xref: /openbmc/linux/drivers/rtc/interface.c (revision 25985edc)
1 /*
2  * RTC subsystem, interface functions
3  *
4  * Copyright (C) 2005 Tower Technologies
5  * Author: Alessandro Zummo <a.zummo@towertech.it>
6  *
7  * based on arch/arm/common/rtctime.c
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12 */
13 
14 #include <linux/rtc.h>
15 #include <linux/sched.h>
16 #include <linux/log2.h>
17 #include <linux/workqueue.h>
18 
19 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
20 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
21 
22 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
23 {
24 	int err;
25 	if (!rtc->ops)
26 		err = -ENODEV;
27 	else if (!rtc->ops->read_time)
28 		err = -EINVAL;
29 	else {
30 		memset(tm, 0, sizeof(struct rtc_time));
31 		err = rtc->ops->read_time(rtc->dev.parent, tm);
32 	}
33 	return err;
34 }
35 
36 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
37 {
38 	int err;
39 
40 	err = mutex_lock_interruptible(&rtc->ops_lock);
41 	if (err)
42 		return err;
43 
44 	err = __rtc_read_time(rtc, tm);
45 	mutex_unlock(&rtc->ops_lock);
46 	return err;
47 }
48 EXPORT_SYMBOL_GPL(rtc_read_time);
49 
50 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
51 {
52 	int err;
53 
54 	err = rtc_valid_tm(tm);
55 	if (err != 0)
56 		return err;
57 
58 	err = mutex_lock_interruptible(&rtc->ops_lock);
59 	if (err)
60 		return err;
61 
62 	if (!rtc->ops)
63 		err = -ENODEV;
64 	else if (rtc->ops->set_time)
65 		err = rtc->ops->set_time(rtc->dev.parent, tm);
66 	else if (rtc->ops->set_mmss) {
67 		unsigned long secs;
68 		err = rtc_tm_to_time(tm, &secs);
69 		if (err == 0)
70 			err = rtc->ops->set_mmss(rtc->dev.parent, secs);
71 	} else
72 		err = -EINVAL;
73 
74 	mutex_unlock(&rtc->ops_lock);
75 	return err;
76 }
77 EXPORT_SYMBOL_GPL(rtc_set_time);
78 
79 int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
80 {
81 	int err;
82 
83 	err = mutex_lock_interruptible(&rtc->ops_lock);
84 	if (err)
85 		return err;
86 
87 	if (!rtc->ops)
88 		err = -ENODEV;
89 	else if (rtc->ops->set_mmss)
90 		err = rtc->ops->set_mmss(rtc->dev.parent, secs);
91 	else if (rtc->ops->read_time && rtc->ops->set_time) {
92 		struct rtc_time new, old;
93 
94 		err = rtc->ops->read_time(rtc->dev.parent, &old);
95 		if (err == 0) {
96 			rtc_time_to_tm(secs, &new);
97 
98 			/*
99 			 * avoid writing when we're going to change the day of
100 			 * the month. We will retry in the next minute. This
101 			 * basically means that if the RTC must not drift
102 			 * by more than 1 minute in 11 minutes.
103 			 */
104 			if (!((old.tm_hour == 23 && old.tm_min == 59) ||
105 				(new.tm_hour == 23 && new.tm_min == 59)))
106 				err = rtc->ops->set_time(rtc->dev.parent,
107 						&new);
108 		}
109 	}
110 	else
111 		err = -EINVAL;
112 
113 	mutex_unlock(&rtc->ops_lock);
114 
115 	return err;
116 }
117 EXPORT_SYMBOL_GPL(rtc_set_mmss);
118 
119 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
120 {
121 	int err;
122 
123 	err = mutex_lock_interruptible(&rtc->ops_lock);
124 	if (err)
125 		return err;
126 
127 	if (rtc->ops == NULL)
128 		err = -ENODEV;
129 	else if (!rtc->ops->read_alarm)
130 		err = -EINVAL;
131 	else {
132 		memset(alarm, 0, sizeof(struct rtc_wkalrm));
133 		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
134 	}
135 
136 	mutex_unlock(&rtc->ops_lock);
137 	return err;
138 }
139 
140 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
141 {
142 	int err;
143 	struct rtc_time before, now;
144 	int first_time = 1;
145 	unsigned long t_now, t_alm;
146 	enum { none, day, month, year } missing = none;
147 	unsigned days;
148 
149 	/* The lower level RTC driver may return -1 in some fields,
150 	 * creating invalid alarm->time values, for reasons like:
151 	 *
152 	 *   - The hardware may not be capable of filling them in;
153 	 *     many alarms match only on time-of-day fields, not
154 	 *     day/month/year calendar data.
155 	 *
156 	 *   - Some hardware uses illegal values as "wildcard" match
157 	 *     values, which non-Linux firmware (like a BIOS) may try
158 	 *     to set up as e.g. "alarm 15 minutes after each hour".
159 	 *     Linux uses only oneshot alarms.
160 	 *
161 	 * When we see that here, we deal with it by using values from
162 	 * a current RTC timestamp for any missing (-1) values.  The
163 	 * RTC driver prevents "periodic alarm" modes.
164 	 *
165 	 * But this can be racey, because some fields of the RTC timestamp
166 	 * may have wrapped in the interval since we read the RTC alarm,
167 	 * which would lead to us inserting inconsistent values in place
168 	 * of the -1 fields.
169 	 *
170 	 * Reading the alarm and timestamp in the reverse sequence
171 	 * would have the same race condition, and not solve the issue.
172 	 *
173 	 * So, we must first read the RTC timestamp,
174 	 * then read the RTC alarm value,
175 	 * and then read a second RTC timestamp.
176 	 *
177 	 * If any fields of the second timestamp have changed
178 	 * when compared with the first timestamp, then we know
179 	 * our timestamp may be inconsistent with that used by
180 	 * the low-level rtc_read_alarm_internal() function.
181 	 *
182 	 * So, when the two timestamps disagree, we just loop and do
183 	 * the process again to get a fully consistent set of values.
184 	 *
185 	 * This could all instead be done in the lower level driver,
186 	 * but since more than one lower level RTC implementation needs it,
187 	 * then it's probably best best to do it here instead of there..
188 	 */
189 
190 	/* Get the "before" timestamp */
191 	err = rtc_read_time(rtc, &before);
192 	if (err < 0)
193 		return err;
194 	do {
195 		if (!first_time)
196 			memcpy(&before, &now, sizeof(struct rtc_time));
197 		first_time = 0;
198 
199 		/* get the RTC alarm values, which may be incomplete */
200 		err = rtc_read_alarm_internal(rtc, alarm);
201 		if (err)
202 			return err;
203 
204 		/* full-function RTCs won't have such missing fields */
205 		if (rtc_valid_tm(&alarm->time) == 0)
206 			return 0;
207 
208 		/* get the "after" timestamp, to detect wrapped fields */
209 		err = rtc_read_time(rtc, &now);
210 		if (err < 0)
211 			return err;
212 
213 		/* note that tm_sec is a "don't care" value here: */
214 	} while (   before.tm_min   != now.tm_min
215 		 || before.tm_hour  != now.tm_hour
216 		 || before.tm_mon   != now.tm_mon
217 		 || before.tm_year  != now.tm_year);
218 
219 	/* Fill in the missing alarm fields using the timestamp; we
220 	 * know there's at least one since alarm->time is invalid.
221 	 */
222 	if (alarm->time.tm_sec == -1)
223 		alarm->time.tm_sec = now.tm_sec;
224 	if (alarm->time.tm_min == -1)
225 		alarm->time.tm_min = now.tm_min;
226 	if (alarm->time.tm_hour == -1)
227 		alarm->time.tm_hour = now.tm_hour;
228 
229 	/* For simplicity, only support date rollover for now */
230 	if (alarm->time.tm_mday == -1) {
231 		alarm->time.tm_mday = now.tm_mday;
232 		missing = day;
233 	}
234 	if (alarm->time.tm_mon == -1) {
235 		alarm->time.tm_mon = now.tm_mon;
236 		if (missing == none)
237 			missing = month;
238 	}
239 	if (alarm->time.tm_year == -1) {
240 		alarm->time.tm_year = now.tm_year;
241 		if (missing == none)
242 			missing = year;
243 	}
244 
245 	/* with luck, no rollover is needed */
246 	rtc_tm_to_time(&now, &t_now);
247 	rtc_tm_to_time(&alarm->time, &t_alm);
248 	if (t_now < t_alm)
249 		goto done;
250 
251 	switch (missing) {
252 
253 	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
254 	 * that will trigger at 5am will do so at 5am Tuesday, which
255 	 * could also be in the next month or year.  This is a common
256 	 * case, especially for PCs.
257 	 */
258 	case day:
259 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
260 		t_alm += 24 * 60 * 60;
261 		rtc_time_to_tm(t_alm, &alarm->time);
262 		break;
263 
264 	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
265 	 * be next month.  An alarm matching on the 30th, 29th, or 28th
266 	 * may end up in the month after that!  Many newer PCs support
267 	 * this type of alarm.
268 	 */
269 	case month:
270 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
271 		do {
272 			if (alarm->time.tm_mon < 11)
273 				alarm->time.tm_mon++;
274 			else {
275 				alarm->time.tm_mon = 0;
276 				alarm->time.tm_year++;
277 			}
278 			days = rtc_month_days(alarm->time.tm_mon,
279 					alarm->time.tm_year);
280 		} while (days < alarm->time.tm_mday);
281 		break;
282 
283 	/* Year rollover ... easy except for leap years! */
284 	case year:
285 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
286 		do {
287 			alarm->time.tm_year++;
288 		} while (rtc_valid_tm(&alarm->time) != 0);
289 		break;
290 
291 	default:
292 		dev_warn(&rtc->dev, "alarm rollover not handled\n");
293 	}
294 
295 done:
296 	return 0;
297 }
298 
299 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
300 {
301 	int err;
302 
303 	err = mutex_lock_interruptible(&rtc->ops_lock);
304 	if (err)
305 		return err;
306 	if (rtc->ops == NULL)
307 		err = -ENODEV;
308 	else if (!rtc->ops->read_alarm)
309 		err = -EINVAL;
310 	else {
311 		memset(alarm, 0, sizeof(struct rtc_wkalrm));
312 		alarm->enabled = rtc->aie_timer.enabled;
313 		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
314 	}
315 	mutex_unlock(&rtc->ops_lock);
316 
317 	return err;
318 }
319 EXPORT_SYMBOL_GPL(rtc_read_alarm);
320 
321 int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
322 {
323 	struct rtc_time tm;
324 	long now, scheduled;
325 	int err;
326 
327 	err = rtc_valid_tm(&alarm->time);
328 	if (err)
329 		return err;
330 	rtc_tm_to_time(&alarm->time, &scheduled);
331 
332 	/* Make sure we're not setting alarms in the past */
333 	err = __rtc_read_time(rtc, &tm);
334 	rtc_tm_to_time(&tm, &now);
335 	if (scheduled <= now)
336 		return -ETIME;
337 	/*
338 	 * XXX - We just checked to make sure the alarm time is not
339 	 * in the past, but there is still a race window where if
340 	 * the is alarm set for the next second and the second ticks
341 	 * over right here, before we set the alarm.
342 	 */
343 
344 	if (!rtc->ops)
345 		err = -ENODEV;
346 	else if (!rtc->ops->set_alarm)
347 		err = -EINVAL;
348 	else
349 		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
350 
351 	return err;
352 }
353 
354 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
355 {
356 	int err;
357 
358 	err = rtc_valid_tm(&alarm->time);
359 	if (err != 0)
360 		return err;
361 
362 	err = mutex_lock_interruptible(&rtc->ops_lock);
363 	if (err)
364 		return err;
365 	if (rtc->aie_timer.enabled) {
366 		rtc_timer_remove(rtc, &rtc->aie_timer);
367 	}
368 	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
369 	rtc->aie_timer.period = ktime_set(0, 0);
370 	if (alarm->enabled) {
371 		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
372 	}
373 	mutex_unlock(&rtc->ops_lock);
374 	return err;
375 }
376 EXPORT_SYMBOL_GPL(rtc_set_alarm);
377 
378 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
379 {
380 	int err = mutex_lock_interruptible(&rtc->ops_lock);
381 	if (err)
382 		return err;
383 
384 	if (rtc->aie_timer.enabled != enabled) {
385 		if (enabled)
386 			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
387 		else
388 			rtc_timer_remove(rtc, &rtc->aie_timer);
389 	}
390 
391 	if (err)
392 		/* nothing */;
393 	else if (!rtc->ops)
394 		err = -ENODEV;
395 	else if (!rtc->ops->alarm_irq_enable)
396 		err = -EINVAL;
397 	else
398 		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
399 
400 	mutex_unlock(&rtc->ops_lock);
401 	return err;
402 }
403 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
404 
405 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
406 {
407 	int err = mutex_lock_interruptible(&rtc->ops_lock);
408 	if (err)
409 		return err;
410 
411 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
412 	if (enabled == 0 && rtc->uie_irq_active) {
413 		mutex_unlock(&rtc->ops_lock);
414 		return rtc_dev_update_irq_enable_emul(rtc, 0);
415 	}
416 #endif
417 	/* make sure we're changing state */
418 	if (rtc->uie_rtctimer.enabled == enabled)
419 		goto out;
420 
421 	if (enabled) {
422 		struct rtc_time tm;
423 		ktime_t now, onesec;
424 
425 		__rtc_read_time(rtc, &tm);
426 		onesec = ktime_set(1, 0);
427 		now = rtc_tm_to_ktime(tm);
428 		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
429 		rtc->uie_rtctimer.period = ktime_set(1, 0);
430 		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
431 	} else
432 		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
433 
434 out:
435 	mutex_unlock(&rtc->ops_lock);
436 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
437 	/*
438 	 * Enable emulation if the driver did not provide
439 	 * the update_irq_enable function pointer or if returned
440 	 * -EINVAL to signal that it has been configured without
441 	 * interrupts or that are not available at the moment.
442 	 */
443 	if (err == -EINVAL)
444 		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
445 #endif
446 	return err;
447 
448 }
449 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
450 
451 
452 /**
453  * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
454  * @rtc: pointer to the rtc device
455  *
456  * This function is called when an AIE, UIE or PIE mode interrupt
457  * has occurred (or been emulated).
458  *
459  * Triggers the registered irq_task function callback.
460  */
461 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
462 {
463 	unsigned long flags;
464 
465 	/* mark one irq of the appropriate mode */
466 	spin_lock_irqsave(&rtc->irq_lock, flags);
467 	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
468 	spin_unlock_irqrestore(&rtc->irq_lock, flags);
469 
470 	/* call the task func */
471 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
472 	if (rtc->irq_task)
473 		rtc->irq_task->func(rtc->irq_task->private_data);
474 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
475 
476 	wake_up_interruptible(&rtc->irq_queue);
477 	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
478 }
479 
480 
481 /**
482  * rtc_aie_update_irq - AIE mode rtctimer hook
483  * @private: pointer to the rtc_device
484  *
485  * This functions is called when the aie_timer expires.
486  */
487 void rtc_aie_update_irq(void *private)
488 {
489 	struct rtc_device *rtc = (struct rtc_device *)private;
490 	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
491 }
492 
493 
494 /**
495  * rtc_uie_update_irq - UIE mode rtctimer hook
496  * @private: pointer to the rtc_device
497  *
498  * This functions is called when the uie_timer expires.
499  */
500 void rtc_uie_update_irq(void *private)
501 {
502 	struct rtc_device *rtc = (struct rtc_device *)private;
503 	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
504 }
505 
506 
507 /**
508  * rtc_pie_update_irq - PIE mode hrtimer hook
509  * @timer: pointer to the pie mode hrtimer
510  *
511  * This function is used to emulate PIE mode interrupts
512  * using an hrtimer. This function is called when the periodic
513  * hrtimer expires.
514  */
515 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
516 {
517 	struct rtc_device *rtc;
518 	ktime_t period;
519 	int count;
520 	rtc = container_of(timer, struct rtc_device, pie_timer);
521 
522 	period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
523 	count = hrtimer_forward_now(timer, period);
524 
525 	rtc_handle_legacy_irq(rtc, count, RTC_PF);
526 
527 	return HRTIMER_RESTART;
528 }
529 
530 /**
531  * rtc_update_irq - Triggered when a RTC interrupt occurs.
532  * @rtc: the rtc device
533  * @num: how many irqs are being reported (usually one)
534  * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
535  * Context: any
536  */
537 void rtc_update_irq(struct rtc_device *rtc,
538 		unsigned long num, unsigned long events)
539 {
540 	schedule_work(&rtc->irqwork);
541 }
542 EXPORT_SYMBOL_GPL(rtc_update_irq);
543 
544 static int __rtc_match(struct device *dev, void *data)
545 {
546 	char *name = (char *)data;
547 
548 	if (strcmp(dev_name(dev), name) == 0)
549 		return 1;
550 	return 0;
551 }
552 
553 struct rtc_device *rtc_class_open(char *name)
554 {
555 	struct device *dev;
556 	struct rtc_device *rtc = NULL;
557 
558 	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
559 	if (dev)
560 		rtc = to_rtc_device(dev);
561 
562 	if (rtc) {
563 		if (!try_module_get(rtc->owner)) {
564 			put_device(dev);
565 			rtc = NULL;
566 		}
567 	}
568 
569 	return rtc;
570 }
571 EXPORT_SYMBOL_GPL(rtc_class_open);
572 
573 void rtc_class_close(struct rtc_device *rtc)
574 {
575 	module_put(rtc->owner);
576 	put_device(&rtc->dev);
577 }
578 EXPORT_SYMBOL_GPL(rtc_class_close);
579 
580 int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
581 {
582 	int retval = -EBUSY;
583 
584 	if (task == NULL || task->func == NULL)
585 		return -EINVAL;
586 
587 	/* Cannot register while the char dev is in use */
588 	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
589 		return -EBUSY;
590 
591 	spin_lock_irq(&rtc->irq_task_lock);
592 	if (rtc->irq_task == NULL) {
593 		rtc->irq_task = task;
594 		retval = 0;
595 	}
596 	spin_unlock_irq(&rtc->irq_task_lock);
597 
598 	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
599 
600 	return retval;
601 }
602 EXPORT_SYMBOL_GPL(rtc_irq_register);
603 
604 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
605 {
606 	spin_lock_irq(&rtc->irq_task_lock);
607 	if (rtc->irq_task == task)
608 		rtc->irq_task = NULL;
609 	spin_unlock_irq(&rtc->irq_task_lock);
610 }
611 EXPORT_SYMBOL_GPL(rtc_irq_unregister);
612 
613 /**
614  * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
615  * @rtc: the rtc device
616  * @task: currently registered with rtc_irq_register()
617  * @enabled: true to enable periodic IRQs
618  * Context: any
619  *
620  * Note that rtc_irq_set_freq() should previously have been used to
621  * specify the desired frequency of periodic IRQ task->func() callbacks.
622  */
623 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
624 {
625 	int err = 0;
626 	unsigned long flags;
627 
628 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
629 	if (rtc->irq_task != NULL && task == NULL)
630 		err = -EBUSY;
631 	if (rtc->irq_task != task)
632 		err = -EACCES;
633 
634 	if (enabled) {
635 		ktime_t period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
636 		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
637 	} else {
638 		hrtimer_cancel(&rtc->pie_timer);
639 	}
640 	rtc->pie_enabled = enabled;
641 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
642 
643 	return err;
644 }
645 EXPORT_SYMBOL_GPL(rtc_irq_set_state);
646 
647 /**
648  * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
649  * @rtc: the rtc device
650  * @task: currently registered with rtc_irq_register()
651  * @freq: positive frequency with which task->func() will be called
652  * Context: any
653  *
654  * Note that rtc_irq_set_state() is used to enable or disable the
655  * periodic IRQs.
656  */
657 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
658 {
659 	int err = 0;
660 	unsigned long flags;
661 
662 	if (freq <= 0)
663 		return -EINVAL;
664 
665 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
666 	if (rtc->irq_task != NULL && task == NULL)
667 		err = -EBUSY;
668 	if (rtc->irq_task != task)
669 		err = -EACCES;
670 	if (err == 0) {
671 		rtc->irq_freq = freq;
672 		if (rtc->pie_enabled) {
673 			ktime_t period;
674 			hrtimer_cancel(&rtc->pie_timer);
675 			period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
676 			hrtimer_start(&rtc->pie_timer, period,
677 					HRTIMER_MODE_REL);
678 		}
679 	}
680 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
681 	return err;
682 }
683 EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
684 
685 /**
686  * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
687  * @rtc rtc device
688  * @timer timer being added.
689  *
690  * Enqueues a timer onto the rtc devices timerqueue and sets
691  * the next alarm event appropriately.
692  *
693  * Sets the enabled bit on the added timer.
694  *
695  * Must hold ops_lock for proper serialization of timerqueue
696  */
697 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
698 {
699 	timer->enabled = 1;
700 	timerqueue_add(&rtc->timerqueue, &timer->node);
701 	if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
702 		struct rtc_wkalrm alarm;
703 		int err;
704 		alarm.time = rtc_ktime_to_tm(timer->node.expires);
705 		alarm.enabled = 1;
706 		err = __rtc_set_alarm(rtc, &alarm);
707 		if (err == -ETIME)
708 			schedule_work(&rtc->irqwork);
709 		else if (err) {
710 			timerqueue_del(&rtc->timerqueue, &timer->node);
711 			timer->enabled = 0;
712 			return err;
713 		}
714 	}
715 	return 0;
716 }
717 
718 /**
719  * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
720  * @rtc rtc device
721  * @timer timer being removed.
722  *
723  * Removes a timer onto the rtc devices timerqueue and sets
724  * the next alarm event appropriately.
725  *
726  * Clears the enabled bit on the removed timer.
727  *
728  * Must hold ops_lock for proper serialization of timerqueue
729  */
730 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
731 {
732 	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
733 	timerqueue_del(&rtc->timerqueue, &timer->node);
734 	timer->enabled = 0;
735 	if (next == &timer->node) {
736 		struct rtc_wkalrm alarm;
737 		int err;
738 		next = timerqueue_getnext(&rtc->timerqueue);
739 		if (!next)
740 			return;
741 		alarm.time = rtc_ktime_to_tm(next->expires);
742 		alarm.enabled = 1;
743 		err = __rtc_set_alarm(rtc, &alarm);
744 		if (err == -ETIME)
745 			schedule_work(&rtc->irqwork);
746 	}
747 }
748 
749 /**
750  * rtc_timer_do_work - Expires rtc timers
751  * @rtc rtc device
752  * @timer timer being removed.
753  *
754  * Expires rtc timers. Reprograms next alarm event if needed.
755  * Called via worktask.
756  *
757  * Serializes access to timerqueue via ops_lock mutex
758  */
759 void rtc_timer_do_work(struct work_struct *work)
760 {
761 	struct rtc_timer *timer;
762 	struct timerqueue_node *next;
763 	ktime_t now;
764 	struct rtc_time tm;
765 
766 	struct rtc_device *rtc =
767 		container_of(work, struct rtc_device, irqwork);
768 
769 	mutex_lock(&rtc->ops_lock);
770 again:
771 	__rtc_read_time(rtc, &tm);
772 	now = rtc_tm_to_ktime(tm);
773 	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
774 		if (next->expires.tv64 > now.tv64)
775 			break;
776 
777 		/* expire timer */
778 		timer = container_of(next, struct rtc_timer, node);
779 		timerqueue_del(&rtc->timerqueue, &timer->node);
780 		timer->enabled = 0;
781 		if (timer->task.func)
782 			timer->task.func(timer->task.private_data);
783 
784 		/* Re-add/fwd periodic timers */
785 		if (ktime_to_ns(timer->period)) {
786 			timer->node.expires = ktime_add(timer->node.expires,
787 							timer->period);
788 			timer->enabled = 1;
789 			timerqueue_add(&rtc->timerqueue, &timer->node);
790 		}
791 	}
792 
793 	/* Set next alarm */
794 	if (next) {
795 		struct rtc_wkalrm alarm;
796 		int err;
797 		alarm.time = rtc_ktime_to_tm(next->expires);
798 		alarm.enabled = 1;
799 		err = __rtc_set_alarm(rtc, &alarm);
800 		if (err == -ETIME)
801 			goto again;
802 	}
803 
804 	mutex_unlock(&rtc->ops_lock);
805 }
806 
807 
808 /* rtc_timer_init - Initializes an rtc_timer
809  * @timer: timer to be intiialized
810  * @f: function pointer to be called when timer fires
811  * @data: private data passed to function pointer
812  *
813  * Kernel interface to initializing an rtc_timer.
814  */
815 void rtc_timer_init(struct rtc_timer *timer, void (*f)(void* p), void* data)
816 {
817 	timerqueue_init(&timer->node);
818 	timer->enabled = 0;
819 	timer->task.func = f;
820 	timer->task.private_data = data;
821 }
822 
823 /* rtc_timer_start - Sets an rtc_timer to fire in the future
824  * @ rtc: rtc device to be used
825  * @ timer: timer being set
826  * @ expires: time at which to expire the timer
827  * @ period: period that the timer will recur
828  *
829  * Kernel interface to set an rtc_timer
830  */
831 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer* timer,
832 			ktime_t expires, ktime_t period)
833 {
834 	int ret = 0;
835 	mutex_lock(&rtc->ops_lock);
836 	if (timer->enabled)
837 		rtc_timer_remove(rtc, timer);
838 
839 	timer->node.expires = expires;
840 	timer->period = period;
841 
842 	ret = rtc_timer_enqueue(rtc, timer);
843 
844 	mutex_unlock(&rtc->ops_lock);
845 	return ret;
846 }
847 
848 /* rtc_timer_cancel - Stops an rtc_timer
849  * @ rtc: rtc device to be used
850  * @ timer: timer being set
851  *
852  * Kernel interface to cancel an rtc_timer
853  */
854 int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer* timer)
855 {
856 	int ret = 0;
857 	mutex_lock(&rtc->ops_lock);
858 	if (timer->enabled)
859 		rtc_timer_remove(rtc, timer);
860 	mutex_unlock(&rtc->ops_lock);
861 	return ret;
862 }
863 
864 
865