1 /* 2 * RTC subsystem, interface functions 3 * 4 * Copyright (C) 2005 Tower Technologies 5 * Author: Alessandro Zummo <a.zummo@towertech.it> 6 * 7 * based on arch/arm/common/rtctime.c 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 14 #include <linux/rtc.h> 15 #include <linux/sched.h> 16 #include <linux/module.h> 17 #include <linux/log2.h> 18 #include <linux/workqueue.h> 19 20 #define CREATE_TRACE_POINTS 21 #include <trace/events/rtc.h> 22 23 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer); 24 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer); 25 26 static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm) 27 { 28 time64_t secs; 29 30 if (!rtc->offset_secs) 31 return; 32 33 secs = rtc_tm_to_time64(tm); 34 35 /* 36 * Since the reading time values from RTC device are always in the RTC 37 * original valid range, but we need to skip the overlapped region 38 * between expanded range and original range, which is no need to add 39 * the offset. 40 */ 41 if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) || 42 (rtc->start_secs < rtc->range_min && 43 secs <= (rtc->start_secs + rtc->range_max - rtc->range_min))) 44 return; 45 46 rtc_time64_to_tm(secs + rtc->offset_secs, tm); 47 } 48 49 static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm) 50 { 51 time64_t secs; 52 53 if (!rtc->offset_secs) 54 return; 55 56 secs = rtc_tm_to_time64(tm); 57 58 /* 59 * If the setting time values are in the valid range of RTC hardware 60 * device, then no need to subtract the offset when setting time to RTC 61 * device. Otherwise we need to subtract the offset to make the time 62 * values are valid for RTC hardware device. 63 */ 64 if (secs >= rtc->range_min && secs <= rtc->range_max) 65 return; 66 67 rtc_time64_to_tm(secs - rtc->offset_secs, tm); 68 } 69 70 static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm) 71 { 72 if (rtc->range_min != rtc->range_max) { 73 time64_t time = rtc_tm_to_time64(tm); 74 time64_t range_min = rtc->set_start_time ? rtc->start_secs : 75 rtc->range_min; 76 time64_t range_max = rtc->set_start_time ? 77 (rtc->start_secs + rtc->range_max - rtc->range_min) : 78 rtc->range_max; 79 80 if (time < range_min || time > range_max) 81 return -ERANGE; 82 } 83 84 return 0; 85 } 86 87 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm) 88 { 89 int err; 90 if (!rtc->ops) 91 err = -ENODEV; 92 else if (!rtc->ops->read_time) 93 err = -EINVAL; 94 else { 95 memset(tm, 0, sizeof(struct rtc_time)); 96 err = rtc->ops->read_time(rtc->dev.parent, tm); 97 if (err < 0) { 98 dev_dbg(&rtc->dev, "read_time: fail to read: %d\n", 99 err); 100 return err; 101 } 102 103 rtc_add_offset(rtc, tm); 104 105 err = rtc_valid_tm(tm); 106 if (err < 0) 107 dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n"); 108 } 109 return err; 110 } 111 112 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm) 113 { 114 int err; 115 116 err = mutex_lock_interruptible(&rtc->ops_lock); 117 if (err) 118 return err; 119 120 err = __rtc_read_time(rtc, tm); 121 mutex_unlock(&rtc->ops_lock); 122 123 trace_rtc_read_time(rtc_tm_to_time64(tm), err); 124 return err; 125 } 126 EXPORT_SYMBOL_GPL(rtc_read_time); 127 128 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm) 129 { 130 int err; 131 132 err = rtc_valid_tm(tm); 133 if (err != 0) 134 return err; 135 136 err = rtc_valid_range(rtc, tm); 137 if (err) 138 return err; 139 140 rtc_subtract_offset(rtc, tm); 141 142 err = mutex_lock_interruptible(&rtc->ops_lock); 143 if (err) 144 return err; 145 146 if (!rtc->ops) 147 err = -ENODEV; 148 else if (rtc->ops->set_time) 149 err = rtc->ops->set_time(rtc->dev.parent, tm); 150 else if (rtc->ops->set_mmss64) { 151 time64_t secs64 = rtc_tm_to_time64(tm); 152 153 err = rtc->ops->set_mmss64(rtc->dev.parent, secs64); 154 } else if (rtc->ops->set_mmss) { 155 time64_t secs64 = rtc_tm_to_time64(tm); 156 err = rtc->ops->set_mmss(rtc->dev.parent, secs64); 157 } else 158 err = -EINVAL; 159 160 pm_stay_awake(rtc->dev.parent); 161 mutex_unlock(&rtc->ops_lock); 162 /* A timer might have just expired */ 163 schedule_work(&rtc->irqwork); 164 165 trace_rtc_set_time(rtc_tm_to_time64(tm), err); 166 return err; 167 } 168 EXPORT_SYMBOL_GPL(rtc_set_time); 169 170 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 171 { 172 int err; 173 174 err = mutex_lock_interruptible(&rtc->ops_lock); 175 if (err) 176 return err; 177 178 if (rtc->ops == NULL) 179 err = -ENODEV; 180 else if (!rtc->ops->read_alarm) 181 err = -EINVAL; 182 else { 183 alarm->enabled = 0; 184 alarm->pending = 0; 185 alarm->time.tm_sec = -1; 186 alarm->time.tm_min = -1; 187 alarm->time.tm_hour = -1; 188 alarm->time.tm_mday = -1; 189 alarm->time.tm_mon = -1; 190 alarm->time.tm_year = -1; 191 alarm->time.tm_wday = -1; 192 alarm->time.tm_yday = -1; 193 alarm->time.tm_isdst = -1; 194 err = rtc->ops->read_alarm(rtc->dev.parent, alarm); 195 } 196 197 mutex_unlock(&rtc->ops_lock); 198 199 trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err); 200 return err; 201 } 202 203 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 204 { 205 int err; 206 struct rtc_time before, now; 207 int first_time = 1; 208 time64_t t_now, t_alm; 209 enum { none, day, month, year } missing = none; 210 unsigned days; 211 212 /* The lower level RTC driver may return -1 in some fields, 213 * creating invalid alarm->time values, for reasons like: 214 * 215 * - The hardware may not be capable of filling them in; 216 * many alarms match only on time-of-day fields, not 217 * day/month/year calendar data. 218 * 219 * - Some hardware uses illegal values as "wildcard" match 220 * values, which non-Linux firmware (like a BIOS) may try 221 * to set up as e.g. "alarm 15 minutes after each hour". 222 * Linux uses only oneshot alarms. 223 * 224 * When we see that here, we deal with it by using values from 225 * a current RTC timestamp for any missing (-1) values. The 226 * RTC driver prevents "periodic alarm" modes. 227 * 228 * But this can be racey, because some fields of the RTC timestamp 229 * may have wrapped in the interval since we read the RTC alarm, 230 * which would lead to us inserting inconsistent values in place 231 * of the -1 fields. 232 * 233 * Reading the alarm and timestamp in the reverse sequence 234 * would have the same race condition, and not solve the issue. 235 * 236 * So, we must first read the RTC timestamp, 237 * then read the RTC alarm value, 238 * and then read a second RTC timestamp. 239 * 240 * If any fields of the second timestamp have changed 241 * when compared with the first timestamp, then we know 242 * our timestamp may be inconsistent with that used by 243 * the low-level rtc_read_alarm_internal() function. 244 * 245 * So, when the two timestamps disagree, we just loop and do 246 * the process again to get a fully consistent set of values. 247 * 248 * This could all instead be done in the lower level driver, 249 * but since more than one lower level RTC implementation needs it, 250 * then it's probably best best to do it here instead of there.. 251 */ 252 253 /* Get the "before" timestamp */ 254 err = rtc_read_time(rtc, &before); 255 if (err < 0) 256 return err; 257 do { 258 if (!first_time) 259 memcpy(&before, &now, sizeof(struct rtc_time)); 260 first_time = 0; 261 262 /* get the RTC alarm values, which may be incomplete */ 263 err = rtc_read_alarm_internal(rtc, alarm); 264 if (err) 265 return err; 266 267 /* full-function RTCs won't have such missing fields */ 268 if (rtc_valid_tm(&alarm->time) == 0) 269 return 0; 270 271 /* get the "after" timestamp, to detect wrapped fields */ 272 err = rtc_read_time(rtc, &now); 273 if (err < 0) 274 return err; 275 276 /* note that tm_sec is a "don't care" value here: */ 277 } while ( before.tm_min != now.tm_min 278 || before.tm_hour != now.tm_hour 279 || before.tm_mon != now.tm_mon 280 || before.tm_year != now.tm_year); 281 282 /* Fill in the missing alarm fields using the timestamp; we 283 * know there's at least one since alarm->time is invalid. 284 */ 285 if (alarm->time.tm_sec == -1) 286 alarm->time.tm_sec = now.tm_sec; 287 if (alarm->time.tm_min == -1) 288 alarm->time.tm_min = now.tm_min; 289 if (alarm->time.tm_hour == -1) 290 alarm->time.tm_hour = now.tm_hour; 291 292 /* For simplicity, only support date rollover for now */ 293 if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) { 294 alarm->time.tm_mday = now.tm_mday; 295 missing = day; 296 } 297 if ((unsigned)alarm->time.tm_mon >= 12) { 298 alarm->time.tm_mon = now.tm_mon; 299 if (missing == none) 300 missing = month; 301 } 302 if (alarm->time.tm_year == -1) { 303 alarm->time.tm_year = now.tm_year; 304 if (missing == none) 305 missing = year; 306 } 307 308 /* Can't proceed if alarm is still invalid after replacing 309 * missing fields. 310 */ 311 err = rtc_valid_tm(&alarm->time); 312 if (err) 313 goto done; 314 315 /* with luck, no rollover is needed */ 316 t_now = rtc_tm_to_time64(&now); 317 t_alm = rtc_tm_to_time64(&alarm->time); 318 if (t_now < t_alm) 319 goto done; 320 321 switch (missing) { 322 323 /* 24 hour rollover ... if it's now 10am Monday, an alarm that 324 * that will trigger at 5am will do so at 5am Tuesday, which 325 * could also be in the next month or year. This is a common 326 * case, especially for PCs. 327 */ 328 case day: 329 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day"); 330 t_alm += 24 * 60 * 60; 331 rtc_time64_to_tm(t_alm, &alarm->time); 332 break; 333 334 /* Month rollover ... if it's the 31th, an alarm on the 3rd will 335 * be next month. An alarm matching on the 30th, 29th, or 28th 336 * may end up in the month after that! Many newer PCs support 337 * this type of alarm. 338 */ 339 case month: 340 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month"); 341 do { 342 if (alarm->time.tm_mon < 11) 343 alarm->time.tm_mon++; 344 else { 345 alarm->time.tm_mon = 0; 346 alarm->time.tm_year++; 347 } 348 days = rtc_month_days(alarm->time.tm_mon, 349 alarm->time.tm_year); 350 } while (days < alarm->time.tm_mday); 351 break; 352 353 /* Year rollover ... easy except for leap years! */ 354 case year: 355 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year"); 356 do { 357 alarm->time.tm_year++; 358 } while (!is_leap_year(alarm->time.tm_year + 1900) 359 && rtc_valid_tm(&alarm->time) != 0); 360 break; 361 362 default: 363 dev_warn(&rtc->dev, "alarm rollover not handled\n"); 364 } 365 366 err = rtc_valid_tm(&alarm->time); 367 368 done: 369 if (err) { 370 dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n", 371 alarm->time.tm_year + 1900, alarm->time.tm_mon + 1, 372 alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min, 373 alarm->time.tm_sec); 374 } 375 376 return err; 377 } 378 379 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 380 { 381 int err; 382 383 err = mutex_lock_interruptible(&rtc->ops_lock); 384 if (err) 385 return err; 386 if (rtc->ops == NULL) 387 err = -ENODEV; 388 else if (!rtc->ops->read_alarm) 389 err = -EINVAL; 390 else { 391 memset(alarm, 0, sizeof(struct rtc_wkalrm)); 392 alarm->enabled = rtc->aie_timer.enabled; 393 alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires); 394 } 395 mutex_unlock(&rtc->ops_lock); 396 397 trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err); 398 return err; 399 } 400 EXPORT_SYMBOL_GPL(rtc_read_alarm); 401 402 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 403 { 404 struct rtc_time tm; 405 time64_t now, scheduled; 406 int err; 407 408 err = rtc_valid_tm(&alarm->time); 409 if (err) 410 return err; 411 412 rtc_subtract_offset(rtc, &alarm->time); 413 scheduled = rtc_tm_to_time64(&alarm->time); 414 415 /* Make sure we're not setting alarms in the past */ 416 err = __rtc_read_time(rtc, &tm); 417 if (err) 418 return err; 419 now = rtc_tm_to_time64(&tm); 420 if (scheduled <= now) 421 return -ETIME; 422 /* 423 * XXX - We just checked to make sure the alarm time is not 424 * in the past, but there is still a race window where if 425 * the is alarm set for the next second and the second ticks 426 * over right here, before we set the alarm. 427 */ 428 429 if (!rtc->ops) 430 err = -ENODEV; 431 else if (!rtc->ops->set_alarm) 432 err = -EINVAL; 433 else 434 err = rtc->ops->set_alarm(rtc->dev.parent, alarm); 435 436 trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err); 437 return err; 438 } 439 440 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 441 { 442 int err; 443 444 if (!rtc->ops) 445 return -ENODEV; 446 else if (!rtc->ops->set_alarm) 447 return -EINVAL; 448 449 err = rtc_valid_tm(&alarm->time); 450 if (err != 0) 451 return err; 452 453 err = rtc_valid_range(rtc, &alarm->time); 454 if (err) 455 return err; 456 457 err = mutex_lock_interruptible(&rtc->ops_lock); 458 if (err) 459 return err; 460 if (rtc->aie_timer.enabled) 461 rtc_timer_remove(rtc, &rtc->aie_timer); 462 463 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time); 464 rtc->aie_timer.period = 0; 465 if (alarm->enabled) 466 err = rtc_timer_enqueue(rtc, &rtc->aie_timer); 467 468 mutex_unlock(&rtc->ops_lock); 469 470 rtc_add_offset(rtc, &alarm->time); 471 return err; 472 } 473 EXPORT_SYMBOL_GPL(rtc_set_alarm); 474 475 /* Called once per device from rtc_device_register */ 476 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 477 { 478 int err; 479 struct rtc_time now; 480 481 err = rtc_valid_tm(&alarm->time); 482 if (err != 0) 483 return err; 484 485 err = rtc_read_time(rtc, &now); 486 if (err) 487 return err; 488 489 err = mutex_lock_interruptible(&rtc->ops_lock); 490 if (err) 491 return err; 492 493 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time); 494 rtc->aie_timer.period = 0; 495 496 /* Alarm has to be enabled & in the future for us to enqueue it */ 497 if (alarm->enabled && (rtc_tm_to_ktime(now) < 498 rtc->aie_timer.node.expires)) { 499 500 rtc->aie_timer.enabled = 1; 501 timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node); 502 trace_rtc_timer_enqueue(&rtc->aie_timer); 503 } 504 mutex_unlock(&rtc->ops_lock); 505 return err; 506 } 507 EXPORT_SYMBOL_GPL(rtc_initialize_alarm); 508 509 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled) 510 { 511 int err = mutex_lock_interruptible(&rtc->ops_lock); 512 if (err) 513 return err; 514 515 if (rtc->aie_timer.enabled != enabled) { 516 if (enabled) 517 err = rtc_timer_enqueue(rtc, &rtc->aie_timer); 518 else 519 rtc_timer_remove(rtc, &rtc->aie_timer); 520 } 521 522 if (err) 523 /* nothing */; 524 else if (!rtc->ops) 525 err = -ENODEV; 526 else if (!rtc->ops->alarm_irq_enable) 527 err = -EINVAL; 528 else 529 err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled); 530 531 mutex_unlock(&rtc->ops_lock); 532 533 trace_rtc_alarm_irq_enable(enabled, err); 534 return err; 535 } 536 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable); 537 538 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled) 539 { 540 int err = mutex_lock_interruptible(&rtc->ops_lock); 541 if (err) 542 return err; 543 544 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL 545 if (enabled == 0 && rtc->uie_irq_active) { 546 mutex_unlock(&rtc->ops_lock); 547 return rtc_dev_update_irq_enable_emul(rtc, 0); 548 } 549 #endif 550 /* make sure we're changing state */ 551 if (rtc->uie_rtctimer.enabled == enabled) 552 goto out; 553 554 if (rtc->uie_unsupported) { 555 err = -EINVAL; 556 goto out; 557 } 558 559 if (enabled) { 560 struct rtc_time tm; 561 ktime_t now, onesec; 562 563 __rtc_read_time(rtc, &tm); 564 onesec = ktime_set(1, 0); 565 now = rtc_tm_to_ktime(tm); 566 rtc->uie_rtctimer.node.expires = ktime_add(now, onesec); 567 rtc->uie_rtctimer.period = ktime_set(1, 0); 568 err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer); 569 } else 570 rtc_timer_remove(rtc, &rtc->uie_rtctimer); 571 572 out: 573 mutex_unlock(&rtc->ops_lock); 574 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL 575 /* 576 * Enable emulation if the driver did not provide 577 * the update_irq_enable function pointer or if returned 578 * -EINVAL to signal that it has been configured without 579 * interrupts or that are not available at the moment. 580 */ 581 if (err == -EINVAL) 582 err = rtc_dev_update_irq_enable_emul(rtc, enabled); 583 #endif 584 return err; 585 586 } 587 EXPORT_SYMBOL_GPL(rtc_update_irq_enable); 588 589 590 /** 591 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook 592 * @rtc: pointer to the rtc device 593 * 594 * This function is called when an AIE, UIE or PIE mode interrupt 595 * has occurred (or been emulated). 596 * 597 * Triggers the registered irq_task function callback. 598 */ 599 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode) 600 { 601 unsigned long flags; 602 603 /* mark one irq of the appropriate mode */ 604 spin_lock_irqsave(&rtc->irq_lock, flags); 605 rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode); 606 spin_unlock_irqrestore(&rtc->irq_lock, flags); 607 608 /* call the task func */ 609 spin_lock_irqsave(&rtc->irq_task_lock, flags); 610 if (rtc->irq_task) 611 rtc->irq_task->func(rtc->irq_task->private_data); 612 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 613 614 wake_up_interruptible(&rtc->irq_queue); 615 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN); 616 } 617 618 619 /** 620 * rtc_aie_update_irq - AIE mode rtctimer hook 621 * @private: pointer to the rtc_device 622 * 623 * This functions is called when the aie_timer expires. 624 */ 625 void rtc_aie_update_irq(void *private) 626 { 627 struct rtc_device *rtc = (struct rtc_device *)private; 628 rtc_handle_legacy_irq(rtc, 1, RTC_AF); 629 } 630 631 632 /** 633 * rtc_uie_update_irq - UIE mode rtctimer hook 634 * @private: pointer to the rtc_device 635 * 636 * This functions is called when the uie_timer expires. 637 */ 638 void rtc_uie_update_irq(void *private) 639 { 640 struct rtc_device *rtc = (struct rtc_device *)private; 641 rtc_handle_legacy_irq(rtc, 1, RTC_UF); 642 } 643 644 645 /** 646 * rtc_pie_update_irq - PIE mode hrtimer hook 647 * @timer: pointer to the pie mode hrtimer 648 * 649 * This function is used to emulate PIE mode interrupts 650 * using an hrtimer. This function is called when the periodic 651 * hrtimer expires. 652 */ 653 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer) 654 { 655 struct rtc_device *rtc; 656 ktime_t period; 657 int count; 658 rtc = container_of(timer, struct rtc_device, pie_timer); 659 660 period = NSEC_PER_SEC / rtc->irq_freq; 661 count = hrtimer_forward_now(timer, period); 662 663 rtc_handle_legacy_irq(rtc, count, RTC_PF); 664 665 return HRTIMER_RESTART; 666 } 667 668 /** 669 * rtc_update_irq - Triggered when a RTC interrupt occurs. 670 * @rtc: the rtc device 671 * @num: how many irqs are being reported (usually one) 672 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF 673 * Context: any 674 */ 675 void rtc_update_irq(struct rtc_device *rtc, 676 unsigned long num, unsigned long events) 677 { 678 if (IS_ERR_OR_NULL(rtc)) 679 return; 680 681 pm_stay_awake(rtc->dev.parent); 682 schedule_work(&rtc->irqwork); 683 } 684 EXPORT_SYMBOL_GPL(rtc_update_irq); 685 686 static int __rtc_match(struct device *dev, const void *data) 687 { 688 const char *name = data; 689 690 if (strcmp(dev_name(dev), name) == 0) 691 return 1; 692 return 0; 693 } 694 695 struct rtc_device *rtc_class_open(const char *name) 696 { 697 struct device *dev; 698 struct rtc_device *rtc = NULL; 699 700 dev = class_find_device(rtc_class, NULL, name, __rtc_match); 701 if (dev) 702 rtc = to_rtc_device(dev); 703 704 if (rtc) { 705 if (!try_module_get(rtc->owner)) { 706 put_device(dev); 707 rtc = NULL; 708 } 709 } 710 711 return rtc; 712 } 713 EXPORT_SYMBOL_GPL(rtc_class_open); 714 715 void rtc_class_close(struct rtc_device *rtc) 716 { 717 module_put(rtc->owner); 718 put_device(&rtc->dev); 719 } 720 EXPORT_SYMBOL_GPL(rtc_class_close); 721 722 int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task) 723 { 724 int retval = -EBUSY; 725 726 if (task == NULL || task->func == NULL) 727 return -EINVAL; 728 729 /* Cannot register while the char dev is in use */ 730 if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags)) 731 return -EBUSY; 732 733 spin_lock_irq(&rtc->irq_task_lock); 734 if (rtc->irq_task == NULL) { 735 rtc->irq_task = task; 736 retval = 0; 737 } 738 spin_unlock_irq(&rtc->irq_task_lock); 739 740 clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags); 741 742 return retval; 743 } 744 EXPORT_SYMBOL_GPL(rtc_irq_register); 745 746 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task) 747 { 748 spin_lock_irq(&rtc->irq_task_lock); 749 if (rtc->irq_task == task) 750 rtc->irq_task = NULL; 751 spin_unlock_irq(&rtc->irq_task_lock); 752 } 753 EXPORT_SYMBOL_GPL(rtc_irq_unregister); 754 755 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled) 756 { 757 /* 758 * We always cancel the timer here first, because otherwise 759 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK); 760 * when we manage to start the timer before the callback 761 * returns HRTIMER_RESTART. 762 * 763 * We cannot use hrtimer_cancel() here as a running callback 764 * could be blocked on rtc->irq_task_lock and hrtimer_cancel() 765 * would spin forever. 766 */ 767 if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0) 768 return -1; 769 770 if (enabled) { 771 ktime_t period = NSEC_PER_SEC / rtc->irq_freq; 772 773 hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL); 774 } 775 return 0; 776 } 777 778 /** 779 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs 780 * @rtc: the rtc device 781 * @task: currently registered with rtc_irq_register() 782 * @enabled: true to enable periodic IRQs 783 * Context: any 784 * 785 * Note that rtc_irq_set_freq() should previously have been used to 786 * specify the desired frequency of periodic IRQ task->func() callbacks. 787 */ 788 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled) 789 { 790 int err = 0; 791 unsigned long flags; 792 793 retry: 794 spin_lock_irqsave(&rtc->irq_task_lock, flags); 795 if (rtc->irq_task != NULL && task == NULL) 796 err = -EBUSY; 797 else if (rtc->irq_task != task) 798 err = -EACCES; 799 else { 800 if (rtc_update_hrtimer(rtc, enabled) < 0) { 801 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 802 cpu_relax(); 803 goto retry; 804 } 805 rtc->pie_enabled = enabled; 806 } 807 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 808 809 trace_rtc_irq_set_state(enabled, err); 810 return err; 811 } 812 EXPORT_SYMBOL_GPL(rtc_irq_set_state); 813 814 /** 815 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ 816 * @rtc: the rtc device 817 * @task: currently registered with rtc_irq_register() 818 * @freq: positive frequency with which task->func() will be called 819 * Context: any 820 * 821 * Note that rtc_irq_set_state() is used to enable or disable the 822 * periodic IRQs. 823 */ 824 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq) 825 { 826 int err = 0; 827 unsigned long flags; 828 829 if (freq <= 0 || freq > RTC_MAX_FREQ) 830 return -EINVAL; 831 retry: 832 spin_lock_irqsave(&rtc->irq_task_lock, flags); 833 if (rtc->irq_task != NULL && task == NULL) 834 err = -EBUSY; 835 else if (rtc->irq_task != task) 836 err = -EACCES; 837 else { 838 rtc->irq_freq = freq; 839 if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) { 840 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 841 cpu_relax(); 842 goto retry; 843 } 844 } 845 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 846 847 trace_rtc_irq_set_freq(freq, err); 848 return err; 849 } 850 EXPORT_SYMBOL_GPL(rtc_irq_set_freq); 851 852 /** 853 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue 854 * @rtc rtc device 855 * @timer timer being added. 856 * 857 * Enqueues a timer onto the rtc devices timerqueue and sets 858 * the next alarm event appropriately. 859 * 860 * Sets the enabled bit on the added timer. 861 * 862 * Must hold ops_lock for proper serialization of timerqueue 863 */ 864 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer) 865 { 866 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue); 867 struct rtc_time tm; 868 ktime_t now; 869 870 timer->enabled = 1; 871 __rtc_read_time(rtc, &tm); 872 now = rtc_tm_to_ktime(tm); 873 874 /* Skip over expired timers */ 875 while (next) { 876 if (next->expires >= now) 877 break; 878 next = timerqueue_iterate_next(next); 879 } 880 881 timerqueue_add(&rtc->timerqueue, &timer->node); 882 trace_rtc_timer_enqueue(timer); 883 if (!next || ktime_before(timer->node.expires, next->expires)) { 884 struct rtc_wkalrm alarm; 885 int err; 886 alarm.time = rtc_ktime_to_tm(timer->node.expires); 887 alarm.enabled = 1; 888 err = __rtc_set_alarm(rtc, &alarm); 889 if (err == -ETIME) { 890 pm_stay_awake(rtc->dev.parent); 891 schedule_work(&rtc->irqwork); 892 } else if (err) { 893 timerqueue_del(&rtc->timerqueue, &timer->node); 894 trace_rtc_timer_dequeue(timer); 895 timer->enabled = 0; 896 return err; 897 } 898 } 899 return 0; 900 } 901 902 static void rtc_alarm_disable(struct rtc_device *rtc) 903 { 904 if (!rtc->ops || !rtc->ops->alarm_irq_enable) 905 return; 906 907 rtc->ops->alarm_irq_enable(rtc->dev.parent, false); 908 trace_rtc_alarm_irq_enable(0, 0); 909 } 910 911 /** 912 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue 913 * @rtc rtc device 914 * @timer timer being removed. 915 * 916 * Removes a timer onto the rtc devices timerqueue and sets 917 * the next alarm event appropriately. 918 * 919 * Clears the enabled bit on the removed timer. 920 * 921 * Must hold ops_lock for proper serialization of timerqueue 922 */ 923 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer) 924 { 925 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue); 926 timerqueue_del(&rtc->timerqueue, &timer->node); 927 trace_rtc_timer_dequeue(timer); 928 timer->enabled = 0; 929 if (next == &timer->node) { 930 struct rtc_wkalrm alarm; 931 int err; 932 next = timerqueue_getnext(&rtc->timerqueue); 933 if (!next) { 934 rtc_alarm_disable(rtc); 935 return; 936 } 937 alarm.time = rtc_ktime_to_tm(next->expires); 938 alarm.enabled = 1; 939 err = __rtc_set_alarm(rtc, &alarm); 940 if (err == -ETIME) { 941 pm_stay_awake(rtc->dev.parent); 942 schedule_work(&rtc->irqwork); 943 } 944 } 945 } 946 947 /** 948 * rtc_timer_do_work - Expires rtc timers 949 * @rtc rtc device 950 * @timer timer being removed. 951 * 952 * Expires rtc timers. Reprograms next alarm event if needed. 953 * Called via worktask. 954 * 955 * Serializes access to timerqueue via ops_lock mutex 956 */ 957 void rtc_timer_do_work(struct work_struct *work) 958 { 959 struct rtc_timer *timer; 960 struct timerqueue_node *next; 961 ktime_t now; 962 struct rtc_time tm; 963 964 struct rtc_device *rtc = 965 container_of(work, struct rtc_device, irqwork); 966 967 mutex_lock(&rtc->ops_lock); 968 again: 969 __rtc_read_time(rtc, &tm); 970 now = rtc_tm_to_ktime(tm); 971 while ((next = timerqueue_getnext(&rtc->timerqueue))) { 972 if (next->expires > now) 973 break; 974 975 /* expire timer */ 976 timer = container_of(next, struct rtc_timer, node); 977 timerqueue_del(&rtc->timerqueue, &timer->node); 978 trace_rtc_timer_dequeue(timer); 979 timer->enabled = 0; 980 if (timer->task.func) 981 timer->task.func(timer->task.private_data); 982 983 trace_rtc_timer_fired(timer); 984 /* Re-add/fwd periodic timers */ 985 if (ktime_to_ns(timer->period)) { 986 timer->node.expires = ktime_add(timer->node.expires, 987 timer->period); 988 timer->enabled = 1; 989 timerqueue_add(&rtc->timerqueue, &timer->node); 990 trace_rtc_timer_enqueue(timer); 991 } 992 } 993 994 /* Set next alarm */ 995 if (next) { 996 struct rtc_wkalrm alarm; 997 int err; 998 int retry = 3; 999 1000 alarm.time = rtc_ktime_to_tm(next->expires); 1001 alarm.enabled = 1; 1002 reprogram: 1003 err = __rtc_set_alarm(rtc, &alarm); 1004 if (err == -ETIME) 1005 goto again; 1006 else if (err) { 1007 if (retry-- > 0) 1008 goto reprogram; 1009 1010 timer = container_of(next, struct rtc_timer, node); 1011 timerqueue_del(&rtc->timerqueue, &timer->node); 1012 trace_rtc_timer_dequeue(timer); 1013 timer->enabled = 0; 1014 dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err); 1015 goto again; 1016 } 1017 } else 1018 rtc_alarm_disable(rtc); 1019 1020 pm_relax(rtc->dev.parent); 1021 mutex_unlock(&rtc->ops_lock); 1022 } 1023 1024 1025 /* rtc_timer_init - Initializes an rtc_timer 1026 * @timer: timer to be intiialized 1027 * @f: function pointer to be called when timer fires 1028 * @data: private data passed to function pointer 1029 * 1030 * Kernel interface to initializing an rtc_timer. 1031 */ 1032 void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data) 1033 { 1034 timerqueue_init(&timer->node); 1035 timer->enabled = 0; 1036 timer->task.func = f; 1037 timer->task.private_data = data; 1038 } 1039 1040 /* rtc_timer_start - Sets an rtc_timer to fire in the future 1041 * @ rtc: rtc device to be used 1042 * @ timer: timer being set 1043 * @ expires: time at which to expire the timer 1044 * @ period: period that the timer will recur 1045 * 1046 * Kernel interface to set an rtc_timer 1047 */ 1048 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer, 1049 ktime_t expires, ktime_t period) 1050 { 1051 int ret = 0; 1052 mutex_lock(&rtc->ops_lock); 1053 if (timer->enabled) 1054 rtc_timer_remove(rtc, timer); 1055 1056 timer->node.expires = expires; 1057 timer->period = period; 1058 1059 ret = rtc_timer_enqueue(rtc, timer); 1060 1061 mutex_unlock(&rtc->ops_lock); 1062 return ret; 1063 } 1064 1065 /* rtc_timer_cancel - Stops an rtc_timer 1066 * @ rtc: rtc device to be used 1067 * @ timer: timer being set 1068 * 1069 * Kernel interface to cancel an rtc_timer 1070 */ 1071 void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer) 1072 { 1073 mutex_lock(&rtc->ops_lock); 1074 if (timer->enabled) 1075 rtc_timer_remove(rtc, timer); 1076 mutex_unlock(&rtc->ops_lock); 1077 } 1078 1079 /** 1080 * rtc_read_offset - Read the amount of rtc offset in parts per billion 1081 * @ rtc: rtc device to be used 1082 * @ offset: the offset in parts per billion 1083 * 1084 * see below for details. 1085 * 1086 * Kernel interface to read rtc clock offset 1087 * Returns 0 on success, or a negative number on error. 1088 * If read_offset() is not implemented for the rtc, return -EINVAL 1089 */ 1090 int rtc_read_offset(struct rtc_device *rtc, long *offset) 1091 { 1092 int ret; 1093 1094 if (!rtc->ops) 1095 return -ENODEV; 1096 1097 if (!rtc->ops->read_offset) 1098 return -EINVAL; 1099 1100 mutex_lock(&rtc->ops_lock); 1101 ret = rtc->ops->read_offset(rtc->dev.parent, offset); 1102 mutex_unlock(&rtc->ops_lock); 1103 1104 trace_rtc_read_offset(*offset, ret); 1105 return ret; 1106 } 1107 1108 /** 1109 * rtc_set_offset - Adjusts the duration of the average second 1110 * @ rtc: rtc device to be used 1111 * @ offset: the offset in parts per billion 1112 * 1113 * Some rtc's allow an adjustment to the average duration of a second 1114 * to compensate for differences in the actual clock rate due to temperature, 1115 * the crystal, capacitor, etc. 1116 * 1117 * The adjustment applied is as follows: 1118 * t = t0 * (1 + offset * 1e-9) 1119 * where t0 is the measured length of 1 RTC second with offset = 0 1120 * 1121 * Kernel interface to adjust an rtc clock offset. 1122 * Return 0 on success, or a negative number on error. 1123 * If the rtc offset is not setable (or not implemented), return -EINVAL 1124 */ 1125 int rtc_set_offset(struct rtc_device *rtc, long offset) 1126 { 1127 int ret; 1128 1129 if (!rtc->ops) 1130 return -ENODEV; 1131 1132 if (!rtc->ops->set_offset) 1133 return -EINVAL; 1134 1135 mutex_lock(&rtc->ops_lock); 1136 ret = rtc->ops->set_offset(rtc->dev.parent, offset); 1137 mutex_unlock(&rtc->ops_lock); 1138 1139 trace_rtc_set_offset(offset, ret); 1140 return ret; 1141 } 1142