xref: /openbmc/linux/drivers/rtc/interface.c (revision 431e2bcc)
1 /*
2  * RTC subsystem, interface functions
3  *
4  * Copyright (C) 2005 Tower Technologies
5  * Author: Alessandro Zummo <a.zummo@towertech.it>
6  *
7  * based on arch/arm/common/rtctime.c
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12 */
13 
14 #include <linux/rtc.h>
15 #include <linux/sched.h>
16 #include <linux/log2.h>
17 #include <linux/workqueue.h>
18 
19 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
20 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
21 
22 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
23 {
24 	int err;
25 	if (!rtc->ops)
26 		err = -ENODEV;
27 	else if (!rtc->ops->read_time)
28 		err = -EINVAL;
29 	else {
30 		memset(tm, 0, sizeof(struct rtc_time));
31 		err = rtc->ops->read_time(rtc->dev.parent, tm);
32 	}
33 	return err;
34 }
35 
36 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
37 {
38 	int err;
39 
40 	err = mutex_lock_interruptible(&rtc->ops_lock);
41 	if (err)
42 		return err;
43 
44 	err = __rtc_read_time(rtc, tm);
45 	mutex_unlock(&rtc->ops_lock);
46 	return err;
47 }
48 EXPORT_SYMBOL_GPL(rtc_read_time);
49 
50 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
51 {
52 	int err;
53 
54 	err = rtc_valid_tm(tm);
55 	if (err != 0)
56 		return err;
57 
58 	err = mutex_lock_interruptible(&rtc->ops_lock);
59 	if (err)
60 		return err;
61 
62 	if (!rtc->ops)
63 		err = -ENODEV;
64 	else if (rtc->ops->set_time)
65 		err = rtc->ops->set_time(rtc->dev.parent, tm);
66 	else if (rtc->ops->set_mmss) {
67 		unsigned long secs;
68 		err = rtc_tm_to_time(tm, &secs);
69 		if (err == 0)
70 			err = rtc->ops->set_mmss(rtc->dev.parent, secs);
71 	} else
72 		err = -EINVAL;
73 
74 	mutex_unlock(&rtc->ops_lock);
75 	return err;
76 }
77 EXPORT_SYMBOL_GPL(rtc_set_time);
78 
79 int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
80 {
81 	int err;
82 
83 	err = mutex_lock_interruptible(&rtc->ops_lock);
84 	if (err)
85 		return err;
86 
87 	if (!rtc->ops)
88 		err = -ENODEV;
89 	else if (rtc->ops->set_mmss)
90 		err = rtc->ops->set_mmss(rtc->dev.parent, secs);
91 	else if (rtc->ops->read_time && rtc->ops->set_time) {
92 		struct rtc_time new, old;
93 
94 		err = rtc->ops->read_time(rtc->dev.parent, &old);
95 		if (err == 0) {
96 			rtc_time_to_tm(secs, &new);
97 
98 			/*
99 			 * avoid writing when we're going to change the day of
100 			 * the month. We will retry in the next minute. This
101 			 * basically means that if the RTC must not drift
102 			 * by more than 1 minute in 11 minutes.
103 			 */
104 			if (!((old.tm_hour == 23 && old.tm_min == 59) ||
105 				(new.tm_hour == 23 && new.tm_min == 59)))
106 				err = rtc->ops->set_time(rtc->dev.parent,
107 						&new);
108 		}
109 	}
110 	else
111 		err = -EINVAL;
112 
113 	mutex_unlock(&rtc->ops_lock);
114 
115 	return err;
116 }
117 EXPORT_SYMBOL_GPL(rtc_set_mmss);
118 
119 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
120 {
121 	int err;
122 
123 	err = mutex_lock_interruptible(&rtc->ops_lock);
124 	if (err)
125 		return err;
126 
127 	if (rtc->ops == NULL)
128 		err = -ENODEV;
129 	else if (!rtc->ops->read_alarm)
130 		err = -EINVAL;
131 	else {
132 		memset(alarm, 0, sizeof(struct rtc_wkalrm));
133 		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
134 	}
135 
136 	mutex_unlock(&rtc->ops_lock);
137 	return err;
138 }
139 
140 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
141 {
142 	int err;
143 	struct rtc_time before, now;
144 	int first_time = 1;
145 	unsigned long t_now, t_alm;
146 	enum { none, day, month, year } missing = none;
147 	unsigned days;
148 
149 	/* The lower level RTC driver may return -1 in some fields,
150 	 * creating invalid alarm->time values, for reasons like:
151 	 *
152 	 *   - The hardware may not be capable of filling them in;
153 	 *     many alarms match only on time-of-day fields, not
154 	 *     day/month/year calendar data.
155 	 *
156 	 *   - Some hardware uses illegal values as "wildcard" match
157 	 *     values, which non-Linux firmware (like a BIOS) may try
158 	 *     to set up as e.g. "alarm 15 minutes after each hour".
159 	 *     Linux uses only oneshot alarms.
160 	 *
161 	 * When we see that here, we deal with it by using values from
162 	 * a current RTC timestamp for any missing (-1) values.  The
163 	 * RTC driver prevents "periodic alarm" modes.
164 	 *
165 	 * But this can be racey, because some fields of the RTC timestamp
166 	 * may have wrapped in the interval since we read the RTC alarm,
167 	 * which would lead to us inserting inconsistent values in place
168 	 * of the -1 fields.
169 	 *
170 	 * Reading the alarm and timestamp in the reverse sequence
171 	 * would have the same race condition, and not solve the issue.
172 	 *
173 	 * So, we must first read the RTC timestamp,
174 	 * then read the RTC alarm value,
175 	 * and then read a second RTC timestamp.
176 	 *
177 	 * If any fields of the second timestamp have changed
178 	 * when compared with the first timestamp, then we know
179 	 * our timestamp may be inconsistent with that used by
180 	 * the low-level rtc_read_alarm_internal() function.
181 	 *
182 	 * So, when the two timestamps disagree, we just loop and do
183 	 * the process again to get a fully consistent set of values.
184 	 *
185 	 * This could all instead be done in the lower level driver,
186 	 * but since more than one lower level RTC implementation needs it,
187 	 * then it's probably best best to do it here instead of there..
188 	 */
189 
190 	/* Get the "before" timestamp */
191 	err = rtc_read_time(rtc, &before);
192 	if (err < 0)
193 		return err;
194 	do {
195 		if (!first_time)
196 			memcpy(&before, &now, sizeof(struct rtc_time));
197 		first_time = 0;
198 
199 		/* get the RTC alarm values, which may be incomplete */
200 		err = rtc_read_alarm_internal(rtc, alarm);
201 		if (err)
202 			return err;
203 
204 		/* full-function RTCs won't have such missing fields */
205 		if (rtc_valid_tm(&alarm->time) == 0)
206 			return 0;
207 
208 		/* get the "after" timestamp, to detect wrapped fields */
209 		err = rtc_read_time(rtc, &now);
210 		if (err < 0)
211 			return err;
212 
213 		/* note that tm_sec is a "don't care" value here: */
214 	} while (   before.tm_min   != now.tm_min
215 		 || before.tm_hour  != now.tm_hour
216 		 || before.tm_mon   != now.tm_mon
217 		 || before.tm_year  != now.tm_year);
218 
219 	/* Fill in the missing alarm fields using the timestamp; we
220 	 * know there's at least one since alarm->time is invalid.
221 	 */
222 	if (alarm->time.tm_sec == -1)
223 		alarm->time.tm_sec = now.tm_sec;
224 	if (alarm->time.tm_min == -1)
225 		alarm->time.tm_min = now.tm_min;
226 	if (alarm->time.tm_hour == -1)
227 		alarm->time.tm_hour = now.tm_hour;
228 
229 	/* For simplicity, only support date rollover for now */
230 	if (alarm->time.tm_mday == -1) {
231 		alarm->time.tm_mday = now.tm_mday;
232 		missing = day;
233 	}
234 	if (alarm->time.tm_mon == -1) {
235 		alarm->time.tm_mon = now.tm_mon;
236 		if (missing == none)
237 			missing = month;
238 	}
239 	if (alarm->time.tm_year == -1) {
240 		alarm->time.tm_year = now.tm_year;
241 		if (missing == none)
242 			missing = year;
243 	}
244 
245 	/* with luck, no rollover is needed */
246 	rtc_tm_to_time(&now, &t_now);
247 	rtc_tm_to_time(&alarm->time, &t_alm);
248 	if (t_now < t_alm)
249 		goto done;
250 
251 	switch (missing) {
252 
253 	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
254 	 * that will trigger at 5am will do so at 5am Tuesday, which
255 	 * could also be in the next month or year.  This is a common
256 	 * case, especially for PCs.
257 	 */
258 	case day:
259 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
260 		t_alm += 24 * 60 * 60;
261 		rtc_time_to_tm(t_alm, &alarm->time);
262 		break;
263 
264 	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
265 	 * be next month.  An alarm matching on the 30th, 29th, or 28th
266 	 * may end up in the month after that!  Many newer PCs support
267 	 * this type of alarm.
268 	 */
269 	case month:
270 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
271 		do {
272 			if (alarm->time.tm_mon < 11)
273 				alarm->time.tm_mon++;
274 			else {
275 				alarm->time.tm_mon = 0;
276 				alarm->time.tm_year++;
277 			}
278 			days = rtc_month_days(alarm->time.tm_mon,
279 					alarm->time.tm_year);
280 		} while (days < alarm->time.tm_mday);
281 		break;
282 
283 	/* Year rollover ... easy except for leap years! */
284 	case year:
285 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
286 		do {
287 			alarm->time.tm_year++;
288 		} while (rtc_valid_tm(&alarm->time) != 0);
289 		break;
290 
291 	default:
292 		dev_warn(&rtc->dev, "alarm rollover not handled\n");
293 	}
294 
295 done:
296 	return 0;
297 }
298 
299 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
300 {
301 	int err;
302 
303 	err = mutex_lock_interruptible(&rtc->ops_lock);
304 	if (err)
305 		return err;
306 	if (rtc->ops == NULL)
307 		err = -ENODEV;
308 	else if (!rtc->ops->read_alarm)
309 		err = -EINVAL;
310 	else {
311 		memset(alarm, 0, sizeof(struct rtc_wkalrm));
312 		alarm->enabled = rtc->aie_timer.enabled;
313 		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
314 	}
315 	mutex_unlock(&rtc->ops_lock);
316 
317 	return err;
318 }
319 EXPORT_SYMBOL_GPL(rtc_read_alarm);
320 
321 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
322 {
323 	struct rtc_time tm;
324 	long now, scheduled;
325 	int err;
326 
327 	err = rtc_valid_tm(&alarm->time);
328 	if (err)
329 		return err;
330 	rtc_tm_to_time(&alarm->time, &scheduled);
331 
332 	/* Make sure we're not setting alarms in the past */
333 	err = __rtc_read_time(rtc, &tm);
334 	rtc_tm_to_time(&tm, &now);
335 	if (scheduled <= now)
336 		return -ETIME;
337 	/*
338 	 * XXX - We just checked to make sure the alarm time is not
339 	 * in the past, but there is still a race window where if
340 	 * the is alarm set for the next second and the second ticks
341 	 * over right here, before we set the alarm.
342 	 */
343 
344 	if (!rtc->ops)
345 		err = -ENODEV;
346 	else if (!rtc->ops->set_alarm)
347 		err = -EINVAL;
348 	else
349 		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
350 
351 	return err;
352 }
353 
354 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
355 {
356 	int err;
357 
358 	err = rtc_valid_tm(&alarm->time);
359 	if (err != 0)
360 		return err;
361 
362 	err = mutex_lock_interruptible(&rtc->ops_lock);
363 	if (err)
364 		return err;
365 	if (rtc->aie_timer.enabled) {
366 		rtc_timer_remove(rtc, &rtc->aie_timer);
367 	}
368 	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
369 	rtc->aie_timer.period = ktime_set(0, 0);
370 	if (alarm->enabled) {
371 		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
372 	}
373 	mutex_unlock(&rtc->ops_lock);
374 	return err;
375 }
376 EXPORT_SYMBOL_GPL(rtc_set_alarm);
377 
378 /* Called once per device from rtc_device_register */
379 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
380 {
381 	int err;
382 
383 	err = rtc_valid_tm(&alarm->time);
384 	if (err != 0)
385 		return err;
386 
387 	err = mutex_lock_interruptible(&rtc->ops_lock);
388 	if (err)
389 		return err;
390 
391 	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
392 	rtc->aie_timer.period = ktime_set(0, 0);
393 	if (alarm->enabled) {
394 		rtc->aie_timer.enabled = 1;
395 		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
396 	}
397 	mutex_unlock(&rtc->ops_lock);
398 	return err;
399 }
400 EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
401 
402 
403 
404 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
405 {
406 	int err = mutex_lock_interruptible(&rtc->ops_lock);
407 	if (err)
408 		return err;
409 
410 	if (rtc->aie_timer.enabled != enabled) {
411 		if (enabled)
412 			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
413 		else
414 			rtc_timer_remove(rtc, &rtc->aie_timer);
415 	}
416 
417 	if (err)
418 		/* nothing */;
419 	else if (!rtc->ops)
420 		err = -ENODEV;
421 	else if (!rtc->ops->alarm_irq_enable)
422 		err = -EINVAL;
423 	else
424 		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
425 
426 	mutex_unlock(&rtc->ops_lock);
427 	return err;
428 }
429 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
430 
431 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
432 {
433 	int err = mutex_lock_interruptible(&rtc->ops_lock);
434 	if (err)
435 		return err;
436 
437 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
438 	if (enabled == 0 && rtc->uie_irq_active) {
439 		mutex_unlock(&rtc->ops_lock);
440 		return rtc_dev_update_irq_enable_emul(rtc, 0);
441 	}
442 #endif
443 	/* make sure we're changing state */
444 	if (rtc->uie_rtctimer.enabled == enabled)
445 		goto out;
446 
447 	if (enabled) {
448 		struct rtc_time tm;
449 		ktime_t now, onesec;
450 
451 		__rtc_read_time(rtc, &tm);
452 		onesec = ktime_set(1, 0);
453 		now = rtc_tm_to_ktime(tm);
454 		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
455 		rtc->uie_rtctimer.period = ktime_set(1, 0);
456 		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
457 	} else
458 		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
459 
460 out:
461 	mutex_unlock(&rtc->ops_lock);
462 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
463 	/*
464 	 * Enable emulation if the driver did not provide
465 	 * the update_irq_enable function pointer or if returned
466 	 * -EINVAL to signal that it has been configured without
467 	 * interrupts or that are not available at the moment.
468 	 */
469 	if (err == -EINVAL)
470 		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
471 #endif
472 	return err;
473 
474 }
475 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
476 
477 
478 /**
479  * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
480  * @rtc: pointer to the rtc device
481  *
482  * This function is called when an AIE, UIE or PIE mode interrupt
483  * has occurred (or been emulated).
484  *
485  * Triggers the registered irq_task function callback.
486  */
487 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
488 {
489 	unsigned long flags;
490 
491 	/* mark one irq of the appropriate mode */
492 	spin_lock_irqsave(&rtc->irq_lock, flags);
493 	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
494 	spin_unlock_irqrestore(&rtc->irq_lock, flags);
495 
496 	/* call the task func */
497 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
498 	if (rtc->irq_task)
499 		rtc->irq_task->func(rtc->irq_task->private_data);
500 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
501 
502 	wake_up_interruptible(&rtc->irq_queue);
503 	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
504 }
505 
506 
507 /**
508  * rtc_aie_update_irq - AIE mode rtctimer hook
509  * @private: pointer to the rtc_device
510  *
511  * This functions is called when the aie_timer expires.
512  */
513 void rtc_aie_update_irq(void *private)
514 {
515 	struct rtc_device *rtc = (struct rtc_device *)private;
516 	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
517 }
518 
519 
520 /**
521  * rtc_uie_update_irq - UIE mode rtctimer hook
522  * @private: pointer to the rtc_device
523  *
524  * This functions is called when the uie_timer expires.
525  */
526 void rtc_uie_update_irq(void *private)
527 {
528 	struct rtc_device *rtc = (struct rtc_device *)private;
529 	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
530 }
531 
532 
533 /**
534  * rtc_pie_update_irq - PIE mode hrtimer hook
535  * @timer: pointer to the pie mode hrtimer
536  *
537  * This function is used to emulate PIE mode interrupts
538  * using an hrtimer. This function is called when the periodic
539  * hrtimer expires.
540  */
541 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
542 {
543 	struct rtc_device *rtc;
544 	ktime_t period;
545 	int count;
546 	rtc = container_of(timer, struct rtc_device, pie_timer);
547 
548 	period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
549 	count = hrtimer_forward_now(timer, period);
550 
551 	rtc_handle_legacy_irq(rtc, count, RTC_PF);
552 
553 	return HRTIMER_RESTART;
554 }
555 
556 /**
557  * rtc_update_irq - Triggered when a RTC interrupt occurs.
558  * @rtc: the rtc device
559  * @num: how many irqs are being reported (usually one)
560  * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
561  * Context: any
562  */
563 void rtc_update_irq(struct rtc_device *rtc,
564 		unsigned long num, unsigned long events)
565 {
566 	schedule_work(&rtc->irqwork);
567 }
568 EXPORT_SYMBOL_GPL(rtc_update_irq);
569 
570 static int __rtc_match(struct device *dev, void *data)
571 {
572 	char *name = (char *)data;
573 
574 	if (strcmp(dev_name(dev), name) == 0)
575 		return 1;
576 	return 0;
577 }
578 
579 struct rtc_device *rtc_class_open(char *name)
580 {
581 	struct device *dev;
582 	struct rtc_device *rtc = NULL;
583 
584 	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
585 	if (dev)
586 		rtc = to_rtc_device(dev);
587 
588 	if (rtc) {
589 		if (!try_module_get(rtc->owner)) {
590 			put_device(dev);
591 			rtc = NULL;
592 		}
593 	}
594 
595 	return rtc;
596 }
597 EXPORT_SYMBOL_GPL(rtc_class_open);
598 
599 void rtc_class_close(struct rtc_device *rtc)
600 {
601 	module_put(rtc->owner);
602 	put_device(&rtc->dev);
603 }
604 EXPORT_SYMBOL_GPL(rtc_class_close);
605 
606 int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
607 {
608 	int retval = -EBUSY;
609 
610 	if (task == NULL || task->func == NULL)
611 		return -EINVAL;
612 
613 	/* Cannot register while the char dev is in use */
614 	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
615 		return -EBUSY;
616 
617 	spin_lock_irq(&rtc->irq_task_lock);
618 	if (rtc->irq_task == NULL) {
619 		rtc->irq_task = task;
620 		retval = 0;
621 	}
622 	spin_unlock_irq(&rtc->irq_task_lock);
623 
624 	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
625 
626 	return retval;
627 }
628 EXPORT_SYMBOL_GPL(rtc_irq_register);
629 
630 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
631 {
632 	spin_lock_irq(&rtc->irq_task_lock);
633 	if (rtc->irq_task == task)
634 		rtc->irq_task = NULL;
635 	spin_unlock_irq(&rtc->irq_task_lock);
636 }
637 EXPORT_SYMBOL_GPL(rtc_irq_unregister);
638 
639 /**
640  * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
641  * @rtc: the rtc device
642  * @task: currently registered with rtc_irq_register()
643  * @enabled: true to enable periodic IRQs
644  * Context: any
645  *
646  * Note that rtc_irq_set_freq() should previously have been used to
647  * specify the desired frequency of periodic IRQ task->func() callbacks.
648  */
649 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
650 {
651 	int err = 0;
652 	unsigned long flags;
653 
654 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
655 	if (rtc->irq_task != NULL && task == NULL)
656 		err = -EBUSY;
657 	if (rtc->irq_task != task)
658 		err = -EACCES;
659 	if (err)
660 		goto out;
661 
662 	if (enabled) {
663 		ktime_t period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
664 		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
665 	} else {
666 		hrtimer_cancel(&rtc->pie_timer);
667 	}
668 	rtc->pie_enabled = enabled;
669 out:
670 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
671 
672 	return err;
673 }
674 EXPORT_SYMBOL_GPL(rtc_irq_set_state);
675 
676 /**
677  * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
678  * @rtc: the rtc device
679  * @task: currently registered with rtc_irq_register()
680  * @freq: positive frequency with which task->func() will be called
681  * Context: any
682  *
683  * Note that rtc_irq_set_state() is used to enable or disable the
684  * periodic IRQs.
685  */
686 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
687 {
688 	int err = 0;
689 	unsigned long flags;
690 
691 	if (freq <= 0 || freq > 5000)
692 		return -EINVAL;
693 
694 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
695 	if (rtc->irq_task != NULL && task == NULL)
696 		err = -EBUSY;
697 	if (rtc->irq_task != task)
698 		err = -EACCES;
699 	if (err == 0) {
700 		rtc->irq_freq = freq;
701 		if (rtc->pie_enabled) {
702 			ktime_t period;
703 			hrtimer_cancel(&rtc->pie_timer);
704 			period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
705 			hrtimer_start(&rtc->pie_timer, period,
706 					HRTIMER_MODE_REL);
707 		}
708 	}
709 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
710 	return err;
711 }
712 EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
713 
714 /**
715  * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
716  * @rtc rtc device
717  * @timer timer being added.
718  *
719  * Enqueues a timer onto the rtc devices timerqueue and sets
720  * the next alarm event appropriately.
721  *
722  * Sets the enabled bit on the added timer.
723  *
724  * Must hold ops_lock for proper serialization of timerqueue
725  */
726 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
727 {
728 	timer->enabled = 1;
729 	timerqueue_add(&rtc->timerqueue, &timer->node);
730 	if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
731 		struct rtc_wkalrm alarm;
732 		int err;
733 		alarm.time = rtc_ktime_to_tm(timer->node.expires);
734 		alarm.enabled = 1;
735 		err = __rtc_set_alarm(rtc, &alarm);
736 		if (err == -ETIME)
737 			schedule_work(&rtc->irqwork);
738 		else if (err) {
739 			timerqueue_del(&rtc->timerqueue, &timer->node);
740 			timer->enabled = 0;
741 			return err;
742 		}
743 	}
744 	return 0;
745 }
746 
747 /**
748  * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
749  * @rtc rtc device
750  * @timer timer being removed.
751  *
752  * Removes a timer onto the rtc devices timerqueue and sets
753  * the next alarm event appropriately.
754  *
755  * Clears the enabled bit on the removed timer.
756  *
757  * Must hold ops_lock for proper serialization of timerqueue
758  */
759 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
760 {
761 	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
762 	timerqueue_del(&rtc->timerqueue, &timer->node);
763 	timer->enabled = 0;
764 	if (next == &timer->node) {
765 		struct rtc_wkalrm alarm;
766 		int err;
767 		next = timerqueue_getnext(&rtc->timerqueue);
768 		if (!next)
769 			return;
770 		alarm.time = rtc_ktime_to_tm(next->expires);
771 		alarm.enabled = 1;
772 		err = __rtc_set_alarm(rtc, &alarm);
773 		if (err == -ETIME)
774 			schedule_work(&rtc->irqwork);
775 	}
776 }
777 
778 /**
779  * rtc_timer_do_work - Expires rtc timers
780  * @rtc rtc device
781  * @timer timer being removed.
782  *
783  * Expires rtc timers. Reprograms next alarm event if needed.
784  * Called via worktask.
785  *
786  * Serializes access to timerqueue via ops_lock mutex
787  */
788 void rtc_timer_do_work(struct work_struct *work)
789 {
790 	struct rtc_timer *timer;
791 	struct timerqueue_node *next;
792 	ktime_t now;
793 	struct rtc_time tm;
794 
795 	struct rtc_device *rtc =
796 		container_of(work, struct rtc_device, irqwork);
797 
798 	mutex_lock(&rtc->ops_lock);
799 again:
800 	__rtc_read_time(rtc, &tm);
801 	now = rtc_tm_to_ktime(tm);
802 	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
803 		if (next->expires.tv64 > now.tv64)
804 			break;
805 
806 		/* expire timer */
807 		timer = container_of(next, struct rtc_timer, node);
808 		timerqueue_del(&rtc->timerqueue, &timer->node);
809 		timer->enabled = 0;
810 		if (timer->task.func)
811 			timer->task.func(timer->task.private_data);
812 
813 		/* Re-add/fwd periodic timers */
814 		if (ktime_to_ns(timer->period)) {
815 			timer->node.expires = ktime_add(timer->node.expires,
816 							timer->period);
817 			timer->enabled = 1;
818 			timerqueue_add(&rtc->timerqueue, &timer->node);
819 		}
820 	}
821 
822 	/* Set next alarm */
823 	if (next) {
824 		struct rtc_wkalrm alarm;
825 		int err;
826 		alarm.time = rtc_ktime_to_tm(next->expires);
827 		alarm.enabled = 1;
828 		err = __rtc_set_alarm(rtc, &alarm);
829 		if (err == -ETIME)
830 			goto again;
831 	}
832 
833 	mutex_unlock(&rtc->ops_lock);
834 }
835 
836 
837 /* rtc_timer_init - Initializes an rtc_timer
838  * @timer: timer to be intiialized
839  * @f: function pointer to be called when timer fires
840  * @data: private data passed to function pointer
841  *
842  * Kernel interface to initializing an rtc_timer.
843  */
844 void rtc_timer_init(struct rtc_timer *timer, void (*f)(void* p), void* data)
845 {
846 	timerqueue_init(&timer->node);
847 	timer->enabled = 0;
848 	timer->task.func = f;
849 	timer->task.private_data = data;
850 }
851 
852 /* rtc_timer_start - Sets an rtc_timer to fire in the future
853  * @ rtc: rtc device to be used
854  * @ timer: timer being set
855  * @ expires: time at which to expire the timer
856  * @ period: period that the timer will recur
857  *
858  * Kernel interface to set an rtc_timer
859  */
860 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer* timer,
861 			ktime_t expires, ktime_t period)
862 {
863 	int ret = 0;
864 	mutex_lock(&rtc->ops_lock);
865 	if (timer->enabled)
866 		rtc_timer_remove(rtc, timer);
867 
868 	timer->node.expires = expires;
869 	timer->period = period;
870 
871 	ret = rtc_timer_enqueue(rtc, timer);
872 
873 	mutex_unlock(&rtc->ops_lock);
874 	return ret;
875 }
876 
877 /* rtc_timer_cancel - Stops an rtc_timer
878  * @ rtc: rtc device to be used
879  * @ timer: timer being set
880  *
881  * Kernel interface to cancel an rtc_timer
882  */
883 int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer* timer)
884 {
885 	int ret = 0;
886 	mutex_lock(&rtc->ops_lock);
887 	if (timer->enabled)
888 		rtc_timer_remove(rtc, timer);
889 	mutex_unlock(&rtc->ops_lock);
890 	return ret;
891 }
892 
893 
894