xref: /openbmc/linux/drivers/rtc/interface.c (revision 695794ae)
1 /*
2  * RTC subsystem, interface functions
3  *
4  * Copyright (C) 2005 Tower Technologies
5  * Author: Alessandro Zummo <a.zummo@towertech.it>
6  *
7  * based on arch/arm/common/rtctime.c
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12 */
13 
14 #include <linux/rtc.h>
15 #include <linux/log2.h>
16 
17 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
18 {
19 	int err;
20 
21 	err = mutex_lock_interruptible(&rtc->ops_lock);
22 	if (err)
23 		return -EBUSY;
24 
25 	if (!rtc->ops)
26 		err = -ENODEV;
27 	else if (!rtc->ops->read_time)
28 		err = -EINVAL;
29 	else {
30 		memset(tm, 0, sizeof(struct rtc_time));
31 		err = rtc->ops->read_time(rtc->dev.parent, tm);
32 	}
33 
34 	mutex_unlock(&rtc->ops_lock);
35 	return err;
36 }
37 EXPORT_SYMBOL_GPL(rtc_read_time);
38 
39 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
40 {
41 	int err;
42 
43 	err = rtc_valid_tm(tm);
44 	if (err != 0)
45 		return err;
46 
47 	err = mutex_lock_interruptible(&rtc->ops_lock);
48 	if (err)
49 		return -EBUSY;
50 
51 	if (!rtc->ops)
52 		err = -ENODEV;
53 	else if (!rtc->ops->set_time)
54 		err = -EINVAL;
55 	else
56 		err = rtc->ops->set_time(rtc->dev.parent, tm);
57 
58 	mutex_unlock(&rtc->ops_lock);
59 	return err;
60 }
61 EXPORT_SYMBOL_GPL(rtc_set_time);
62 
63 int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
64 {
65 	int err;
66 
67 	err = mutex_lock_interruptible(&rtc->ops_lock);
68 	if (err)
69 		return -EBUSY;
70 
71 	if (!rtc->ops)
72 		err = -ENODEV;
73 	else if (rtc->ops->set_mmss)
74 		err = rtc->ops->set_mmss(rtc->dev.parent, secs);
75 	else if (rtc->ops->read_time && rtc->ops->set_time) {
76 		struct rtc_time new, old;
77 
78 		err = rtc->ops->read_time(rtc->dev.parent, &old);
79 		if (err == 0) {
80 			rtc_time_to_tm(secs, &new);
81 
82 			/*
83 			 * avoid writing when we're going to change the day of
84 			 * the month. We will retry in the next minute. This
85 			 * basically means that if the RTC must not drift
86 			 * by more than 1 minute in 11 minutes.
87 			 */
88 			if (!((old.tm_hour == 23 && old.tm_min == 59) ||
89 				(new.tm_hour == 23 && new.tm_min == 59)))
90 				err = rtc->ops->set_time(rtc->dev.parent,
91 						&new);
92 		}
93 	}
94 	else
95 		err = -EINVAL;
96 
97 	mutex_unlock(&rtc->ops_lock);
98 
99 	return err;
100 }
101 EXPORT_SYMBOL_GPL(rtc_set_mmss);
102 
103 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
104 {
105 	int err;
106 
107 	err = mutex_lock_interruptible(&rtc->ops_lock);
108 	if (err)
109 		return -EBUSY;
110 
111 	if (rtc->ops == NULL)
112 		err = -ENODEV;
113 	else if (!rtc->ops->read_alarm)
114 		err = -EINVAL;
115 	else {
116 		memset(alarm, 0, sizeof(struct rtc_wkalrm));
117 		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
118 	}
119 
120 	mutex_unlock(&rtc->ops_lock);
121 	return err;
122 }
123 
124 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
125 {
126 	int err;
127 	struct rtc_time before, now;
128 	int first_time = 1;
129 	unsigned long t_now, t_alm;
130 	enum { none, day, month, year } missing = none;
131 	unsigned days;
132 
133 	/* The lower level RTC driver may return -1 in some fields,
134 	 * creating invalid alarm->time values, for reasons like:
135 	 *
136 	 *   - The hardware may not be capable of filling them in;
137 	 *     many alarms match only on time-of-day fields, not
138 	 *     day/month/year calendar data.
139 	 *
140 	 *   - Some hardware uses illegal values as "wildcard" match
141 	 *     values, which non-Linux firmware (like a BIOS) may try
142 	 *     to set up as e.g. "alarm 15 minutes after each hour".
143 	 *     Linux uses only oneshot alarms.
144 	 *
145 	 * When we see that here, we deal with it by using values from
146 	 * a current RTC timestamp for any missing (-1) values.  The
147 	 * RTC driver prevents "periodic alarm" modes.
148 	 *
149 	 * But this can be racey, because some fields of the RTC timestamp
150 	 * may have wrapped in the interval since we read the RTC alarm,
151 	 * which would lead to us inserting inconsistent values in place
152 	 * of the -1 fields.
153 	 *
154 	 * Reading the alarm and timestamp in the reverse sequence
155 	 * would have the same race condition, and not solve the issue.
156 	 *
157 	 * So, we must first read the RTC timestamp,
158 	 * then read the RTC alarm value,
159 	 * and then read a second RTC timestamp.
160 	 *
161 	 * If any fields of the second timestamp have changed
162 	 * when compared with the first timestamp, then we know
163 	 * our timestamp may be inconsistent with that used by
164 	 * the low-level rtc_read_alarm_internal() function.
165 	 *
166 	 * So, when the two timestamps disagree, we just loop and do
167 	 * the process again to get a fully consistent set of values.
168 	 *
169 	 * This could all instead be done in the lower level driver,
170 	 * but since more than one lower level RTC implementation needs it,
171 	 * then it's probably best best to do it here instead of there..
172 	 */
173 
174 	/* Get the "before" timestamp */
175 	err = rtc_read_time(rtc, &before);
176 	if (err < 0)
177 		return err;
178 	do {
179 		if (!first_time)
180 			memcpy(&before, &now, sizeof(struct rtc_time));
181 		first_time = 0;
182 
183 		/* get the RTC alarm values, which may be incomplete */
184 		err = rtc_read_alarm_internal(rtc, alarm);
185 		if (err)
186 			return err;
187 		if (!alarm->enabled)
188 			return 0;
189 
190 		/* full-function RTCs won't have such missing fields */
191 		if (rtc_valid_tm(&alarm->time) == 0)
192 			return 0;
193 
194 		/* get the "after" timestamp, to detect wrapped fields */
195 		err = rtc_read_time(rtc, &now);
196 		if (err < 0)
197 			return err;
198 
199 		/* note that tm_sec is a "don't care" value here: */
200 	} while (   before.tm_min   != now.tm_min
201 		 || before.tm_hour  != now.tm_hour
202 		 || before.tm_mon   != now.tm_mon
203 		 || before.tm_year  != now.tm_year);
204 
205 	/* Fill in the missing alarm fields using the timestamp; we
206 	 * know there's at least one since alarm->time is invalid.
207 	 */
208 	if (alarm->time.tm_sec == -1)
209 		alarm->time.tm_sec = now.tm_sec;
210 	if (alarm->time.tm_min == -1)
211 		alarm->time.tm_min = now.tm_min;
212 	if (alarm->time.tm_hour == -1)
213 		alarm->time.tm_hour = now.tm_hour;
214 
215 	/* For simplicity, only support date rollover for now */
216 	if (alarm->time.tm_mday == -1) {
217 		alarm->time.tm_mday = now.tm_mday;
218 		missing = day;
219 	}
220 	if (alarm->time.tm_mon == -1) {
221 		alarm->time.tm_mon = now.tm_mon;
222 		if (missing == none)
223 			missing = month;
224 	}
225 	if (alarm->time.tm_year == -1) {
226 		alarm->time.tm_year = now.tm_year;
227 		if (missing == none)
228 			missing = year;
229 	}
230 
231 	/* with luck, no rollover is needed */
232 	rtc_tm_to_time(&now, &t_now);
233 	rtc_tm_to_time(&alarm->time, &t_alm);
234 	if (t_now < t_alm)
235 		goto done;
236 
237 	switch (missing) {
238 
239 	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
240 	 * that will trigger at 5am will do so at 5am Tuesday, which
241 	 * could also be in the next month or year.  This is a common
242 	 * case, especially for PCs.
243 	 */
244 	case day:
245 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
246 		t_alm += 24 * 60 * 60;
247 		rtc_time_to_tm(t_alm, &alarm->time);
248 		break;
249 
250 	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
251 	 * be next month.  An alarm matching on the 30th, 29th, or 28th
252 	 * may end up in the month after that!  Many newer PCs support
253 	 * this type of alarm.
254 	 */
255 	case month:
256 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
257 		do {
258 			if (alarm->time.tm_mon < 11)
259 				alarm->time.tm_mon++;
260 			else {
261 				alarm->time.tm_mon = 0;
262 				alarm->time.tm_year++;
263 			}
264 			days = rtc_month_days(alarm->time.tm_mon,
265 					alarm->time.tm_year);
266 		} while (days < alarm->time.tm_mday);
267 		break;
268 
269 	/* Year rollover ... easy except for leap years! */
270 	case year:
271 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
272 		do {
273 			alarm->time.tm_year++;
274 		} while (!rtc_valid_tm(&alarm->time));
275 		break;
276 
277 	default:
278 		dev_warn(&rtc->dev, "alarm rollover not handled\n");
279 	}
280 
281 done:
282 	return 0;
283 }
284 EXPORT_SYMBOL_GPL(rtc_read_alarm);
285 
286 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
287 {
288 	int err;
289 
290 	err = rtc_valid_tm(&alarm->time);
291 	if (err != 0)
292 		return err;
293 
294 	err = mutex_lock_interruptible(&rtc->ops_lock);
295 	if (err)
296 		return -EBUSY;
297 
298 	if (!rtc->ops)
299 		err = -ENODEV;
300 	else if (!rtc->ops->set_alarm)
301 		err = -EINVAL;
302 	else
303 		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
304 
305 	mutex_unlock(&rtc->ops_lock);
306 	return err;
307 }
308 EXPORT_SYMBOL_GPL(rtc_set_alarm);
309 
310 /**
311  * rtc_update_irq - report RTC periodic, alarm, and/or update irqs
312  * @rtc: the rtc device
313  * @num: how many irqs are being reported (usually one)
314  * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
315  * Context: in_interrupt(), irqs blocked
316  */
317 void rtc_update_irq(struct rtc_device *rtc,
318 		unsigned long num, unsigned long events)
319 {
320 	spin_lock(&rtc->irq_lock);
321 	rtc->irq_data = (rtc->irq_data + (num << 8)) | events;
322 	spin_unlock(&rtc->irq_lock);
323 
324 	spin_lock(&rtc->irq_task_lock);
325 	if (rtc->irq_task)
326 		rtc->irq_task->func(rtc->irq_task->private_data);
327 	spin_unlock(&rtc->irq_task_lock);
328 
329 	wake_up_interruptible(&rtc->irq_queue);
330 	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
331 }
332 EXPORT_SYMBOL_GPL(rtc_update_irq);
333 
334 static int __rtc_match(struct device *dev, void *data)
335 {
336 	char *name = (char *)data;
337 
338 	if (strncmp(dev->bus_id, name, BUS_ID_SIZE) == 0)
339 		return 1;
340 	return 0;
341 }
342 
343 struct rtc_device *rtc_class_open(char *name)
344 {
345 	struct device *dev;
346 	struct rtc_device *rtc = NULL;
347 
348 	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
349 	if (dev)
350 		rtc = to_rtc_device(dev);
351 
352 	if (rtc) {
353 		if (!try_module_get(rtc->owner)) {
354 			put_device(dev);
355 			rtc = NULL;
356 		}
357 	}
358 
359 	return rtc;
360 }
361 EXPORT_SYMBOL_GPL(rtc_class_open);
362 
363 void rtc_class_close(struct rtc_device *rtc)
364 {
365 	module_put(rtc->owner);
366 	put_device(&rtc->dev);
367 }
368 EXPORT_SYMBOL_GPL(rtc_class_close);
369 
370 int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
371 {
372 	int retval = -EBUSY;
373 
374 	if (task == NULL || task->func == NULL)
375 		return -EINVAL;
376 
377 	/* Cannot register while the char dev is in use */
378 	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
379 		return -EBUSY;
380 
381 	spin_lock_irq(&rtc->irq_task_lock);
382 	if (rtc->irq_task == NULL) {
383 		rtc->irq_task = task;
384 		retval = 0;
385 	}
386 	spin_unlock_irq(&rtc->irq_task_lock);
387 
388 	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
389 
390 	return retval;
391 }
392 EXPORT_SYMBOL_GPL(rtc_irq_register);
393 
394 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
395 {
396 	spin_lock_irq(&rtc->irq_task_lock);
397 	if (rtc->irq_task == task)
398 		rtc->irq_task = NULL;
399 	spin_unlock_irq(&rtc->irq_task_lock);
400 }
401 EXPORT_SYMBOL_GPL(rtc_irq_unregister);
402 
403 /**
404  * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
405  * @rtc: the rtc device
406  * @task: currently registered with rtc_irq_register()
407  * @enabled: true to enable periodic IRQs
408  * Context: any
409  *
410  * Note that rtc_irq_set_freq() should previously have been used to
411  * specify the desired frequency of periodic IRQ task->func() callbacks.
412  */
413 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
414 {
415 	int err = 0;
416 	unsigned long flags;
417 
418 	if (rtc->ops->irq_set_state == NULL)
419 		return -ENXIO;
420 
421 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
422 	if (rtc->irq_task != NULL && task == NULL)
423 		err = -EBUSY;
424 	if (rtc->irq_task != task)
425 		err = -EACCES;
426 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
427 
428 	if (err == 0)
429 		err = rtc->ops->irq_set_state(rtc->dev.parent, enabled);
430 
431 	return err;
432 }
433 EXPORT_SYMBOL_GPL(rtc_irq_set_state);
434 
435 /**
436  * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
437  * @rtc: the rtc device
438  * @task: currently registered with rtc_irq_register()
439  * @freq: positive frequency with which task->func() will be called
440  * Context: any
441  *
442  * Note that rtc_irq_set_state() is used to enable or disable the
443  * periodic IRQs.
444  */
445 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
446 {
447 	int err = 0;
448 	unsigned long flags;
449 
450 	if (rtc->ops->irq_set_freq == NULL)
451 		return -ENXIO;
452 
453 	if (!is_power_of_2(freq))
454 		return -EINVAL;
455 
456 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
457 	if (rtc->irq_task != NULL && task == NULL)
458 		err = -EBUSY;
459 	if (rtc->irq_task != task)
460 		err = -EACCES;
461 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
462 
463 	if (err == 0) {
464 		err = rtc->ops->irq_set_freq(rtc->dev.parent, freq);
465 		if (err == 0)
466 			rtc->irq_freq = freq;
467 	}
468 	return err;
469 }
470 EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
471