xref: /openbmc/linux/drivers/rtc/interface.c (revision 588b48ca)
1 /*
2  * RTC subsystem, interface functions
3  *
4  * Copyright (C) 2005 Tower Technologies
5  * Author: Alessandro Zummo <a.zummo@towertech.it>
6  *
7  * based on arch/arm/common/rtctime.c
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12 */
13 
14 #include <linux/rtc.h>
15 #include <linux/sched.h>
16 #include <linux/module.h>
17 #include <linux/log2.h>
18 #include <linux/workqueue.h>
19 
20 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
21 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
22 
23 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
24 {
25 	int err;
26 	if (!rtc->ops)
27 		err = -ENODEV;
28 	else if (!rtc->ops->read_time)
29 		err = -EINVAL;
30 	else {
31 		memset(tm, 0, sizeof(struct rtc_time));
32 		err = rtc->ops->read_time(rtc->dev.parent, tm);
33 	}
34 	return err;
35 }
36 
37 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
38 {
39 	int err;
40 
41 	err = mutex_lock_interruptible(&rtc->ops_lock);
42 	if (err)
43 		return err;
44 
45 	err = __rtc_read_time(rtc, tm);
46 	mutex_unlock(&rtc->ops_lock);
47 	return err;
48 }
49 EXPORT_SYMBOL_GPL(rtc_read_time);
50 
51 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
52 {
53 	int err;
54 
55 	err = rtc_valid_tm(tm);
56 	if (err != 0)
57 		return err;
58 
59 	err = mutex_lock_interruptible(&rtc->ops_lock);
60 	if (err)
61 		return err;
62 
63 	if (!rtc->ops)
64 		err = -ENODEV;
65 	else if (rtc->ops->set_time)
66 		err = rtc->ops->set_time(rtc->dev.parent, tm);
67 	else if (rtc->ops->set_mmss) {
68 		unsigned long secs;
69 		err = rtc_tm_to_time(tm, &secs);
70 		if (err == 0)
71 			err = rtc->ops->set_mmss(rtc->dev.parent, secs);
72 	} else
73 		err = -EINVAL;
74 
75 	pm_stay_awake(rtc->dev.parent);
76 	mutex_unlock(&rtc->ops_lock);
77 	/* A timer might have just expired */
78 	schedule_work(&rtc->irqwork);
79 	return err;
80 }
81 EXPORT_SYMBOL_GPL(rtc_set_time);
82 
83 int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
84 {
85 	int err;
86 
87 	err = mutex_lock_interruptible(&rtc->ops_lock);
88 	if (err)
89 		return err;
90 
91 	if (!rtc->ops)
92 		err = -ENODEV;
93 	else if (rtc->ops->set_mmss)
94 		err = rtc->ops->set_mmss(rtc->dev.parent, secs);
95 	else if (rtc->ops->read_time && rtc->ops->set_time) {
96 		struct rtc_time new, old;
97 
98 		err = rtc->ops->read_time(rtc->dev.parent, &old);
99 		if (err == 0) {
100 			rtc_time_to_tm(secs, &new);
101 
102 			/*
103 			 * avoid writing when we're going to change the day of
104 			 * the month. We will retry in the next minute. This
105 			 * basically means that if the RTC must not drift
106 			 * by more than 1 minute in 11 minutes.
107 			 */
108 			if (!((old.tm_hour == 23 && old.tm_min == 59) ||
109 				(new.tm_hour == 23 && new.tm_min == 59)))
110 				err = rtc->ops->set_time(rtc->dev.parent,
111 						&new);
112 		}
113 	} else {
114 		err = -EINVAL;
115 	}
116 
117 	pm_stay_awake(rtc->dev.parent);
118 	mutex_unlock(&rtc->ops_lock);
119 	/* A timer might have just expired */
120 	schedule_work(&rtc->irqwork);
121 
122 	return err;
123 }
124 EXPORT_SYMBOL_GPL(rtc_set_mmss);
125 
126 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
127 {
128 	int err;
129 
130 	err = mutex_lock_interruptible(&rtc->ops_lock);
131 	if (err)
132 		return err;
133 
134 	if (rtc->ops == NULL)
135 		err = -ENODEV;
136 	else if (!rtc->ops->read_alarm)
137 		err = -EINVAL;
138 	else {
139 		memset(alarm, 0, sizeof(struct rtc_wkalrm));
140 		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
141 	}
142 
143 	mutex_unlock(&rtc->ops_lock);
144 	return err;
145 }
146 
147 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
148 {
149 	int err;
150 	struct rtc_time before, now;
151 	int first_time = 1;
152 	unsigned long t_now, t_alm;
153 	enum { none, day, month, year } missing = none;
154 	unsigned days;
155 
156 	/* The lower level RTC driver may return -1 in some fields,
157 	 * creating invalid alarm->time values, for reasons like:
158 	 *
159 	 *   - The hardware may not be capable of filling them in;
160 	 *     many alarms match only on time-of-day fields, not
161 	 *     day/month/year calendar data.
162 	 *
163 	 *   - Some hardware uses illegal values as "wildcard" match
164 	 *     values, which non-Linux firmware (like a BIOS) may try
165 	 *     to set up as e.g. "alarm 15 minutes after each hour".
166 	 *     Linux uses only oneshot alarms.
167 	 *
168 	 * When we see that here, we deal with it by using values from
169 	 * a current RTC timestamp for any missing (-1) values.  The
170 	 * RTC driver prevents "periodic alarm" modes.
171 	 *
172 	 * But this can be racey, because some fields of the RTC timestamp
173 	 * may have wrapped in the interval since we read the RTC alarm,
174 	 * which would lead to us inserting inconsistent values in place
175 	 * of the -1 fields.
176 	 *
177 	 * Reading the alarm and timestamp in the reverse sequence
178 	 * would have the same race condition, and not solve the issue.
179 	 *
180 	 * So, we must first read the RTC timestamp,
181 	 * then read the RTC alarm value,
182 	 * and then read a second RTC timestamp.
183 	 *
184 	 * If any fields of the second timestamp have changed
185 	 * when compared with the first timestamp, then we know
186 	 * our timestamp may be inconsistent with that used by
187 	 * the low-level rtc_read_alarm_internal() function.
188 	 *
189 	 * So, when the two timestamps disagree, we just loop and do
190 	 * the process again to get a fully consistent set of values.
191 	 *
192 	 * This could all instead be done in the lower level driver,
193 	 * but since more than one lower level RTC implementation needs it,
194 	 * then it's probably best best to do it here instead of there..
195 	 */
196 
197 	/* Get the "before" timestamp */
198 	err = rtc_read_time(rtc, &before);
199 	if (err < 0)
200 		return err;
201 	do {
202 		if (!first_time)
203 			memcpy(&before, &now, sizeof(struct rtc_time));
204 		first_time = 0;
205 
206 		/* get the RTC alarm values, which may be incomplete */
207 		err = rtc_read_alarm_internal(rtc, alarm);
208 		if (err)
209 			return err;
210 
211 		/* full-function RTCs won't have such missing fields */
212 		if (rtc_valid_tm(&alarm->time) == 0)
213 			return 0;
214 
215 		/* get the "after" timestamp, to detect wrapped fields */
216 		err = rtc_read_time(rtc, &now);
217 		if (err < 0)
218 			return err;
219 
220 		/* note that tm_sec is a "don't care" value here: */
221 	} while (   before.tm_min   != now.tm_min
222 		 || before.tm_hour  != now.tm_hour
223 		 || before.tm_mon   != now.tm_mon
224 		 || before.tm_year  != now.tm_year);
225 
226 	/* Fill in the missing alarm fields using the timestamp; we
227 	 * know there's at least one since alarm->time is invalid.
228 	 */
229 	if (alarm->time.tm_sec == -1)
230 		alarm->time.tm_sec = now.tm_sec;
231 	if (alarm->time.tm_min == -1)
232 		alarm->time.tm_min = now.tm_min;
233 	if (alarm->time.tm_hour == -1)
234 		alarm->time.tm_hour = now.tm_hour;
235 
236 	/* For simplicity, only support date rollover for now */
237 	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
238 		alarm->time.tm_mday = now.tm_mday;
239 		missing = day;
240 	}
241 	if ((unsigned)alarm->time.tm_mon >= 12) {
242 		alarm->time.tm_mon = now.tm_mon;
243 		if (missing == none)
244 			missing = month;
245 	}
246 	if (alarm->time.tm_year == -1) {
247 		alarm->time.tm_year = now.tm_year;
248 		if (missing == none)
249 			missing = year;
250 	}
251 
252 	/* with luck, no rollover is needed */
253 	rtc_tm_to_time(&now, &t_now);
254 	rtc_tm_to_time(&alarm->time, &t_alm);
255 	if (t_now < t_alm)
256 		goto done;
257 
258 	switch (missing) {
259 
260 	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
261 	 * that will trigger at 5am will do so at 5am Tuesday, which
262 	 * could also be in the next month or year.  This is a common
263 	 * case, especially for PCs.
264 	 */
265 	case day:
266 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
267 		t_alm += 24 * 60 * 60;
268 		rtc_time_to_tm(t_alm, &alarm->time);
269 		break;
270 
271 	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
272 	 * be next month.  An alarm matching on the 30th, 29th, or 28th
273 	 * may end up in the month after that!  Many newer PCs support
274 	 * this type of alarm.
275 	 */
276 	case month:
277 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
278 		do {
279 			if (alarm->time.tm_mon < 11)
280 				alarm->time.tm_mon++;
281 			else {
282 				alarm->time.tm_mon = 0;
283 				alarm->time.tm_year++;
284 			}
285 			days = rtc_month_days(alarm->time.tm_mon,
286 					alarm->time.tm_year);
287 		} while (days < alarm->time.tm_mday);
288 		break;
289 
290 	/* Year rollover ... easy except for leap years! */
291 	case year:
292 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
293 		do {
294 			alarm->time.tm_year++;
295 		} while (!is_leap_year(alarm->time.tm_year + 1900)
296 			&& rtc_valid_tm(&alarm->time) != 0);
297 		break;
298 
299 	default:
300 		dev_warn(&rtc->dev, "alarm rollover not handled\n");
301 	}
302 
303 done:
304 	err = rtc_valid_tm(&alarm->time);
305 
306 	if (err) {
307 		dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
308 			alarm->time.tm_year + 1900, alarm->time.tm_mon + 1,
309 			alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min,
310 			alarm->time.tm_sec);
311 	}
312 
313 	return err;
314 }
315 
316 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
317 {
318 	int err;
319 
320 	err = mutex_lock_interruptible(&rtc->ops_lock);
321 	if (err)
322 		return err;
323 	if (rtc->ops == NULL)
324 		err = -ENODEV;
325 	else if (!rtc->ops->read_alarm)
326 		err = -EINVAL;
327 	else {
328 		memset(alarm, 0, sizeof(struct rtc_wkalrm));
329 		alarm->enabled = rtc->aie_timer.enabled;
330 		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
331 	}
332 	mutex_unlock(&rtc->ops_lock);
333 
334 	return err;
335 }
336 EXPORT_SYMBOL_GPL(rtc_read_alarm);
337 
338 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
339 {
340 	struct rtc_time tm;
341 	long now, scheduled;
342 	int err;
343 
344 	err = rtc_valid_tm(&alarm->time);
345 	if (err)
346 		return err;
347 	rtc_tm_to_time(&alarm->time, &scheduled);
348 
349 	/* Make sure we're not setting alarms in the past */
350 	err = __rtc_read_time(rtc, &tm);
351 	if (err)
352 		return err;
353 	rtc_tm_to_time(&tm, &now);
354 	if (scheduled <= now)
355 		return -ETIME;
356 	/*
357 	 * XXX - We just checked to make sure the alarm time is not
358 	 * in the past, but there is still a race window where if
359 	 * the is alarm set for the next second and the second ticks
360 	 * over right here, before we set the alarm.
361 	 */
362 
363 	if (!rtc->ops)
364 		err = -ENODEV;
365 	else if (!rtc->ops->set_alarm)
366 		err = -EINVAL;
367 	else
368 		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
369 
370 	return err;
371 }
372 
373 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
374 {
375 	int err;
376 
377 	err = rtc_valid_tm(&alarm->time);
378 	if (err != 0)
379 		return err;
380 
381 	err = mutex_lock_interruptible(&rtc->ops_lock);
382 	if (err)
383 		return err;
384 	if (rtc->aie_timer.enabled)
385 		rtc_timer_remove(rtc, &rtc->aie_timer);
386 
387 	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
388 	rtc->aie_timer.period = ktime_set(0, 0);
389 	if (alarm->enabled)
390 		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
391 
392 	mutex_unlock(&rtc->ops_lock);
393 	return err;
394 }
395 EXPORT_SYMBOL_GPL(rtc_set_alarm);
396 
397 /* Called once per device from rtc_device_register */
398 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
399 {
400 	int err;
401 	struct rtc_time now;
402 
403 	err = rtc_valid_tm(&alarm->time);
404 	if (err != 0)
405 		return err;
406 
407 	err = rtc_read_time(rtc, &now);
408 	if (err)
409 		return err;
410 
411 	err = mutex_lock_interruptible(&rtc->ops_lock);
412 	if (err)
413 		return err;
414 
415 	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
416 	rtc->aie_timer.period = ktime_set(0, 0);
417 
418 	/* Alarm has to be enabled & in the futrure for us to enqueue it */
419 	if (alarm->enabled && (rtc_tm_to_ktime(now).tv64 <
420 			 rtc->aie_timer.node.expires.tv64)) {
421 
422 		rtc->aie_timer.enabled = 1;
423 		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
424 	}
425 	mutex_unlock(&rtc->ops_lock);
426 	return err;
427 }
428 EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
429 
430 
431 
432 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
433 {
434 	int err = mutex_lock_interruptible(&rtc->ops_lock);
435 	if (err)
436 		return err;
437 
438 	if (rtc->aie_timer.enabled != enabled) {
439 		if (enabled)
440 			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
441 		else
442 			rtc_timer_remove(rtc, &rtc->aie_timer);
443 	}
444 
445 	if (err)
446 		/* nothing */;
447 	else if (!rtc->ops)
448 		err = -ENODEV;
449 	else if (!rtc->ops->alarm_irq_enable)
450 		err = -EINVAL;
451 	else
452 		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
453 
454 	mutex_unlock(&rtc->ops_lock);
455 	return err;
456 }
457 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
458 
459 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
460 {
461 	int err = mutex_lock_interruptible(&rtc->ops_lock);
462 	if (err)
463 		return err;
464 
465 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
466 	if (enabled == 0 && rtc->uie_irq_active) {
467 		mutex_unlock(&rtc->ops_lock);
468 		return rtc_dev_update_irq_enable_emul(rtc, 0);
469 	}
470 #endif
471 	/* make sure we're changing state */
472 	if (rtc->uie_rtctimer.enabled == enabled)
473 		goto out;
474 
475 	if (rtc->uie_unsupported) {
476 		err = -EINVAL;
477 		goto out;
478 	}
479 
480 	if (enabled) {
481 		struct rtc_time tm;
482 		ktime_t now, onesec;
483 
484 		__rtc_read_time(rtc, &tm);
485 		onesec = ktime_set(1, 0);
486 		now = rtc_tm_to_ktime(tm);
487 		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
488 		rtc->uie_rtctimer.period = ktime_set(1, 0);
489 		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
490 	} else
491 		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
492 
493 out:
494 	mutex_unlock(&rtc->ops_lock);
495 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
496 	/*
497 	 * Enable emulation if the driver did not provide
498 	 * the update_irq_enable function pointer or if returned
499 	 * -EINVAL to signal that it has been configured without
500 	 * interrupts or that are not available at the moment.
501 	 */
502 	if (err == -EINVAL)
503 		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
504 #endif
505 	return err;
506 
507 }
508 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
509 
510 
511 /**
512  * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
513  * @rtc: pointer to the rtc device
514  *
515  * This function is called when an AIE, UIE or PIE mode interrupt
516  * has occurred (or been emulated).
517  *
518  * Triggers the registered irq_task function callback.
519  */
520 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
521 {
522 	unsigned long flags;
523 
524 	/* mark one irq of the appropriate mode */
525 	spin_lock_irqsave(&rtc->irq_lock, flags);
526 	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
527 	spin_unlock_irqrestore(&rtc->irq_lock, flags);
528 
529 	/* call the task func */
530 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
531 	if (rtc->irq_task)
532 		rtc->irq_task->func(rtc->irq_task->private_data);
533 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
534 
535 	wake_up_interruptible(&rtc->irq_queue);
536 	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
537 }
538 
539 
540 /**
541  * rtc_aie_update_irq - AIE mode rtctimer hook
542  * @private: pointer to the rtc_device
543  *
544  * This functions is called when the aie_timer expires.
545  */
546 void rtc_aie_update_irq(void *private)
547 {
548 	struct rtc_device *rtc = (struct rtc_device *)private;
549 	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
550 }
551 
552 
553 /**
554  * rtc_uie_update_irq - UIE mode rtctimer hook
555  * @private: pointer to the rtc_device
556  *
557  * This functions is called when the uie_timer expires.
558  */
559 void rtc_uie_update_irq(void *private)
560 {
561 	struct rtc_device *rtc = (struct rtc_device *)private;
562 	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
563 }
564 
565 
566 /**
567  * rtc_pie_update_irq - PIE mode hrtimer hook
568  * @timer: pointer to the pie mode hrtimer
569  *
570  * This function is used to emulate PIE mode interrupts
571  * using an hrtimer. This function is called when the periodic
572  * hrtimer expires.
573  */
574 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
575 {
576 	struct rtc_device *rtc;
577 	ktime_t period;
578 	int count;
579 	rtc = container_of(timer, struct rtc_device, pie_timer);
580 
581 	period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
582 	count = hrtimer_forward_now(timer, period);
583 
584 	rtc_handle_legacy_irq(rtc, count, RTC_PF);
585 
586 	return HRTIMER_RESTART;
587 }
588 
589 /**
590  * rtc_update_irq - Triggered when a RTC interrupt occurs.
591  * @rtc: the rtc device
592  * @num: how many irqs are being reported (usually one)
593  * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
594  * Context: any
595  */
596 void rtc_update_irq(struct rtc_device *rtc,
597 		unsigned long num, unsigned long events)
598 {
599 	if (unlikely(IS_ERR_OR_NULL(rtc)))
600 		return;
601 
602 	pm_stay_awake(rtc->dev.parent);
603 	schedule_work(&rtc->irqwork);
604 }
605 EXPORT_SYMBOL_GPL(rtc_update_irq);
606 
607 static int __rtc_match(struct device *dev, const void *data)
608 {
609 	const char *name = data;
610 
611 	if (strcmp(dev_name(dev), name) == 0)
612 		return 1;
613 	return 0;
614 }
615 
616 struct rtc_device *rtc_class_open(const char *name)
617 {
618 	struct device *dev;
619 	struct rtc_device *rtc = NULL;
620 
621 	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
622 	if (dev)
623 		rtc = to_rtc_device(dev);
624 
625 	if (rtc) {
626 		if (!try_module_get(rtc->owner)) {
627 			put_device(dev);
628 			rtc = NULL;
629 		}
630 	}
631 
632 	return rtc;
633 }
634 EXPORT_SYMBOL_GPL(rtc_class_open);
635 
636 void rtc_class_close(struct rtc_device *rtc)
637 {
638 	module_put(rtc->owner);
639 	put_device(&rtc->dev);
640 }
641 EXPORT_SYMBOL_GPL(rtc_class_close);
642 
643 int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
644 {
645 	int retval = -EBUSY;
646 
647 	if (task == NULL || task->func == NULL)
648 		return -EINVAL;
649 
650 	/* Cannot register while the char dev is in use */
651 	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
652 		return -EBUSY;
653 
654 	spin_lock_irq(&rtc->irq_task_lock);
655 	if (rtc->irq_task == NULL) {
656 		rtc->irq_task = task;
657 		retval = 0;
658 	}
659 	spin_unlock_irq(&rtc->irq_task_lock);
660 
661 	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
662 
663 	return retval;
664 }
665 EXPORT_SYMBOL_GPL(rtc_irq_register);
666 
667 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
668 {
669 	spin_lock_irq(&rtc->irq_task_lock);
670 	if (rtc->irq_task == task)
671 		rtc->irq_task = NULL;
672 	spin_unlock_irq(&rtc->irq_task_lock);
673 }
674 EXPORT_SYMBOL_GPL(rtc_irq_unregister);
675 
676 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
677 {
678 	/*
679 	 * We always cancel the timer here first, because otherwise
680 	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
681 	 * when we manage to start the timer before the callback
682 	 * returns HRTIMER_RESTART.
683 	 *
684 	 * We cannot use hrtimer_cancel() here as a running callback
685 	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
686 	 * would spin forever.
687 	 */
688 	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
689 		return -1;
690 
691 	if (enabled) {
692 		ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
693 
694 		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
695 	}
696 	return 0;
697 }
698 
699 /**
700  * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
701  * @rtc: the rtc device
702  * @task: currently registered with rtc_irq_register()
703  * @enabled: true to enable periodic IRQs
704  * Context: any
705  *
706  * Note that rtc_irq_set_freq() should previously have been used to
707  * specify the desired frequency of periodic IRQ task->func() callbacks.
708  */
709 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
710 {
711 	int err = 0;
712 	unsigned long flags;
713 
714 retry:
715 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
716 	if (rtc->irq_task != NULL && task == NULL)
717 		err = -EBUSY;
718 	else if (rtc->irq_task != task)
719 		err = -EACCES;
720 	else {
721 		if (rtc_update_hrtimer(rtc, enabled) < 0) {
722 			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
723 			cpu_relax();
724 			goto retry;
725 		}
726 		rtc->pie_enabled = enabled;
727 	}
728 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
729 	return err;
730 }
731 EXPORT_SYMBOL_GPL(rtc_irq_set_state);
732 
733 /**
734  * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
735  * @rtc: the rtc device
736  * @task: currently registered with rtc_irq_register()
737  * @freq: positive frequency with which task->func() will be called
738  * Context: any
739  *
740  * Note that rtc_irq_set_state() is used to enable or disable the
741  * periodic IRQs.
742  */
743 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
744 {
745 	int err = 0;
746 	unsigned long flags;
747 
748 	if (freq <= 0 || freq > RTC_MAX_FREQ)
749 		return -EINVAL;
750 retry:
751 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
752 	if (rtc->irq_task != NULL && task == NULL)
753 		err = -EBUSY;
754 	else if (rtc->irq_task != task)
755 		err = -EACCES;
756 	else {
757 		rtc->irq_freq = freq;
758 		if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
759 			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
760 			cpu_relax();
761 			goto retry;
762 		}
763 	}
764 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
765 	return err;
766 }
767 EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
768 
769 /**
770  * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
771  * @rtc rtc device
772  * @timer timer being added.
773  *
774  * Enqueues a timer onto the rtc devices timerqueue and sets
775  * the next alarm event appropriately.
776  *
777  * Sets the enabled bit on the added timer.
778  *
779  * Must hold ops_lock for proper serialization of timerqueue
780  */
781 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
782 {
783 	timer->enabled = 1;
784 	timerqueue_add(&rtc->timerqueue, &timer->node);
785 	if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
786 		struct rtc_wkalrm alarm;
787 		int err;
788 		alarm.time = rtc_ktime_to_tm(timer->node.expires);
789 		alarm.enabled = 1;
790 		err = __rtc_set_alarm(rtc, &alarm);
791 		if (err == -ETIME) {
792 			pm_stay_awake(rtc->dev.parent);
793 			schedule_work(&rtc->irqwork);
794 		} else if (err) {
795 			timerqueue_del(&rtc->timerqueue, &timer->node);
796 			timer->enabled = 0;
797 			return err;
798 		}
799 	}
800 	return 0;
801 }
802 
803 static void rtc_alarm_disable(struct rtc_device *rtc)
804 {
805 	if (!rtc->ops || !rtc->ops->alarm_irq_enable)
806 		return;
807 
808 	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
809 }
810 
811 /**
812  * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
813  * @rtc rtc device
814  * @timer timer being removed.
815  *
816  * Removes a timer onto the rtc devices timerqueue and sets
817  * the next alarm event appropriately.
818  *
819  * Clears the enabled bit on the removed timer.
820  *
821  * Must hold ops_lock for proper serialization of timerqueue
822  */
823 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
824 {
825 	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
826 	timerqueue_del(&rtc->timerqueue, &timer->node);
827 	timer->enabled = 0;
828 	if (next == &timer->node) {
829 		struct rtc_wkalrm alarm;
830 		int err;
831 		next = timerqueue_getnext(&rtc->timerqueue);
832 		if (!next) {
833 			rtc_alarm_disable(rtc);
834 			return;
835 		}
836 		alarm.time = rtc_ktime_to_tm(next->expires);
837 		alarm.enabled = 1;
838 		err = __rtc_set_alarm(rtc, &alarm);
839 		if (err == -ETIME) {
840 			pm_stay_awake(rtc->dev.parent);
841 			schedule_work(&rtc->irqwork);
842 		}
843 	}
844 }
845 
846 /**
847  * rtc_timer_do_work - Expires rtc timers
848  * @rtc rtc device
849  * @timer timer being removed.
850  *
851  * Expires rtc timers. Reprograms next alarm event if needed.
852  * Called via worktask.
853  *
854  * Serializes access to timerqueue via ops_lock mutex
855  */
856 void rtc_timer_do_work(struct work_struct *work)
857 {
858 	struct rtc_timer *timer;
859 	struct timerqueue_node *next;
860 	ktime_t now;
861 	struct rtc_time tm;
862 
863 	struct rtc_device *rtc =
864 		container_of(work, struct rtc_device, irqwork);
865 
866 	mutex_lock(&rtc->ops_lock);
867 again:
868 	__rtc_read_time(rtc, &tm);
869 	now = rtc_tm_to_ktime(tm);
870 	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
871 		if (next->expires.tv64 > now.tv64)
872 			break;
873 
874 		/* expire timer */
875 		timer = container_of(next, struct rtc_timer, node);
876 		timerqueue_del(&rtc->timerqueue, &timer->node);
877 		timer->enabled = 0;
878 		if (timer->task.func)
879 			timer->task.func(timer->task.private_data);
880 
881 		/* Re-add/fwd periodic timers */
882 		if (ktime_to_ns(timer->period)) {
883 			timer->node.expires = ktime_add(timer->node.expires,
884 							timer->period);
885 			timer->enabled = 1;
886 			timerqueue_add(&rtc->timerqueue, &timer->node);
887 		}
888 	}
889 
890 	/* Set next alarm */
891 	if (next) {
892 		struct rtc_wkalrm alarm;
893 		int err;
894 		alarm.time = rtc_ktime_to_tm(next->expires);
895 		alarm.enabled = 1;
896 		err = __rtc_set_alarm(rtc, &alarm);
897 		if (err == -ETIME)
898 			goto again;
899 	} else
900 		rtc_alarm_disable(rtc);
901 
902 	pm_relax(rtc->dev.parent);
903 	mutex_unlock(&rtc->ops_lock);
904 }
905 
906 
907 /* rtc_timer_init - Initializes an rtc_timer
908  * @timer: timer to be intiialized
909  * @f: function pointer to be called when timer fires
910  * @data: private data passed to function pointer
911  *
912  * Kernel interface to initializing an rtc_timer.
913  */
914 void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
915 {
916 	timerqueue_init(&timer->node);
917 	timer->enabled = 0;
918 	timer->task.func = f;
919 	timer->task.private_data = data;
920 }
921 
922 /* rtc_timer_start - Sets an rtc_timer to fire in the future
923  * @ rtc: rtc device to be used
924  * @ timer: timer being set
925  * @ expires: time at which to expire the timer
926  * @ period: period that the timer will recur
927  *
928  * Kernel interface to set an rtc_timer
929  */
930 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
931 			ktime_t expires, ktime_t period)
932 {
933 	int ret = 0;
934 	mutex_lock(&rtc->ops_lock);
935 	if (timer->enabled)
936 		rtc_timer_remove(rtc, timer);
937 
938 	timer->node.expires = expires;
939 	timer->period = period;
940 
941 	ret = rtc_timer_enqueue(rtc, timer);
942 
943 	mutex_unlock(&rtc->ops_lock);
944 	return ret;
945 }
946 
947 /* rtc_timer_cancel - Stops an rtc_timer
948  * @ rtc: rtc device to be used
949  * @ timer: timer being set
950  *
951  * Kernel interface to cancel an rtc_timer
952  */
953 int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
954 {
955 	int ret = 0;
956 	mutex_lock(&rtc->ops_lock);
957 	if (timer->enabled)
958 		rtc_timer_remove(rtc, timer);
959 	mutex_unlock(&rtc->ops_lock);
960 	return ret;
961 }
962 
963 
964