xref: /openbmc/linux/drivers/rtc/interface.c (revision 5927145e)
1 /*
2  * RTC subsystem, interface functions
3  *
4  * Copyright (C) 2005 Tower Technologies
5  * Author: Alessandro Zummo <a.zummo@towertech.it>
6  *
7  * based on arch/arm/common/rtctime.c
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12 */
13 
14 #include <linux/rtc.h>
15 #include <linux/sched.h>
16 #include <linux/module.h>
17 #include <linux/log2.h>
18 #include <linux/workqueue.h>
19 
20 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
21 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
22 
23 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
24 {
25 	int err;
26 	if (!rtc->ops)
27 		err = -ENODEV;
28 	else if (!rtc->ops->read_time)
29 		err = -EINVAL;
30 	else {
31 		memset(tm, 0, sizeof(struct rtc_time));
32 		err = rtc->ops->read_time(rtc->dev.parent, tm);
33 		if (err < 0) {
34 			dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
35 				err);
36 			return err;
37 		}
38 
39 		err = rtc_valid_tm(tm);
40 		if (err < 0)
41 			dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
42 	}
43 	return err;
44 }
45 
46 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
47 {
48 	int err;
49 
50 	err = mutex_lock_interruptible(&rtc->ops_lock);
51 	if (err)
52 		return err;
53 
54 	err = __rtc_read_time(rtc, tm);
55 	mutex_unlock(&rtc->ops_lock);
56 	return err;
57 }
58 EXPORT_SYMBOL_GPL(rtc_read_time);
59 
60 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
61 {
62 	int err;
63 
64 	err = rtc_valid_tm(tm);
65 	if (err != 0)
66 		return err;
67 
68 	err = mutex_lock_interruptible(&rtc->ops_lock);
69 	if (err)
70 		return err;
71 
72 	if (!rtc->ops)
73 		err = -ENODEV;
74 	else if (rtc->ops->set_time)
75 		err = rtc->ops->set_time(rtc->dev.parent, tm);
76 	else if (rtc->ops->set_mmss64) {
77 		time64_t secs64 = rtc_tm_to_time64(tm);
78 
79 		err = rtc->ops->set_mmss64(rtc->dev.parent, secs64);
80 	} else if (rtc->ops->set_mmss) {
81 		time64_t secs64 = rtc_tm_to_time64(tm);
82 		err = rtc->ops->set_mmss(rtc->dev.parent, secs64);
83 	} else
84 		err = -EINVAL;
85 
86 	pm_stay_awake(rtc->dev.parent);
87 	mutex_unlock(&rtc->ops_lock);
88 	/* A timer might have just expired */
89 	schedule_work(&rtc->irqwork);
90 	return err;
91 }
92 EXPORT_SYMBOL_GPL(rtc_set_time);
93 
94 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
95 {
96 	int err;
97 
98 	err = mutex_lock_interruptible(&rtc->ops_lock);
99 	if (err)
100 		return err;
101 
102 	if (rtc->ops == NULL)
103 		err = -ENODEV;
104 	else if (!rtc->ops->read_alarm)
105 		err = -EINVAL;
106 	else {
107 		alarm->enabled = 0;
108 		alarm->pending = 0;
109 		alarm->time.tm_sec = -1;
110 		alarm->time.tm_min = -1;
111 		alarm->time.tm_hour = -1;
112 		alarm->time.tm_mday = -1;
113 		alarm->time.tm_mon = -1;
114 		alarm->time.tm_year = -1;
115 		alarm->time.tm_wday = -1;
116 		alarm->time.tm_yday = -1;
117 		alarm->time.tm_isdst = -1;
118 		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
119 	}
120 
121 	mutex_unlock(&rtc->ops_lock);
122 	return err;
123 }
124 
125 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
126 {
127 	int err;
128 	struct rtc_time before, now;
129 	int first_time = 1;
130 	time64_t t_now, t_alm;
131 	enum { none, day, month, year } missing = none;
132 	unsigned days;
133 
134 	/* The lower level RTC driver may return -1 in some fields,
135 	 * creating invalid alarm->time values, for reasons like:
136 	 *
137 	 *   - The hardware may not be capable of filling them in;
138 	 *     many alarms match only on time-of-day fields, not
139 	 *     day/month/year calendar data.
140 	 *
141 	 *   - Some hardware uses illegal values as "wildcard" match
142 	 *     values, which non-Linux firmware (like a BIOS) may try
143 	 *     to set up as e.g. "alarm 15 minutes after each hour".
144 	 *     Linux uses only oneshot alarms.
145 	 *
146 	 * When we see that here, we deal with it by using values from
147 	 * a current RTC timestamp for any missing (-1) values.  The
148 	 * RTC driver prevents "periodic alarm" modes.
149 	 *
150 	 * But this can be racey, because some fields of the RTC timestamp
151 	 * may have wrapped in the interval since we read the RTC alarm,
152 	 * which would lead to us inserting inconsistent values in place
153 	 * of the -1 fields.
154 	 *
155 	 * Reading the alarm and timestamp in the reverse sequence
156 	 * would have the same race condition, and not solve the issue.
157 	 *
158 	 * So, we must first read the RTC timestamp,
159 	 * then read the RTC alarm value,
160 	 * and then read a second RTC timestamp.
161 	 *
162 	 * If any fields of the second timestamp have changed
163 	 * when compared with the first timestamp, then we know
164 	 * our timestamp may be inconsistent with that used by
165 	 * the low-level rtc_read_alarm_internal() function.
166 	 *
167 	 * So, when the two timestamps disagree, we just loop and do
168 	 * the process again to get a fully consistent set of values.
169 	 *
170 	 * This could all instead be done in the lower level driver,
171 	 * but since more than one lower level RTC implementation needs it,
172 	 * then it's probably best best to do it here instead of there..
173 	 */
174 
175 	/* Get the "before" timestamp */
176 	err = rtc_read_time(rtc, &before);
177 	if (err < 0)
178 		return err;
179 	do {
180 		if (!first_time)
181 			memcpy(&before, &now, sizeof(struct rtc_time));
182 		first_time = 0;
183 
184 		/* get the RTC alarm values, which may be incomplete */
185 		err = rtc_read_alarm_internal(rtc, alarm);
186 		if (err)
187 			return err;
188 
189 		/* full-function RTCs won't have such missing fields */
190 		if (rtc_valid_tm(&alarm->time) == 0)
191 			return 0;
192 
193 		/* get the "after" timestamp, to detect wrapped fields */
194 		err = rtc_read_time(rtc, &now);
195 		if (err < 0)
196 			return err;
197 
198 		/* note that tm_sec is a "don't care" value here: */
199 	} while (   before.tm_min   != now.tm_min
200 		 || before.tm_hour  != now.tm_hour
201 		 || before.tm_mon   != now.tm_mon
202 		 || before.tm_year  != now.tm_year);
203 
204 	/* Fill in the missing alarm fields using the timestamp; we
205 	 * know there's at least one since alarm->time is invalid.
206 	 */
207 	if (alarm->time.tm_sec == -1)
208 		alarm->time.tm_sec = now.tm_sec;
209 	if (alarm->time.tm_min == -1)
210 		alarm->time.tm_min = now.tm_min;
211 	if (alarm->time.tm_hour == -1)
212 		alarm->time.tm_hour = now.tm_hour;
213 
214 	/* For simplicity, only support date rollover for now */
215 	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
216 		alarm->time.tm_mday = now.tm_mday;
217 		missing = day;
218 	}
219 	if ((unsigned)alarm->time.tm_mon >= 12) {
220 		alarm->time.tm_mon = now.tm_mon;
221 		if (missing == none)
222 			missing = month;
223 	}
224 	if (alarm->time.tm_year == -1) {
225 		alarm->time.tm_year = now.tm_year;
226 		if (missing == none)
227 			missing = year;
228 	}
229 
230 	/* Can't proceed if alarm is still invalid after replacing
231 	 * missing fields.
232 	 */
233 	err = rtc_valid_tm(&alarm->time);
234 	if (err)
235 		goto done;
236 
237 	/* with luck, no rollover is needed */
238 	t_now = rtc_tm_to_time64(&now);
239 	t_alm = rtc_tm_to_time64(&alarm->time);
240 	if (t_now < t_alm)
241 		goto done;
242 
243 	switch (missing) {
244 
245 	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
246 	 * that will trigger at 5am will do so at 5am Tuesday, which
247 	 * could also be in the next month or year.  This is a common
248 	 * case, especially for PCs.
249 	 */
250 	case day:
251 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
252 		t_alm += 24 * 60 * 60;
253 		rtc_time64_to_tm(t_alm, &alarm->time);
254 		break;
255 
256 	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
257 	 * be next month.  An alarm matching on the 30th, 29th, or 28th
258 	 * may end up in the month after that!  Many newer PCs support
259 	 * this type of alarm.
260 	 */
261 	case month:
262 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
263 		do {
264 			if (alarm->time.tm_mon < 11)
265 				alarm->time.tm_mon++;
266 			else {
267 				alarm->time.tm_mon = 0;
268 				alarm->time.tm_year++;
269 			}
270 			days = rtc_month_days(alarm->time.tm_mon,
271 					alarm->time.tm_year);
272 		} while (days < alarm->time.tm_mday);
273 		break;
274 
275 	/* Year rollover ... easy except for leap years! */
276 	case year:
277 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
278 		do {
279 			alarm->time.tm_year++;
280 		} while (!is_leap_year(alarm->time.tm_year + 1900)
281 			&& rtc_valid_tm(&alarm->time) != 0);
282 		break;
283 
284 	default:
285 		dev_warn(&rtc->dev, "alarm rollover not handled\n");
286 	}
287 
288 	err = rtc_valid_tm(&alarm->time);
289 
290 done:
291 	if (err) {
292 		dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
293 			alarm->time.tm_year + 1900, alarm->time.tm_mon + 1,
294 			alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min,
295 			alarm->time.tm_sec);
296 	}
297 
298 	return err;
299 }
300 
301 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
302 {
303 	int err;
304 
305 	err = mutex_lock_interruptible(&rtc->ops_lock);
306 	if (err)
307 		return err;
308 	if (rtc->ops == NULL)
309 		err = -ENODEV;
310 	else if (!rtc->ops->read_alarm)
311 		err = -EINVAL;
312 	else {
313 		memset(alarm, 0, sizeof(struct rtc_wkalrm));
314 		alarm->enabled = rtc->aie_timer.enabled;
315 		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
316 	}
317 	mutex_unlock(&rtc->ops_lock);
318 
319 	return err;
320 }
321 EXPORT_SYMBOL_GPL(rtc_read_alarm);
322 
323 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
324 {
325 	struct rtc_time tm;
326 	time64_t now, scheduled;
327 	int err;
328 
329 	err = rtc_valid_tm(&alarm->time);
330 	if (err)
331 		return err;
332 	scheduled = rtc_tm_to_time64(&alarm->time);
333 
334 	/* Make sure we're not setting alarms in the past */
335 	err = __rtc_read_time(rtc, &tm);
336 	if (err)
337 		return err;
338 	now = rtc_tm_to_time64(&tm);
339 	if (scheduled <= now)
340 		return -ETIME;
341 	/*
342 	 * XXX - We just checked to make sure the alarm time is not
343 	 * in the past, but there is still a race window where if
344 	 * the is alarm set for the next second and the second ticks
345 	 * over right here, before we set the alarm.
346 	 */
347 
348 	if (!rtc->ops)
349 		err = -ENODEV;
350 	else if (!rtc->ops->set_alarm)
351 		err = -EINVAL;
352 	else
353 		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
354 
355 	return err;
356 }
357 
358 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
359 {
360 	int err;
361 
362 	err = rtc_valid_tm(&alarm->time);
363 	if (err != 0)
364 		return err;
365 
366 	err = mutex_lock_interruptible(&rtc->ops_lock);
367 	if (err)
368 		return err;
369 	if (rtc->aie_timer.enabled)
370 		rtc_timer_remove(rtc, &rtc->aie_timer);
371 
372 	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
373 	rtc->aie_timer.period = 0;
374 	if (alarm->enabled)
375 		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
376 
377 	mutex_unlock(&rtc->ops_lock);
378 	return err;
379 }
380 EXPORT_SYMBOL_GPL(rtc_set_alarm);
381 
382 /* Called once per device from rtc_device_register */
383 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
384 {
385 	int err;
386 	struct rtc_time now;
387 
388 	err = rtc_valid_tm(&alarm->time);
389 	if (err != 0)
390 		return err;
391 
392 	err = rtc_read_time(rtc, &now);
393 	if (err)
394 		return err;
395 
396 	err = mutex_lock_interruptible(&rtc->ops_lock);
397 	if (err)
398 		return err;
399 
400 	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
401 	rtc->aie_timer.period = 0;
402 
403 	/* Alarm has to be enabled & in the future for us to enqueue it */
404 	if (alarm->enabled && (rtc_tm_to_ktime(now) <
405 			 rtc->aie_timer.node.expires)) {
406 
407 		rtc->aie_timer.enabled = 1;
408 		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
409 	}
410 	mutex_unlock(&rtc->ops_lock);
411 	return err;
412 }
413 EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
414 
415 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
416 {
417 	int err = mutex_lock_interruptible(&rtc->ops_lock);
418 	if (err)
419 		return err;
420 
421 	if (rtc->aie_timer.enabled != enabled) {
422 		if (enabled)
423 			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
424 		else
425 			rtc_timer_remove(rtc, &rtc->aie_timer);
426 	}
427 
428 	if (err)
429 		/* nothing */;
430 	else if (!rtc->ops)
431 		err = -ENODEV;
432 	else if (!rtc->ops->alarm_irq_enable)
433 		err = -EINVAL;
434 	else
435 		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
436 
437 	mutex_unlock(&rtc->ops_lock);
438 	return err;
439 }
440 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
441 
442 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
443 {
444 	int err = mutex_lock_interruptible(&rtc->ops_lock);
445 	if (err)
446 		return err;
447 
448 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
449 	if (enabled == 0 && rtc->uie_irq_active) {
450 		mutex_unlock(&rtc->ops_lock);
451 		return rtc_dev_update_irq_enable_emul(rtc, 0);
452 	}
453 #endif
454 	/* make sure we're changing state */
455 	if (rtc->uie_rtctimer.enabled == enabled)
456 		goto out;
457 
458 	if (rtc->uie_unsupported) {
459 		err = -EINVAL;
460 		goto out;
461 	}
462 
463 	if (enabled) {
464 		struct rtc_time tm;
465 		ktime_t now, onesec;
466 
467 		__rtc_read_time(rtc, &tm);
468 		onesec = ktime_set(1, 0);
469 		now = rtc_tm_to_ktime(tm);
470 		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
471 		rtc->uie_rtctimer.period = ktime_set(1, 0);
472 		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
473 	} else
474 		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
475 
476 out:
477 	mutex_unlock(&rtc->ops_lock);
478 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
479 	/*
480 	 * Enable emulation if the driver did not provide
481 	 * the update_irq_enable function pointer or if returned
482 	 * -EINVAL to signal that it has been configured without
483 	 * interrupts or that are not available at the moment.
484 	 */
485 	if (err == -EINVAL)
486 		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
487 #endif
488 	return err;
489 
490 }
491 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
492 
493 
494 /**
495  * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
496  * @rtc: pointer to the rtc device
497  *
498  * This function is called when an AIE, UIE or PIE mode interrupt
499  * has occurred (or been emulated).
500  *
501  * Triggers the registered irq_task function callback.
502  */
503 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
504 {
505 	unsigned long flags;
506 
507 	/* mark one irq of the appropriate mode */
508 	spin_lock_irqsave(&rtc->irq_lock, flags);
509 	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
510 	spin_unlock_irqrestore(&rtc->irq_lock, flags);
511 
512 	/* call the task func */
513 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
514 	if (rtc->irq_task)
515 		rtc->irq_task->func(rtc->irq_task->private_data);
516 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
517 
518 	wake_up_interruptible(&rtc->irq_queue);
519 	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
520 }
521 
522 
523 /**
524  * rtc_aie_update_irq - AIE mode rtctimer hook
525  * @private: pointer to the rtc_device
526  *
527  * This functions is called when the aie_timer expires.
528  */
529 void rtc_aie_update_irq(void *private)
530 {
531 	struct rtc_device *rtc = (struct rtc_device *)private;
532 	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
533 }
534 
535 
536 /**
537  * rtc_uie_update_irq - UIE mode rtctimer hook
538  * @private: pointer to the rtc_device
539  *
540  * This functions is called when the uie_timer expires.
541  */
542 void rtc_uie_update_irq(void *private)
543 {
544 	struct rtc_device *rtc = (struct rtc_device *)private;
545 	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
546 }
547 
548 
549 /**
550  * rtc_pie_update_irq - PIE mode hrtimer hook
551  * @timer: pointer to the pie mode hrtimer
552  *
553  * This function is used to emulate PIE mode interrupts
554  * using an hrtimer. This function is called when the periodic
555  * hrtimer expires.
556  */
557 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
558 {
559 	struct rtc_device *rtc;
560 	ktime_t period;
561 	int count;
562 	rtc = container_of(timer, struct rtc_device, pie_timer);
563 
564 	period = NSEC_PER_SEC / rtc->irq_freq;
565 	count = hrtimer_forward_now(timer, period);
566 
567 	rtc_handle_legacy_irq(rtc, count, RTC_PF);
568 
569 	return HRTIMER_RESTART;
570 }
571 
572 /**
573  * rtc_update_irq - Triggered when a RTC interrupt occurs.
574  * @rtc: the rtc device
575  * @num: how many irqs are being reported (usually one)
576  * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
577  * Context: any
578  */
579 void rtc_update_irq(struct rtc_device *rtc,
580 		unsigned long num, unsigned long events)
581 {
582 	if (IS_ERR_OR_NULL(rtc))
583 		return;
584 
585 	pm_stay_awake(rtc->dev.parent);
586 	schedule_work(&rtc->irqwork);
587 }
588 EXPORT_SYMBOL_GPL(rtc_update_irq);
589 
590 static int __rtc_match(struct device *dev, const void *data)
591 {
592 	const char *name = data;
593 
594 	if (strcmp(dev_name(dev), name) == 0)
595 		return 1;
596 	return 0;
597 }
598 
599 struct rtc_device *rtc_class_open(const char *name)
600 {
601 	struct device *dev;
602 	struct rtc_device *rtc = NULL;
603 
604 	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
605 	if (dev)
606 		rtc = to_rtc_device(dev);
607 
608 	if (rtc) {
609 		if (!try_module_get(rtc->owner)) {
610 			put_device(dev);
611 			rtc = NULL;
612 		}
613 	}
614 
615 	return rtc;
616 }
617 EXPORT_SYMBOL_GPL(rtc_class_open);
618 
619 void rtc_class_close(struct rtc_device *rtc)
620 {
621 	module_put(rtc->owner);
622 	put_device(&rtc->dev);
623 }
624 EXPORT_SYMBOL_GPL(rtc_class_close);
625 
626 int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
627 {
628 	int retval = -EBUSY;
629 
630 	if (task == NULL || task->func == NULL)
631 		return -EINVAL;
632 
633 	/* Cannot register while the char dev is in use */
634 	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
635 		return -EBUSY;
636 
637 	spin_lock_irq(&rtc->irq_task_lock);
638 	if (rtc->irq_task == NULL) {
639 		rtc->irq_task = task;
640 		retval = 0;
641 	}
642 	spin_unlock_irq(&rtc->irq_task_lock);
643 
644 	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
645 
646 	return retval;
647 }
648 EXPORT_SYMBOL_GPL(rtc_irq_register);
649 
650 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
651 {
652 	spin_lock_irq(&rtc->irq_task_lock);
653 	if (rtc->irq_task == task)
654 		rtc->irq_task = NULL;
655 	spin_unlock_irq(&rtc->irq_task_lock);
656 }
657 EXPORT_SYMBOL_GPL(rtc_irq_unregister);
658 
659 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
660 {
661 	/*
662 	 * We always cancel the timer here first, because otherwise
663 	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
664 	 * when we manage to start the timer before the callback
665 	 * returns HRTIMER_RESTART.
666 	 *
667 	 * We cannot use hrtimer_cancel() here as a running callback
668 	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
669 	 * would spin forever.
670 	 */
671 	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
672 		return -1;
673 
674 	if (enabled) {
675 		ktime_t period = NSEC_PER_SEC / rtc->irq_freq;
676 
677 		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
678 	}
679 	return 0;
680 }
681 
682 /**
683  * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
684  * @rtc: the rtc device
685  * @task: currently registered with rtc_irq_register()
686  * @enabled: true to enable periodic IRQs
687  * Context: any
688  *
689  * Note that rtc_irq_set_freq() should previously have been used to
690  * specify the desired frequency of periodic IRQ task->func() callbacks.
691  */
692 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
693 {
694 	int err = 0;
695 	unsigned long flags;
696 
697 retry:
698 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
699 	if (rtc->irq_task != NULL && task == NULL)
700 		err = -EBUSY;
701 	else if (rtc->irq_task != task)
702 		err = -EACCES;
703 	else {
704 		if (rtc_update_hrtimer(rtc, enabled) < 0) {
705 			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
706 			cpu_relax();
707 			goto retry;
708 		}
709 		rtc->pie_enabled = enabled;
710 	}
711 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
712 	return err;
713 }
714 EXPORT_SYMBOL_GPL(rtc_irq_set_state);
715 
716 /**
717  * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
718  * @rtc: the rtc device
719  * @task: currently registered with rtc_irq_register()
720  * @freq: positive frequency with which task->func() will be called
721  * Context: any
722  *
723  * Note that rtc_irq_set_state() is used to enable or disable the
724  * periodic IRQs.
725  */
726 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
727 {
728 	int err = 0;
729 	unsigned long flags;
730 
731 	if (freq <= 0 || freq > RTC_MAX_FREQ)
732 		return -EINVAL;
733 retry:
734 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
735 	if (rtc->irq_task != NULL && task == NULL)
736 		err = -EBUSY;
737 	else if (rtc->irq_task != task)
738 		err = -EACCES;
739 	else {
740 		rtc->irq_freq = freq;
741 		if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
742 			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
743 			cpu_relax();
744 			goto retry;
745 		}
746 	}
747 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
748 	return err;
749 }
750 EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
751 
752 /**
753  * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
754  * @rtc rtc device
755  * @timer timer being added.
756  *
757  * Enqueues a timer onto the rtc devices timerqueue and sets
758  * the next alarm event appropriately.
759  *
760  * Sets the enabled bit on the added timer.
761  *
762  * Must hold ops_lock for proper serialization of timerqueue
763  */
764 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
765 {
766 	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
767 	struct rtc_time tm;
768 	ktime_t now;
769 
770 	timer->enabled = 1;
771 	__rtc_read_time(rtc, &tm);
772 	now = rtc_tm_to_ktime(tm);
773 
774 	/* Skip over expired timers */
775 	while (next) {
776 		if (next->expires >= now)
777 			break;
778 		next = timerqueue_iterate_next(next);
779 	}
780 
781 	timerqueue_add(&rtc->timerqueue, &timer->node);
782 	if (!next || ktime_before(timer->node.expires, next->expires)) {
783 		struct rtc_wkalrm alarm;
784 		int err;
785 		alarm.time = rtc_ktime_to_tm(timer->node.expires);
786 		alarm.enabled = 1;
787 		err = __rtc_set_alarm(rtc, &alarm);
788 		if (err == -ETIME) {
789 			pm_stay_awake(rtc->dev.parent);
790 			schedule_work(&rtc->irqwork);
791 		} else if (err) {
792 			timerqueue_del(&rtc->timerqueue, &timer->node);
793 			timer->enabled = 0;
794 			return err;
795 		}
796 	}
797 	return 0;
798 }
799 
800 static void rtc_alarm_disable(struct rtc_device *rtc)
801 {
802 	if (!rtc->ops || !rtc->ops->alarm_irq_enable)
803 		return;
804 
805 	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
806 }
807 
808 /**
809  * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
810  * @rtc rtc device
811  * @timer timer being removed.
812  *
813  * Removes a timer onto the rtc devices timerqueue and sets
814  * the next alarm event appropriately.
815  *
816  * Clears the enabled bit on the removed timer.
817  *
818  * Must hold ops_lock for proper serialization of timerqueue
819  */
820 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
821 {
822 	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
823 	timerqueue_del(&rtc->timerqueue, &timer->node);
824 	timer->enabled = 0;
825 	if (next == &timer->node) {
826 		struct rtc_wkalrm alarm;
827 		int err;
828 		next = timerqueue_getnext(&rtc->timerqueue);
829 		if (!next) {
830 			rtc_alarm_disable(rtc);
831 			return;
832 		}
833 		alarm.time = rtc_ktime_to_tm(next->expires);
834 		alarm.enabled = 1;
835 		err = __rtc_set_alarm(rtc, &alarm);
836 		if (err == -ETIME) {
837 			pm_stay_awake(rtc->dev.parent);
838 			schedule_work(&rtc->irqwork);
839 		}
840 	}
841 }
842 
843 /**
844  * rtc_timer_do_work - Expires rtc timers
845  * @rtc rtc device
846  * @timer timer being removed.
847  *
848  * Expires rtc timers. Reprograms next alarm event if needed.
849  * Called via worktask.
850  *
851  * Serializes access to timerqueue via ops_lock mutex
852  */
853 void rtc_timer_do_work(struct work_struct *work)
854 {
855 	struct rtc_timer *timer;
856 	struct timerqueue_node *next;
857 	ktime_t now;
858 	struct rtc_time tm;
859 
860 	struct rtc_device *rtc =
861 		container_of(work, struct rtc_device, irqwork);
862 
863 	mutex_lock(&rtc->ops_lock);
864 again:
865 	__rtc_read_time(rtc, &tm);
866 	now = rtc_tm_to_ktime(tm);
867 	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
868 		if (next->expires > now)
869 			break;
870 
871 		/* expire timer */
872 		timer = container_of(next, struct rtc_timer, node);
873 		timerqueue_del(&rtc->timerqueue, &timer->node);
874 		timer->enabled = 0;
875 		if (timer->task.func)
876 			timer->task.func(timer->task.private_data);
877 
878 		/* Re-add/fwd periodic timers */
879 		if (ktime_to_ns(timer->period)) {
880 			timer->node.expires = ktime_add(timer->node.expires,
881 							timer->period);
882 			timer->enabled = 1;
883 			timerqueue_add(&rtc->timerqueue, &timer->node);
884 		}
885 	}
886 
887 	/* Set next alarm */
888 	if (next) {
889 		struct rtc_wkalrm alarm;
890 		int err;
891 		int retry = 3;
892 
893 		alarm.time = rtc_ktime_to_tm(next->expires);
894 		alarm.enabled = 1;
895 reprogram:
896 		err = __rtc_set_alarm(rtc, &alarm);
897 		if (err == -ETIME)
898 			goto again;
899 		else if (err) {
900 			if (retry-- > 0)
901 				goto reprogram;
902 
903 			timer = container_of(next, struct rtc_timer, node);
904 			timerqueue_del(&rtc->timerqueue, &timer->node);
905 			timer->enabled = 0;
906 			dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
907 			goto again;
908 		}
909 	} else
910 		rtc_alarm_disable(rtc);
911 
912 	pm_relax(rtc->dev.parent);
913 	mutex_unlock(&rtc->ops_lock);
914 }
915 
916 
917 /* rtc_timer_init - Initializes an rtc_timer
918  * @timer: timer to be intiialized
919  * @f: function pointer to be called when timer fires
920  * @data: private data passed to function pointer
921  *
922  * Kernel interface to initializing an rtc_timer.
923  */
924 void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
925 {
926 	timerqueue_init(&timer->node);
927 	timer->enabled = 0;
928 	timer->task.func = f;
929 	timer->task.private_data = data;
930 }
931 
932 /* rtc_timer_start - Sets an rtc_timer to fire in the future
933  * @ rtc: rtc device to be used
934  * @ timer: timer being set
935  * @ expires: time at which to expire the timer
936  * @ period: period that the timer will recur
937  *
938  * Kernel interface to set an rtc_timer
939  */
940 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
941 			ktime_t expires, ktime_t period)
942 {
943 	int ret = 0;
944 	mutex_lock(&rtc->ops_lock);
945 	if (timer->enabled)
946 		rtc_timer_remove(rtc, timer);
947 
948 	timer->node.expires = expires;
949 	timer->period = period;
950 
951 	ret = rtc_timer_enqueue(rtc, timer);
952 
953 	mutex_unlock(&rtc->ops_lock);
954 	return ret;
955 }
956 
957 /* rtc_timer_cancel - Stops an rtc_timer
958  * @ rtc: rtc device to be used
959  * @ timer: timer being set
960  *
961  * Kernel interface to cancel an rtc_timer
962  */
963 void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
964 {
965 	mutex_lock(&rtc->ops_lock);
966 	if (timer->enabled)
967 		rtc_timer_remove(rtc, timer);
968 	mutex_unlock(&rtc->ops_lock);
969 }
970 
971 /**
972  * rtc_read_offset - Read the amount of rtc offset in parts per billion
973  * @ rtc: rtc device to be used
974  * @ offset: the offset in parts per billion
975  *
976  * see below for details.
977  *
978  * Kernel interface to read rtc clock offset
979  * Returns 0 on success, or a negative number on error.
980  * If read_offset() is not implemented for the rtc, return -EINVAL
981  */
982 int rtc_read_offset(struct rtc_device *rtc, long *offset)
983 {
984 	int ret;
985 
986 	if (!rtc->ops)
987 		return -ENODEV;
988 
989 	if (!rtc->ops->read_offset)
990 		return -EINVAL;
991 
992 	mutex_lock(&rtc->ops_lock);
993 	ret = rtc->ops->read_offset(rtc->dev.parent, offset);
994 	mutex_unlock(&rtc->ops_lock);
995 	return ret;
996 }
997 
998 /**
999  * rtc_set_offset - Adjusts the duration of the average second
1000  * @ rtc: rtc device to be used
1001  * @ offset: the offset in parts per billion
1002  *
1003  * Some rtc's allow an adjustment to the average duration of a second
1004  * to compensate for differences in the actual clock rate due to temperature,
1005  * the crystal, capacitor, etc.
1006  *
1007  * The adjustment applied is as follows:
1008  *   t = t0 * (1 + offset * 1e-9)
1009  * where t0 is the measured length of 1 RTC second with offset = 0
1010  *
1011  * Kernel interface to adjust an rtc clock offset.
1012  * Return 0 on success, or a negative number on error.
1013  * If the rtc offset is not setable (or not implemented), return -EINVAL
1014  */
1015 int rtc_set_offset(struct rtc_device *rtc, long offset)
1016 {
1017 	int ret;
1018 
1019 	if (!rtc->ops)
1020 		return -ENODEV;
1021 
1022 	if (!rtc->ops->set_offset)
1023 		return -EINVAL;
1024 
1025 	mutex_lock(&rtc->ops_lock);
1026 	ret = rtc->ops->set_offset(rtc->dev.parent, offset);
1027 	mutex_unlock(&rtc->ops_lock);
1028 	return ret;
1029 }
1030