUSY;
651 
652 	spin_lock_irq(&rtc->irq_task_lock);
653 	if (rtc->irq_task == NULL) {
654 		rtc->irq_task = task;
655 		retval = 0;
656 	}
657 	spin_unlock_irq(&rtc->irq_task_lock);
658 
659 	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
660 
661 	return retval;
662 }
663 EXPORT_SYMBOL_GPL(rtc_irq_register);
664 
665 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
666 {
667 	spin_lock_irq(&rtc->irq_task_lock);
668 	if (rtc->irq_task == task)
669 		rtc->irq_task = NULL;
670 	spin_unlock_irq(&rtc->irq_task_lock);
671 }
672 EXPORT_SYMBOL_GPL(rtc_irq_unregister);
673 
674 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
675 {
676 	/*
677 	 * We always cancel the timer here first, because otherwise
678 	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
679 	 * when we manage to start the timer before the callback
680 	 * returns HRTIMER_RESTART.
681 	 *
682 	 * We cannot use hrtimer_cancel() here as a running callback
683 	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
684 	 * would spin forever.
685 	 */
686 	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
687 		return -1;
688 
689 	if (enabled) {
690 		ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
691 
692 		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
693 	}
694 	return 0;
695 }
696 
697 /**
698  * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
699  * @rtc: the rtc device
700  * @task: currently registered with rtc_irq_register()
701  * @enabled: true to enable periodic IRQs
702  * Context: any
703  *
704  * Note that rtc_irq_set_freq() should previously have been used to
705  * specify the desired frequency of periodic IRQ task->func() callbacks.
706  */
707 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
708 {
709 	int err = 0;
710 	unsigned long flags;
711 
712 retry:
713 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
714 	if (rtc->irq_task != NULL && task == NULL)
715 		err = -EBUSY;
716 	else if (rtc->irq_task != task)
717 		err = -EACCES;
718 	else {
719 		if (rtc_update_hrtimer(rtc, enabled) < 0) {
720 			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
721 			cpu_relax();
722 			goto retry;
723 		}
724 		rtc->pie_enabled = enabled;
725 	}
726 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
727 	return err;
728 }
729 EXPORT_SYMBOL_GPL(rtc_irq_set_state);
730 
731 /**
732  * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
733  * @rtc: the rtc device
734  * @task: currently registered with rtc_irq_register()
735  * @freq: positive frequency with which task->func() will be called
736  * Context: any
737  *
738  * Note that rtc_irq_set_state() is used to enable or disable the
739  * periodic IRQs.
740  */
741 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
742 {
743 	int err = 0;
744 	unsigned long flags;
745 
746 	if (freq <= 0 || freq > RTC_MAX_FREQ)
747 		return -EINVAL;
748 retry:
749 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
750 	if (rtc->irq_task != NULL && task == NULL)
751 		err = -EBUSY;
752 	else if (rtc->irq_task != task)
753 		err = -EACCES;
754 	else {
755 		rtc->irq_freq = freq;
756 		if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
757 			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
758 			cpu_relax();
759 			goto retry;
760 		}
761 	}
762 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
763 	return err;
764 }
765 EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
766 
767 /**
768  * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
769  * @rtc rtc device
770  * @timer timer being added.
771  *
772  * Enqueues a timer onto the rtc devices timerqueue and sets
773  * the next alarm event appropriately.
774  *
775  * Sets the enabled bit on the added timer.
776  *
777  * Must hold ops_lock for proper serialization of timerqueue
778  */
779 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
780 {
781 	timer->enabled = 1;
782 	timerqueue_add(&rtc->timerqueue, &timer->node);
783 	if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
784 		struct rtc_wkalrm alarm;
785 		int err;
786 		alarm.time = rtc_ktime_to_tm(timer->node.expires);
787 		alarm.enabled = 1;
788 		err = __rtc_set_alarm(rtc, &alarm);
789 		if (err == -ETIME) {
790 			pm_stay_awake(rtc->dev.parent);
791 			schedule_work(&rtc->irqwork);
792 		} else if (err) {
793 			timerqueue_del(&rtc->timerqueue, &timer->node);
794 			timer->enabled = 0;
795 			return err;
796 		}
797 	}
798 	return 0;
799 }
800 
801 static void rtc_alarm_disable(struct rtc_device *rtc)
802 {
803 	if (!rtc->ops || !rtc->ops->alarm_irq_enable)
804 		return;
805 
806 	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
807 }
808 
809 /**
810  * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
811  * @rtc rtc device
812  * @timer timer being removed.
813  *
814  * Removes a timer onto the rtc devices timerqueue and sets
815  * the next alarm event appropriately.
816  *
817  * Clears the enabled bit on the removed timer.
818  *
819  * Must hold ops_lock for proper serialization of timerqueue
820  */
821 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
822 {
823 	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
824 	timerqueue_del(&rtc->timerqueue, &timer->node);
825 	timer->enabled = 0;
826 	if (next == &timer->node) {
827 		struct rtc_wkalrm alarm;
828 		int err;
829 		next = timerqueue_getnext(&rtc->timerqueue);
830 		if (!next) {
831 			rtc_alarm_disable(rtc);
832 			return;
833 		}
834 		alarm.time = rtc_ktime_to_tm(next->expires);
835 		alarm.enabled = 1;
836 		err = __rtc_set_alarm(rtc, &alarm);
837 		if (err == -ETIME) {
838 			pm_stay_awake(rtc->dev.parent);
839 			schedule_work(&rtc->irqwork);
840 		}
841 	}
842 }
843 
844 /**
845  * rtc_timer_do_work - Expires rtc timers
846  * @rtc rtc device
847  * @timer timer being removed.
848  *
849  * Expires rtc timers. Reprograms next alarm event if needed.
850  * Called via worktask.
851  *
852  * Serializes access to timerqueue via ops_lock mutex
853  */
854 void rtc_timer_do_work(struct work_struct *work)
855 {
856 	struct rtc_timer *timer;
857 	struct timerqueue_node *next;
858 	ktime_t now;
859 	struct rtc_time tm;
860 
861 	struct rtc_device *rtc =
862 		container_of(work, struct rtc_device, irqwork);
863 
864 	mutex_lock(&rtc->ops_lock);
865 again:
866 	__rtc_read_time(rtc, &tm);
867 	now = rtc_tm_to_ktime(tm);
868 	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
869 		if (next->expires.tv64 > now.tv64)
870 			break;
871 
872 		/* expire timer */
873 		timer = container_of(next, struct rtc_timer, node);
874 		timerqueue_del(&rtc->timerqueue, &timer->node);
875 		timer->enabled = 0;
876 		if (timer->task.func)
877 			timer->task.func(timer->task.private_data);
878 
879 		/* Re-add/fwd periodic timers */
880 		if (ktime_to_ns(timer->period)) {
881 			timer->node.expires = ktime_add(timer->node.expires,
882 							timer->period);
883 			timer->enabled = 1;
884 			timerqueue_add(&rtc->timerqueue, &timer->node);
885 		}
886 	}
887 
888 	/* Set next alarm */
889 	if (next) {
890 		struct rtc_wkalrm alarm;
891 		int err;
892 		alarm.time = rtc_ktime_to_tm(next->expires);
893 		alarm.enabled = 1;
894 		err = __rtc_set_alarm(rtc, &alarm);
895 		if (err == -ETIME)
896 			goto again;
897 	} else
898 		rtc_alarm_disable(rtc);
899 
900 	pm_relax(rtc->dev.parent);
901 	mutex_unlock(&rtc->ops_lock);
902 }
903 
904 
905 /* rtc_timer_init - Initializes an rtc_timer
906  * @timer: timer to be intiialized
907  * @f: function pointer to be called when timer fires
908  * @data: private data passed to function pointer
909  *
910  * Kernel interface to initializing an rtc_timer.
911  */
912 void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
913 {
914 	timerqueue_init(&timer->node);
915 	timer->enabled = 0;
916 	timer->task.func = f;
917 	timer->task.private_data = data;
918 }
919 
920 /* rtc_timer_start - Sets an rtc_timer to fire in the future
921  * @ rtc: rtc device to be used
922  * @ timer: timer being set
923  * @ expires: time at which to expire the timer
924  * @ period: period that the timer will recur
925  *
926  * Kernel interface to set an rtc_timer
927  */
928 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
929 			ktime_t expires, ktime_t period)
930 {
931 	int ret = 0;
932 	mutex_lock(&rtc->ops_lock);
933 	if (timer->enabled)
934 		rtc_timer_remove(rtc, timer);
935 
936 	timer->node.expires = expires;
937 	timer->period = period;
938 
939 	ret = rtc_timer_enqueue(rtc, timer);
940 
941 	mutex_unlock(&rtc->ops_lock);
942 	return ret;
943 }
944 
945 /* rtc_timer_cancel - Stops an rtc_timer
946  * @ rtc: rtc device to be used
947  * @ timer: timer being set
948  *
949  * Kernel interface to cancel an rtc_timer
950  */
951 int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
952 {
953 	int ret = 0;
954 	mutex_lock(&rtc->ops_lock);
955 	if (timer->enabled)
956 		rtc_timer_remove(rtc, timer);
957 	mutex_unlock(&rtc->ops_lock);
958 	return ret;
959 }
960 
961 
962