xref: /openbmc/linux/drivers/rtc/interface.c (revision 62eab49f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * RTC subsystem, interface functions
4  *
5  * Copyright (C) 2005 Tower Technologies
6  * Author: Alessandro Zummo <a.zummo@towertech.it>
7  *
8  * based on arch/arm/common/rtctime.c
9  */
10 
11 #include <linux/rtc.h>
12 #include <linux/sched.h>
13 #include <linux/module.h>
14 #include <linux/log2.h>
15 #include <linux/workqueue.h>
16 
17 #define CREATE_TRACE_POINTS
18 #include <trace/events/rtc.h>
19 
20 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
21 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
22 
23 static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm)
24 {
25 	time64_t secs;
26 
27 	if (!rtc->offset_secs)
28 		return;
29 
30 	secs = rtc_tm_to_time64(tm);
31 
32 	/*
33 	 * Since the reading time values from RTC device are always in the RTC
34 	 * original valid range, but we need to skip the overlapped region
35 	 * between expanded range and original range, which is no need to add
36 	 * the offset.
37 	 */
38 	if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) ||
39 	    (rtc->start_secs < rtc->range_min &&
40 	     secs <= (rtc->start_secs + rtc->range_max - rtc->range_min)))
41 		return;
42 
43 	rtc_time64_to_tm(secs + rtc->offset_secs, tm);
44 }
45 
46 static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm)
47 {
48 	time64_t secs;
49 
50 	if (!rtc->offset_secs)
51 		return;
52 
53 	secs = rtc_tm_to_time64(tm);
54 
55 	/*
56 	 * If the setting time values are in the valid range of RTC hardware
57 	 * device, then no need to subtract the offset when setting time to RTC
58 	 * device. Otherwise we need to subtract the offset to make the time
59 	 * values are valid for RTC hardware device.
60 	 */
61 	if (secs >= rtc->range_min && secs <= rtc->range_max)
62 		return;
63 
64 	rtc_time64_to_tm(secs - rtc->offset_secs, tm);
65 }
66 
67 static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm)
68 {
69 	if (rtc->range_min != rtc->range_max) {
70 		time64_t time = rtc_tm_to_time64(tm);
71 		time64_t range_min = rtc->set_start_time ? rtc->start_secs :
72 			rtc->range_min;
73 		timeu64_t range_max = rtc->set_start_time ?
74 			(rtc->start_secs + rtc->range_max - rtc->range_min) :
75 			rtc->range_max;
76 
77 		if (time < range_min || time > range_max)
78 			return -ERANGE;
79 	}
80 
81 	return 0;
82 }
83 
84 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
85 {
86 	int err;
87 
88 	if (!rtc->ops) {
89 		err = -ENODEV;
90 	} else if (!rtc->ops->read_time) {
91 		err = -EINVAL;
92 	} else {
93 		memset(tm, 0, sizeof(struct rtc_time));
94 		err = rtc->ops->read_time(rtc->dev.parent, tm);
95 		if (err < 0) {
96 			dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
97 				err);
98 			return err;
99 		}
100 
101 		rtc_add_offset(rtc, tm);
102 
103 		err = rtc_valid_tm(tm);
104 		if (err < 0)
105 			dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
106 	}
107 	return err;
108 }
109 
110 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
111 {
112 	int err;
113 
114 	err = mutex_lock_interruptible(&rtc->ops_lock);
115 	if (err)
116 		return err;
117 
118 	err = __rtc_read_time(rtc, tm);
119 	mutex_unlock(&rtc->ops_lock);
120 
121 	trace_rtc_read_time(rtc_tm_to_time64(tm), err);
122 	return err;
123 }
124 EXPORT_SYMBOL_GPL(rtc_read_time);
125 
126 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
127 {
128 	int err, uie;
129 
130 	err = rtc_valid_tm(tm);
131 	if (err != 0)
132 		return err;
133 
134 	err = rtc_valid_range(rtc, tm);
135 	if (err)
136 		return err;
137 
138 	rtc_subtract_offset(rtc, tm);
139 
140 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
141 	uie = rtc->uie_rtctimer.enabled || rtc->uie_irq_active;
142 #else
143 	uie = rtc->uie_rtctimer.enabled;
144 #endif
145 	if (uie) {
146 		err = rtc_update_irq_enable(rtc, 0);
147 		if (err)
148 			return err;
149 	}
150 
151 	err = mutex_lock_interruptible(&rtc->ops_lock);
152 	if (err)
153 		return err;
154 
155 	if (!rtc->ops)
156 		err = -ENODEV;
157 	else if (rtc->ops->set_time)
158 		err = rtc->ops->set_time(rtc->dev.parent, tm);
159 	else
160 		err = -EINVAL;
161 
162 	pm_stay_awake(rtc->dev.parent);
163 	mutex_unlock(&rtc->ops_lock);
164 	/* A timer might have just expired */
165 	schedule_work(&rtc->irqwork);
166 
167 	if (uie) {
168 		err = rtc_update_irq_enable(rtc, 1);
169 		if (err)
170 			return err;
171 	}
172 
173 	trace_rtc_set_time(rtc_tm_to_time64(tm), err);
174 	return err;
175 }
176 EXPORT_SYMBOL_GPL(rtc_set_time);
177 
178 static int rtc_read_alarm_internal(struct rtc_device *rtc,
179 				   struct rtc_wkalrm *alarm)
180 {
181 	int err;
182 
183 	err = mutex_lock_interruptible(&rtc->ops_lock);
184 	if (err)
185 		return err;
186 
187 	if (!rtc->ops) {
188 		err = -ENODEV;
189 	} else if (!test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->read_alarm) {
190 		err = -EINVAL;
191 	} else {
192 		alarm->enabled = 0;
193 		alarm->pending = 0;
194 		alarm->time.tm_sec = -1;
195 		alarm->time.tm_min = -1;
196 		alarm->time.tm_hour = -1;
197 		alarm->time.tm_mday = -1;
198 		alarm->time.tm_mon = -1;
199 		alarm->time.tm_year = -1;
200 		alarm->time.tm_wday = -1;
201 		alarm->time.tm_yday = -1;
202 		alarm->time.tm_isdst = -1;
203 		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
204 	}
205 
206 	mutex_unlock(&rtc->ops_lock);
207 
208 	trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
209 	return err;
210 }
211 
212 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
213 {
214 	int err;
215 	struct rtc_time before, now;
216 	int first_time = 1;
217 	time64_t t_now, t_alm;
218 	enum { none, day, month, year } missing = none;
219 	unsigned int days;
220 
221 	/* The lower level RTC driver may return -1 in some fields,
222 	 * creating invalid alarm->time values, for reasons like:
223 	 *
224 	 *   - The hardware may not be capable of filling them in;
225 	 *     many alarms match only on time-of-day fields, not
226 	 *     day/month/year calendar data.
227 	 *
228 	 *   - Some hardware uses illegal values as "wildcard" match
229 	 *     values, which non-Linux firmware (like a BIOS) may try
230 	 *     to set up as e.g. "alarm 15 minutes after each hour".
231 	 *     Linux uses only oneshot alarms.
232 	 *
233 	 * When we see that here, we deal with it by using values from
234 	 * a current RTC timestamp for any missing (-1) values.  The
235 	 * RTC driver prevents "periodic alarm" modes.
236 	 *
237 	 * But this can be racey, because some fields of the RTC timestamp
238 	 * may have wrapped in the interval since we read the RTC alarm,
239 	 * which would lead to us inserting inconsistent values in place
240 	 * of the -1 fields.
241 	 *
242 	 * Reading the alarm and timestamp in the reverse sequence
243 	 * would have the same race condition, and not solve the issue.
244 	 *
245 	 * So, we must first read the RTC timestamp,
246 	 * then read the RTC alarm value,
247 	 * and then read a second RTC timestamp.
248 	 *
249 	 * If any fields of the second timestamp have changed
250 	 * when compared with the first timestamp, then we know
251 	 * our timestamp may be inconsistent with that used by
252 	 * the low-level rtc_read_alarm_internal() function.
253 	 *
254 	 * So, when the two timestamps disagree, we just loop and do
255 	 * the process again to get a fully consistent set of values.
256 	 *
257 	 * This could all instead be done in the lower level driver,
258 	 * but since more than one lower level RTC implementation needs it,
259 	 * then it's probably best best to do it here instead of there..
260 	 */
261 
262 	/* Get the "before" timestamp */
263 	err = rtc_read_time(rtc, &before);
264 	if (err < 0)
265 		return err;
266 	do {
267 		if (!first_time)
268 			memcpy(&before, &now, sizeof(struct rtc_time));
269 		first_time = 0;
270 
271 		/* get the RTC alarm values, which may be incomplete */
272 		err = rtc_read_alarm_internal(rtc, alarm);
273 		if (err)
274 			return err;
275 
276 		/* full-function RTCs won't have such missing fields */
277 		if (rtc_valid_tm(&alarm->time) == 0) {
278 			rtc_add_offset(rtc, &alarm->time);
279 			return 0;
280 		}
281 
282 		/* get the "after" timestamp, to detect wrapped fields */
283 		err = rtc_read_time(rtc, &now);
284 		if (err < 0)
285 			return err;
286 
287 		/* note that tm_sec is a "don't care" value here: */
288 	} while (before.tm_min  != now.tm_min ||
289 		 before.tm_hour != now.tm_hour ||
290 		 before.tm_mon  != now.tm_mon ||
291 		 before.tm_year != now.tm_year);
292 
293 	/* Fill in the missing alarm fields using the timestamp; we
294 	 * know there's at least one since alarm->time is invalid.
295 	 */
296 	if (alarm->time.tm_sec == -1)
297 		alarm->time.tm_sec = now.tm_sec;
298 	if (alarm->time.tm_min == -1)
299 		alarm->time.tm_min = now.tm_min;
300 	if (alarm->time.tm_hour == -1)
301 		alarm->time.tm_hour = now.tm_hour;
302 
303 	/* For simplicity, only support date rollover for now */
304 	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
305 		alarm->time.tm_mday = now.tm_mday;
306 		missing = day;
307 	}
308 	if ((unsigned int)alarm->time.tm_mon >= 12) {
309 		alarm->time.tm_mon = now.tm_mon;
310 		if (missing == none)
311 			missing = month;
312 	}
313 	if (alarm->time.tm_year == -1) {
314 		alarm->time.tm_year = now.tm_year;
315 		if (missing == none)
316 			missing = year;
317 	}
318 
319 	/* Can't proceed if alarm is still invalid after replacing
320 	 * missing fields.
321 	 */
322 	err = rtc_valid_tm(&alarm->time);
323 	if (err)
324 		goto done;
325 
326 	/* with luck, no rollover is needed */
327 	t_now = rtc_tm_to_time64(&now);
328 	t_alm = rtc_tm_to_time64(&alarm->time);
329 	if (t_now < t_alm)
330 		goto done;
331 
332 	switch (missing) {
333 	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
334 	 * that will trigger at 5am will do so at 5am Tuesday, which
335 	 * could also be in the next month or year.  This is a common
336 	 * case, especially for PCs.
337 	 */
338 	case day:
339 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
340 		t_alm += 24 * 60 * 60;
341 		rtc_time64_to_tm(t_alm, &alarm->time);
342 		break;
343 
344 	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
345 	 * be next month.  An alarm matching on the 30th, 29th, or 28th
346 	 * may end up in the month after that!  Many newer PCs support
347 	 * this type of alarm.
348 	 */
349 	case month:
350 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
351 		do {
352 			if (alarm->time.tm_mon < 11) {
353 				alarm->time.tm_mon++;
354 			} else {
355 				alarm->time.tm_mon = 0;
356 				alarm->time.tm_year++;
357 			}
358 			days = rtc_month_days(alarm->time.tm_mon,
359 					      alarm->time.tm_year);
360 		} while (days < alarm->time.tm_mday);
361 		break;
362 
363 	/* Year rollover ... easy except for leap years! */
364 	case year:
365 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
366 		do {
367 			alarm->time.tm_year++;
368 		} while (!is_leap_year(alarm->time.tm_year + 1900) &&
369 			 rtc_valid_tm(&alarm->time) != 0);
370 		break;
371 
372 	default:
373 		dev_warn(&rtc->dev, "alarm rollover not handled\n");
374 	}
375 
376 	err = rtc_valid_tm(&alarm->time);
377 
378 done:
379 	if (err)
380 		dev_warn(&rtc->dev, "invalid alarm value: %ptR\n",
381 			 &alarm->time);
382 
383 	return err;
384 }
385 
386 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
387 {
388 	int err;
389 
390 	err = mutex_lock_interruptible(&rtc->ops_lock);
391 	if (err)
392 		return err;
393 	if (!rtc->ops) {
394 		err = -ENODEV;
395 	} else if (!test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->read_alarm) {
396 		err = -EINVAL;
397 	} else {
398 		memset(alarm, 0, sizeof(struct rtc_wkalrm));
399 		alarm->enabled = rtc->aie_timer.enabled;
400 		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
401 	}
402 	mutex_unlock(&rtc->ops_lock);
403 
404 	trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
405 	return err;
406 }
407 EXPORT_SYMBOL_GPL(rtc_read_alarm);
408 
409 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
410 {
411 	struct rtc_time tm;
412 	time64_t now, scheduled;
413 	int err;
414 
415 	err = rtc_valid_tm(&alarm->time);
416 	if (err)
417 		return err;
418 
419 	scheduled = rtc_tm_to_time64(&alarm->time);
420 
421 	/* Make sure we're not setting alarms in the past */
422 	err = __rtc_read_time(rtc, &tm);
423 	if (err)
424 		return err;
425 	now = rtc_tm_to_time64(&tm);
426 	if (scheduled <= now)
427 		return -ETIME;
428 	/*
429 	 * XXX - We just checked to make sure the alarm time is not
430 	 * in the past, but there is still a race window where if
431 	 * the is alarm set for the next second and the second ticks
432 	 * over right here, before we set the alarm.
433 	 */
434 
435 	rtc_subtract_offset(rtc, &alarm->time);
436 
437 	if (!rtc->ops)
438 		err = -ENODEV;
439 	else if (!test_bit(RTC_FEATURE_ALARM, rtc->features))
440 		err = -EINVAL;
441 	else
442 		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
443 
444 	trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err);
445 	return err;
446 }
447 
448 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
449 {
450 	int err;
451 
452 	if (!rtc->ops)
453 		return -ENODEV;
454 	else if (!test_bit(RTC_FEATURE_ALARM, rtc->features))
455 		return -EINVAL;
456 
457 	err = rtc_valid_tm(&alarm->time);
458 	if (err != 0)
459 		return err;
460 
461 	err = rtc_valid_range(rtc, &alarm->time);
462 	if (err)
463 		return err;
464 
465 	err = mutex_lock_interruptible(&rtc->ops_lock);
466 	if (err)
467 		return err;
468 	if (rtc->aie_timer.enabled)
469 		rtc_timer_remove(rtc, &rtc->aie_timer);
470 
471 	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
472 	rtc->aie_timer.period = 0;
473 	if (alarm->enabled)
474 		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
475 
476 	mutex_unlock(&rtc->ops_lock);
477 
478 	return err;
479 }
480 EXPORT_SYMBOL_GPL(rtc_set_alarm);
481 
482 /* Called once per device from rtc_device_register */
483 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
484 {
485 	int err;
486 	struct rtc_time now;
487 
488 	err = rtc_valid_tm(&alarm->time);
489 	if (err != 0)
490 		return err;
491 
492 	err = rtc_read_time(rtc, &now);
493 	if (err)
494 		return err;
495 
496 	err = mutex_lock_interruptible(&rtc->ops_lock);
497 	if (err)
498 		return err;
499 
500 	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
501 	rtc->aie_timer.period = 0;
502 
503 	/* Alarm has to be enabled & in the future for us to enqueue it */
504 	if (alarm->enabled && (rtc_tm_to_ktime(now) <
505 			 rtc->aie_timer.node.expires)) {
506 		rtc->aie_timer.enabled = 1;
507 		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
508 		trace_rtc_timer_enqueue(&rtc->aie_timer);
509 	}
510 	mutex_unlock(&rtc->ops_lock);
511 	return err;
512 }
513 EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
514 
515 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
516 {
517 	int err;
518 
519 	err = mutex_lock_interruptible(&rtc->ops_lock);
520 	if (err)
521 		return err;
522 
523 	if (rtc->aie_timer.enabled != enabled) {
524 		if (enabled)
525 			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
526 		else
527 			rtc_timer_remove(rtc, &rtc->aie_timer);
528 	}
529 
530 	if (err)
531 		/* nothing */;
532 	else if (!rtc->ops)
533 		err = -ENODEV;
534 	else if (!test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->alarm_irq_enable)
535 		err = -EINVAL;
536 	else
537 		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
538 
539 	mutex_unlock(&rtc->ops_lock);
540 
541 	trace_rtc_alarm_irq_enable(enabled, err);
542 	return err;
543 }
544 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
545 
546 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
547 {
548 	int rc = 0, err;
549 
550 	err = mutex_lock_interruptible(&rtc->ops_lock);
551 	if (err)
552 		return err;
553 
554 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
555 	if (enabled == 0 && rtc->uie_irq_active) {
556 		mutex_unlock(&rtc->ops_lock);
557 		return rtc_dev_update_irq_enable_emul(rtc, 0);
558 	}
559 #endif
560 	/* make sure we're changing state */
561 	if (rtc->uie_rtctimer.enabled == enabled)
562 		goto out;
563 
564 	if (rtc->uie_unsupported) {
565 		err = -EINVAL;
566 		goto out;
567 	}
568 
569 	if (enabled) {
570 		struct rtc_time tm;
571 		ktime_t now, onesec;
572 
573 		rc = __rtc_read_time(rtc, &tm);
574 		if (rc)
575 			goto out;
576 		onesec = ktime_set(1, 0);
577 		now = rtc_tm_to_ktime(tm);
578 		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
579 		rtc->uie_rtctimer.period = ktime_set(1, 0);
580 		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
581 	} else {
582 		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
583 	}
584 
585 out:
586 	mutex_unlock(&rtc->ops_lock);
587 
588 	/*
589 	 * __rtc_read_time() failed, this probably means that the RTC time has
590 	 * never been set or less probably there is a transient error on the
591 	 * bus. In any case, avoid enabling emulation has this will fail when
592 	 * reading the time too.
593 	 */
594 	if (rc)
595 		return rc;
596 
597 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
598 	/*
599 	 * Enable emulation if the driver returned -EINVAL to signal that it has
600 	 * been configured without interrupts or they are not available at the
601 	 * moment.
602 	 */
603 	if (err == -EINVAL)
604 		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
605 #endif
606 	return err;
607 }
608 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
609 
610 /**
611  * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
612  * @rtc: pointer to the rtc device
613  * @num: number of occurence of the event
614  * @mode: type of the event, RTC_AF, RTC_UF of RTC_PF
615  *
616  * This function is called when an AIE, UIE or PIE mode interrupt
617  * has occurred (or been emulated).
618  *
619  */
620 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
621 {
622 	unsigned long flags;
623 
624 	/* mark one irq of the appropriate mode */
625 	spin_lock_irqsave(&rtc->irq_lock, flags);
626 	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF | mode);
627 	spin_unlock_irqrestore(&rtc->irq_lock, flags);
628 
629 	wake_up_interruptible(&rtc->irq_queue);
630 	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
631 }
632 
633 /**
634  * rtc_aie_update_irq - AIE mode rtctimer hook
635  * @rtc: pointer to the rtc_device
636  *
637  * This functions is called when the aie_timer expires.
638  */
639 void rtc_aie_update_irq(struct rtc_device *rtc)
640 {
641 	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
642 }
643 
644 /**
645  * rtc_uie_update_irq - UIE mode rtctimer hook
646  * @rtc: pointer to the rtc_device
647  *
648  * This functions is called when the uie_timer expires.
649  */
650 void rtc_uie_update_irq(struct rtc_device *rtc)
651 {
652 	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
653 }
654 
655 /**
656  * rtc_pie_update_irq - PIE mode hrtimer hook
657  * @timer: pointer to the pie mode hrtimer
658  *
659  * This function is used to emulate PIE mode interrupts
660  * using an hrtimer. This function is called when the periodic
661  * hrtimer expires.
662  */
663 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
664 {
665 	struct rtc_device *rtc;
666 	ktime_t period;
667 	u64 count;
668 
669 	rtc = container_of(timer, struct rtc_device, pie_timer);
670 
671 	period = NSEC_PER_SEC / rtc->irq_freq;
672 	count = hrtimer_forward_now(timer, period);
673 
674 	rtc_handle_legacy_irq(rtc, count, RTC_PF);
675 
676 	return HRTIMER_RESTART;
677 }
678 
679 /**
680  * rtc_update_irq - Triggered when a RTC interrupt occurs.
681  * @rtc: the rtc device
682  * @num: how many irqs are being reported (usually one)
683  * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
684  * Context: any
685  */
686 void rtc_update_irq(struct rtc_device *rtc,
687 		    unsigned long num, unsigned long events)
688 {
689 	if (IS_ERR_OR_NULL(rtc))
690 		return;
691 
692 	pm_stay_awake(rtc->dev.parent);
693 	schedule_work(&rtc->irqwork);
694 }
695 EXPORT_SYMBOL_GPL(rtc_update_irq);
696 
697 struct rtc_device *rtc_class_open(const char *name)
698 {
699 	struct device *dev;
700 	struct rtc_device *rtc = NULL;
701 
702 	dev = class_find_device_by_name(rtc_class, name);
703 	if (dev)
704 		rtc = to_rtc_device(dev);
705 
706 	if (rtc) {
707 		if (!try_module_get(rtc->owner)) {
708 			put_device(dev);
709 			rtc = NULL;
710 		}
711 	}
712 
713 	return rtc;
714 }
715 EXPORT_SYMBOL_GPL(rtc_class_open);
716 
717 void rtc_class_close(struct rtc_device *rtc)
718 {
719 	module_put(rtc->owner);
720 	put_device(&rtc->dev);
721 }
722 EXPORT_SYMBOL_GPL(rtc_class_close);
723 
724 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
725 {
726 	/*
727 	 * We always cancel the timer here first, because otherwise
728 	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
729 	 * when we manage to start the timer before the callback
730 	 * returns HRTIMER_RESTART.
731 	 *
732 	 * We cannot use hrtimer_cancel() here as a running callback
733 	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
734 	 * would spin forever.
735 	 */
736 	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
737 		return -1;
738 
739 	if (enabled) {
740 		ktime_t period = NSEC_PER_SEC / rtc->irq_freq;
741 
742 		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
743 	}
744 	return 0;
745 }
746 
747 /**
748  * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
749  * @rtc: the rtc device
750  * @enabled: true to enable periodic IRQs
751  * Context: any
752  *
753  * Note that rtc_irq_set_freq() should previously have been used to
754  * specify the desired frequency of periodic IRQ.
755  */
756 int rtc_irq_set_state(struct rtc_device *rtc, int enabled)
757 {
758 	int err = 0;
759 
760 	while (rtc_update_hrtimer(rtc, enabled) < 0)
761 		cpu_relax();
762 
763 	rtc->pie_enabled = enabled;
764 
765 	trace_rtc_irq_set_state(enabled, err);
766 	return err;
767 }
768 
769 /**
770  * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
771  * @rtc: the rtc device
772  * @freq: positive frequency
773  * Context: any
774  *
775  * Note that rtc_irq_set_state() is used to enable or disable the
776  * periodic IRQs.
777  */
778 int rtc_irq_set_freq(struct rtc_device *rtc, int freq)
779 {
780 	int err = 0;
781 
782 	if (freq <= 0 || freq > RTC_MAX_FREQ)
783 		return -EINVAL;
784 
785 	rtc->irq_freq = freq;
786 	while (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0)
787 		cpu_relax();
788 
789 	trace_rtc_irq_set_freq(freq, err);
790 	return err;
791 }
792 
793 /**
794  * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
795  * @rtc: rtc device
796  * @timer: timer being added.
797  *
798  * Enqueues a timer onto the rtc devices timerqueue and sets
799  * the next alarm event appropriately.
800  *
801  * Sets the enabled bit on the added timer.
802  *
803  * Must hold ops_lock for proper serialization of timerqueue
804  */
805 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
806 {
807 	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
808 	struct rtc_time tm;
809 	ktime_t now;
810 
811 	timer->enabled = 1;
812 	__rtc_read_time(rtc, &tm);
813 	now = rtc_tm_to_ktime(tm);
814 
815 	/* Skip over expired timers */
816 	while (next) {
817 		if (next->expires >= now)
818 			break;
819 		next = timerqueue_iterate_next(next);
820 	}
821 
822 	timerqueue_add(&rtc->timerqueue, &timer->node);
823 	trace_rtc_timer_enqueue(timer);
824 	if (!next || ktime_before(timer->node.expires, next->expires)) {
825 		struct rtc_wkalrm alarm;
826 		int err;
827 
828 		alarm.time = rtc_ktime_to_tm(timer->node.expires);
829 		alarm.enabled = 1;
830 		err = __rtc_set_alarm(rtc, &alarm);
831 		if (err == -ETIME) {
832 			pm_stay_awake(rtc->dev.parent);
833 			schedule_work(&rtc->irqwork);
834 		} else if (err) {
835 			timerqueue_del(&rtc->timerqueue, &timer->node);
836 			trace_rtc_timer_dequeue(timer);
837 			timer->enabled = 0;
838 			return err;
839 		}
840 	}
841 	return 0;
842 }
843 
844 static void rtc_alarm_disable(struct rtc_device *rtc)
845 {
846 	if (!rtc->ops || !test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->alarm_irq_enable)
847 		return;
848 
849 	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
850 	trace_rtc_alarm_irq_enable(0, 0);
851 }
852 
853 /**
854  * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
855  * @rtc: rtc device
856  * @timer: timer being removed.
857  *
858  * Removes a timer onto the rtc devices timerqueue and sets
859  * the next alarm event appropriately.
860  *
861  * Clears the enabled bit on the removed timer.
862  *
863  * Must hold ops_lock for proper serialization of timerqueue
864  */
865 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
866 {
867 	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
868 
869 	timerqueue_del(&rtc->timerqueue, &timer->node);
870 	trace_rtc_timer_dequeue(timer);
871 	timer->enabled = 0;
872 	if (next == &timer->node) {
873 		struct rtc_wkalrm alarm;
874 		int err;
875 
876 		next = timerqueue_getnext(&rtc->timerqueue);
877 		if (!next) {
878 			rtc_alarm_disable(rtc);
879 			return;
880 		}
881 		alarm.time = rtc_ktime_to_tm(next->expires);
882 		alarm.enabled = 1;
883 		err = __rtc_set_alarm(rtc, &alarm);
884 		if (err == -ETIME) {
885 			pm_stay_awake(rtc->dev.parent);
886 			schedule_work(&rtc->irqwork);
887 		}
888 	}
889 }
890 
891 /**
892  * rtc_timer_do_work - Expires rtc timers
893  * @work: work item
894  *
895  * Expires rtc timers. Reprograms next alarm event if needed.
896  * Called via worktask.
897  *
898  * Serializes access to timerqueue via ops_lock mutex
899  */
900 void rtc_timer_do_work(struct work_struct *work)
901 {
902 	struct rtc_timer *timer;
903 	struct timerqueue_node *next;
904 	ktime_t now;
905 	struct rtc_time tm;
906 
907 	struct rtc_device *rtc =
908 		container_of(work, struct rtc_device, irqwork);
909 
910 	mutex_lock(&rtc->ops_lock);
911 again:
912 	__rtc_read_time(rtc, &tm);
913 	now = rtc_tm_to_ktime(tm);
914 	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
915 		if (next->expires > now)
916 			break;
917 
918 		/* expire timer */
919 		timer = container_of(next, struct rtc_timer, node);
920 		timerqueue_del(&rtc->timerqueue, &timer->node);
921 		trace_rtc_timer_dequeue(timer);
922 		timer->enabled = 0;
923 		if (timer->func)
924 			timer->func(timer->rtc);
925 
926 		trace_rtc_timer_fired(timer);
927 		/* Re-add/fwd periodic timers */
928 		if (ktime_to_ns(timer->period)) {
929 			timer->node.expires = ktime_add(timer->node.expires,
930 							timer->period);
931 			timer->enabled = 1;
932 			timerqueue_add(&rtc->timerqueue, &timer->node);
933 			trace_rtc_timer_enqueue(timer);
934 		}
935 	}
936 
937 	/* Set next alarm */
938 	if (next) {
939 		struct rtc_wkalrm alarm;
940 		int err;
941 		int retry = 3;
942 
943 		alarm.time = rtc_ktime_to_tm(next->expires);
944 		alarm.enabled = 1;
945 reprogram:
946 		err = __rtc_set_alarm(rtc, &alarm);
947 		if (err == -ETIME) {
948 			goto again;
949 		} else if (err) {
950 			if (retry-- > 0)
951 				goto reprogram;
952 
953 			timer = container_of(next, struct rtc_timer, node);
954 			timerqueue_del(&rtc->timerqueue, &timer->node);
955 			trace_rtc_timer_dequeue(timer);
956 			timer->enabled = 0;
957 			dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
958 			goto again;
959 		}
960 	} else {
961 		rtc_alarm_disable(rtc);
962 	}
963 
964 	pm_relax(rtc->dev.parent);
965 	mutex_unlock(&rtc->ops_lock);
966 }
967 
968 /* rtc_timer_init - Initializes an rtc_timer
969  * @timer: timer to be intiialized
970  * @f: function pointer to be called when timer fires
971  * @rtc: pointer to the rtc_device
972  *
973  * Kernel interface to initializing an rtc_timer.
974  */
975 void rtc_timer_init(struct rtc_timer *timer, void (*f)(struct rtc_device *r),
976 		    struct rtc_device *rtc)
977 {
978 	timerqueue_init(&timer->node);
979 	timer->enabled = 0;
980 	timer->func = f;
981 	timer->rtc = rtc;
982 }
983 
984 /* rtc_timer_start - Sets an rtc_timer to fire in the future
985  * @ rtc: rtc device to be used
986  * @ timer: timer being set
987  * @ expires: time at which to expire the timer
988  * @ period: period that the timer will recur
989  *
990  * Kernel interface to set an rtc_timer
991  */
992 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
993 		    ktime_t expires, ktime_t period)
994 {
995 	int ret = 0;
996 
997 	mutex_lock(&rtc->ops_lock);
998 	if (timer->enabled)
999 		rtc_timer_remove(rtc, timer);
1000 
1001 	timer->node.expires = expires;
1002 	timer->period = period;
1003 
1004 	ret = rtc_timer_enqueue(rtc, timer);
1005 
1006 	mutex_unlock(&rtc->ops_lock);
1007 	return ret;
1008 }
1009 
1010 /* rtc_timer_cancel - Stops an rtc_timer
1011  * @ rtc: rtc device to be used
1012  * @ timer: timer being set
1013  *
1014  * Kernel interface to cancel an rtc_timer
1015  */
1016 void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
1017 {
1018 	mutex_lock(&rtc->ops_lock);
1019 	if (timer->enabled)
1020 		rtc_timer_remove(rtc, timer);
1021 	mutex_unlock(&rtc->ops_lock);
1022 }
1023 
1024 /**
1025  * rtc_read_offset - Read the amount of rtc offset in parts per billion
1026  * @rtc: rtc device to be used
1027  * @offset: the offset in parts per billion
1028  *
1029  * see below for details.
1030  *
1031  * Kernel interface to read rtc clock offset
1032  * Returns 0 on success, or a negative number on error.
1033  * If read_offset() is not implemented for the rtc, return -EINVAL
1034  */
1035 int rtc_read_offset(struct rtc_device *rtc, long *offset)
1036 {
1037 	int ret;
1038 
1039 	if (!rtc->ops)
1040 		return -ENODEV;
1041 
1042 	if (!rtc->ops->read_offset)
1043 		return -EINVAL;
1044 
1045 	mutex_lock(&rtc->ops_lock);
1046 	ret = rtc->ops->read_offset(rtc->dev.parent, offset);
1047 	mutex_unlock(&rtc->ops_lock);
1048 
1049 	trace_rtc_read_offset(*offset, ret);
1050 	return ret;
1051 }
1052 
1053 /**
1054  * rtc_set_offset - Adjusts the duration of the average second
1055  * @rtc: rtc device to be used
1056  * @offset: the offset in parts per billion
1057  *
1058  * Some rtc's allow an adjustment to the average duration of a second
1059  * to compensate for differences in the actual clock rate due to temperature,
1060  * the crystal, capacitor, etc.
1061  *
1062  * The adjustment applied is as follows:
1063  *   t = t0 * (1 + offset * 1e-9)
1064  * where t0 is the measured length of 1 RTC second with offset = 0
1065  *
1066  * Kernel interface to adjust an rtc clock offset.
1067  * Return 0 on success, or a negative number on error.
1068  * If the rtc offset is not setable (or not implemented), return -EINVAL
1069  */
1070 int rtc_set_offset(struct rtc_device *rtc, long offset)
1071 {
1072 	int ret;
1073 
1074 	if (!rtc->ops)
1075 		return -ENODEV;
1076 
1077 	if (!rtc->ops->set_offset)
1078 		return -EINVAL;
1079 
1080 	mutex_lock(&rtc->ops_lock);
1081 	ret = rtc->ops->set_offset(rtc->dev.parent, offset);
1082 	mutex_unlock(&rtc->ops_lock);
1083 
1084 	trace_rtc_set_offset(offset, ret);
1085 	return ret;
1086 }
1087