1 /* 2 * RTC subsystem, interface functions 3 * 4 * Copyright (C) 2005 Tower Technologies 5 * Author: Alessandro Zummo <a.zummo@towertech.it> 6 * 7 * based on arch/arm/common/rtctime.c 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 14 #include <linux/rtc.h> 15 #include <linux/sched.h> 16 #include <linux/module.h> 17 #include <linux/log2.h> 18 #include <linux/workqueue.h> 19 20 #define CREATE_TRACE_POINTS 21 #include <trace/events/rtc.h> 22 23 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer); 24 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer); 25 26 static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm) 27 { 28 time64_t secs; 29 30 if (!rtc->offset_secs) 31 return; 32 33 secs = rtc_tm_to_time64(tm); 34 35 /* 36 * Since the reading time values from RTC device are always in the RTC 37 * original valid range, but we need to skip the overlapped region 38 * between expanded range and original range, which is no need to add 39 * the offset. 40 */ 41 if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) || 42 (rtc->start_secs < rtc->range_min && 43 secs <= (rtc->start_secs + rtc->range_max - rtc->range_min))) 44 return; 45 46 rtc_time64_to_tm(secs + rtc->offset_secs, tm); 47 } 48 49 static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm) 50 { 51 time64_t secs; 52 53 if (!rtc->offset_secs) 54 return; 55 56 secs = rtc_tm_to_time64(tm); 57 58 /* 59 * If the setting time values are in the valid range of RTC hardware 60 * device, then no need to subtract the offset when setting time to RTC 61 * device. Otherwise we need to subtract the offset to make the time 62 * values are valid for RTC hardware device. 63 */ 64 if (secs >= rtc->range_min && secs <= rtc->range_max) 65 return; 66 67 rtc_time64_to_tm(secs - rtc->offset_secs, tm); 68 } 69 70 static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm) 71 { 72 if (rtc->range_min != rtc->range_max) { 73 time64_t time = rtc_tm_to_time64(tm); 74 time64_t range_min = rtc->set_start_time ? rtc->start_secs : 75 rtc->range_min; 76 time64_t range_max = rtc->set_start_time ? 77 (rtc->start_secs + rtc->range_max - rtc->range_min) : 78 rtc->range_max; 79 80 if (time < range_min || time > range_max) 81 return -ERANGE; 82 } 83 84 return 0; 85 } 86 87 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm) 88 { 89 int err; 90 if (!rtc->ops) 91 err = -ENODEV; 92 else if (!rtc->ops->read_time) 93 err = -EINVAL; 94 else { 95 memset(tm, 0, sizeof(struct rtc_time)); 96 err = rtc->ops->read_time(rtc->dev.parent, tm); 97 if (err < 0) { 98 dev_dbg(&rtc->dev, "read_time: fail to read: %d\n", 99 err); 100 return err; 101 } 102 103 rtc_add_offset(rtc, tm); 104 105 err = rtc_valid_tm(tm); 106 if (err < 0) 107 dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n"); 108 } 109 return err; 110 } 111 112 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm) 113 { 114 int err; 115 116 err = mutex_lock_interruptible(&rtc->ops_lock); 117 if (err) 118 return err; 119 120 err = __rtc_read_time(rtc, tm); 121 mutex_unlock(&rtc->ops_lock); 122 123 trace_rtc_read_time(rtc_tm_to_time64(tm), err); 124 return err; 125 } 126 EXPORT_SYMBOL_GPL(rtc_read_time); 127 128 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm) 129 { 130 int err; 131 132 err = rtc_valid_tm(tm); 133 if (err != 0) 134 return err; 135 136 err = rtc_valid_range(rtc, tm); 137 if (err) 138 return err; 139 140 rtc_subtract_offset(rtc, tm); 141 142 err = mutex_lock_interruptible(&rtc->ops_lock); 143 if (err) 144 return err; 145 146 if (!rtc->ops) 147 err = -ENODEV; 148 else if (rtc->ops->set_time) 149 err = rtc->ops->set_time(rtc->dev.parent, tm); 150 else if (rtc->ops->set_mmss64) { 151 time64_t secs64 = rtc_tm_to_time64(tm); 152 153 err = rtc->ops->set_mmss64(rtc->dev.parent, secs64); 154 } else if (rtc->ops->set_mmss) { 155 time64_t secs64 = rtc_tm_to_time64(tm); 156 err = rtc->ops->set_mmss(rtc->dev.parent, secs64); 157 } else 158 err = -EINVAL; 159 160 pm_stay_awake(rtc->dev.parent); 161 mutex_unlock(&rtc->ops_lock); 162 /* A timer might have just expired */ 163 schedule_work(&rtc->irqwork); 164 165 trace_rtc_set_time(rtc_tm_to_time64(tm), err); 166 return err; 167 } 168 EXPORT_SYMBOL_GPL(rtc_set_time); 169 170 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 171 { 172 int err; 173 174 err = mutex_lock_interruptible(&rtc->ops_lock); 175 if (err) 176 return err; 177 178 if (rtc->ops == NULL) 179 err = -ENODEV; 180 else if (!rtc->ops->read_alarm) 181 err = -EINVAL; 182 else { 183 alarm->enabled = 0; 184 alarm->pending = 0; 185 alarm->time.tm_sec = -1; 186 alarm->time.tm_min = -1; 187 alarm->time.tm_hour = -1; 188 alarm->time.tm_mday = -1; 189 alarm->time.tm_mon = -1; 190 alarm->time.tm_year = -1; 191 alarm->time.tm_wday = -1; 192 alarm->time.tm_yday = -1; 193 alarm->time.tm_isdst = -1; 194 err = rtc->ops->read_alarm(rtc->dev.parent, alarm); 195 } 196 197 mutex_unlock(&rtc->ops_lock); 198 199 trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err); 200 return err; 201 } 202 203 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 204 { 205 int err; 206 struct rtc_time before, now; 207 int first_time = 1; 208 time64_t t_now, t_alm; 209 enum { none, day, month, year } missing = none; 210 unsigned days; 211 212 /* The lower level RTC driver may return -1 in some fields, 213 * creating invalid alarm->time values, for reasons like: 214 * 215 * - The hardware may not be capable of filling them in; 216 * many alarms match only on time-of-day fields, not 217 * day/month/year calendar data. 218 * 219 * - Some hardware uses illegal values as "wildcard" match 220 * values, which non-Linux firmware (like a BIOS) may try 221 * to set up as e.g. "alarm 15 minutes after each hour". 222 * Linux uses only oneshot alarms. 223 * 224 * When we see that here, we deal with it by using values from 225 * a current RTC timestamp for any missing (-1) values. The 226 * RTC driver prevents "periodic alarm" modes. 227 * 228 * But this can be racey, because some fields of the RTC timestamp 229 * may have wrapped in the interval since we read the RTC alarm, 230 * which would lead to us inserting inconsistent values in place 231 * of the -1 fields. 232 * 233 * Reading the alarm and timestamp in the reverse sequence 234 * would have the same race condition, and not solve the issue. 235 * 236 * So, we must first read the RTC timestamp, 237 * then read the RTC alarm value, 238 * and then read a second RTC timestamp. 239 * 240 * If any fields of the second timestamp have changed 241 * when compared with the first timestamp, then we know 242 * our timestamp may be inconsistent with that used by 243 * the low-level rtc_read_alarm_internal() function. 244 * 245 * So, when the two timestamps disagree, we just loop and do 246 * the process again to get a fully consistent set of values. 247 * 248 * This could all instead be done in the lower level driver, 249 * but since more than one lower level RTC implementation needs it, 250 * then it's probably best best to do it here instead of there.. 251 */ 252 253 /* Get the "before" timestamp */ 254 err = rtc_read_time(rtc, &before); 255 if (err < 0) 256 return err; 257 do { 258 if (!first_time) 259 memcpy(&before, &now, sizeof(struct rtc_time)); 260 first_time = 0; 261 262 /* get the RTC alarm values, which may be incomplete */ 263 err = rtc_read_alarm_internal(rtc, alarm); 264 if (err) 265 return err; 266 267 /* full-function RTCs won't have such missing fields */ 268 if (rtc_valid_tm(&alarm->time) == 0) 269 return 0; 270 271 /* get the "after" timestamp, to detect wrapped fields */ 272 err = rtc_read_time(rtc, &now); 273 if (err < 0) 274 return err; 275 276 /* note that tm_sec is a "don't care" value here: */ 277 } while ( before.tm_min != now.tm_min 278 || before.tm_hour != now.tm_hour 279 || before.tm_mon != now.tm_mon 280 || before.tm_year != now.tm_year); 281 282 /* Fill in the missing alarm fields using the timestamp; we 283 * know there's at least one since alarm->time is invalid. 284 */ 285 if (alarm->time.tm_sec == -1) 286 alarm->time.tm_sec = now.tm_sec; 287 if (alarm->time.tm_min == -1) 288 alarm->time.tm_min = now.tm_min; 289 if (alarm->time.tm_hour == -1) 290 alarm->time.tm_hour = now.tm_hour; 291 292 /* For simplicity, only support date rollover for now */ 293 if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) { 294 alarm->time.tm_mday = now.tm_mday; 295 missing = day; 296 } 297 if ((unsigned)alarm->time.tm_mon >= 12) { 298 alarm->time.tm_mon = now.tm_mon; 299 if (missing == none) 300 missing = month; 301 } 302 if (alarm->time.tm_year == -1) { 303 alarm->time.tm_year = now.tm_year; 304 if (missing == none) 305 missing = year; 306 } 307 308 /* Can't proceed if alarm is still invalid after replacing 309 * missing fields. 310 */ 311 err = rtc_valid_tm(&alarm->time); 312 if (err) 313 goto done; 314 315 /* with luck, no rollover is needed */ 316 t_now = rtc_tm_to_time64(&now); 317 t_alm = rtc_tm_to_time64(&alarm->time); 318 if (t_now < t_alm) 319 goto done; 320 321 switch (missing) { 322 323 /* 24 hour rollover ... if it's now 10am Monday, an alarm that 324 * that will trigger at 5am will do so at 5am Tuesday, which 325 * could also be in the next month or year. This is a common 326 * case, especially for PCs. 327 */ 328 case day: 329 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day"); 330 t_alm += 24 * 60 * 60; 331 rtc_time64_to_tm(t_alm, &alarm->time); 332 break; 333 334 /* Month rollover ... if it's the 31th, an alarm on the 3rd will 335 * be next month. An alarm matching on the 30th, 29th, or 28th 336 * may end up in the month after that! Many newer PCs support 337 * this type of alarm. 338 */ 339 case month: 340 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month"); 341 do { 342 if (alarm->time.tm_mon < 11) 343 alarm->time.tm_mon++; 344 else { 345 alarm->time.tm_mon = 0; 346 alarm->time.tm_year++; 347 } 348 days = rtc_month_days(alarm->time.tm_mon, 349 alarm->time.tm_year); 350 } while (days < alarm->time.tm_mday); 351 break; 352 353 /* Year rollover ... easy except for leap years! */ 354 case year: 355 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year"); 356 do { 357 alarm->time.tm_year++; 358 } while (!is_leap_year(alarm->time.tm_year + 1900) 359 && rtc_valid_tm(&alarm->time) != 0); 360 break; 361 362 default: 363 dev_warn(&rtc->dev, "alarm rollover not handled\n"); 364 } 365 366 err = rtc_valid_tm(&alarm->time); 367 368 done: 369 if (err) { 370 dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n", 371 alarm->time.tm_year + 1900, alarm->time.tm_mon + 1, 372 alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min, 373 alarm->time.tm_sec); 374 } 375 376 return err; 377 } 378 379 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 380 { 381 int err; 382 383 err = mutex_lock_interruptible(&rtc->ops_lock); 384 if (err) 385 return err; 386 if (rtc->ops == NULL) 387 err = -ENODEV; 388 else if (!rtc->ops->read_alarm) 389 err = -EINVAL; 390 else { 391 memset(alarm, 0, sizeof(struct rtc_wkalrm)); 392 alarm->enabled = rtc->aie_timer.enabled; 393 alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires); 394 } 395 mutex_unlock(&rtc->ops_lock); 396 397 trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err); 398 return err; 399 } 400 EXPORT_SYMBOL_GPL(rtc_read_alarm); 401 402 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 403 { 404 struct rtc_time tm; 405 time64_t now, scheduled; 406 int err; 407 408 err = rtc_valid_tm(&alarm->time); 409 if (err) 410 return err; 411 412 rtc_subtract_offset(rtc, &alarm->time); 413 scheduled = rtc_tm_to_time64(&alarm->time); 414 415 /* Make sure we're not setting alarms in the past */ 416 err = __rtc_read_time(rtc, &tm); 417 if (err) 418 return err; 419 now = rtc_tm_to_time64(&tm); 420 if (scheduled <= now) 421 return -ETIME; 422 /* 423 * XXX - We just checked to make sure the alarm time is not 424 * in the past, but there is still a race window where if 425 * the is alarm set for the next second and the second ticks 426 * over right here, before we set the alarm. 427 */ 428 429 if (!rtc->ops) 430 err = -ENODEV; 431 else if (!rtc->ops->set_alarm) 432 err = -EINVAL; 433 else 434 err = rtc->ops->set_alarm(rtc->dev.parent, alarm); 435 436 trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err); 437 return err; 438 } 439 440 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 441 { 442 int err; 443 444 err = rtc_valid_tm(&alarm->time); 445 if (err != 0) 446 return err; 447 448 err = rtc_valid_range(rtc, &alarm->time); 449 if (err) 450 return err; 451 452 err = mutex_lock_interruptible(&rtc->ops_lock); 453 if (err) 454 return err; 455 if (rtc->aie_timer.enabled) 456 rtc_timer_remove(rtc, &rtc->aie_timer); 457 458 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time); 459 rtc->aie_timer.period = 0; 460 if (alarm->enabled) 461 err = rtc_timer_enqueue(rtc, &rtc->aie_timer); 462 463 mutex_unlock(&rtc->ops_lock); 464 465 rtc_add_offset(rtc, &alarm->time); 466 return err; 467 } 468 EXPORT_SYMBOL_GPL(rtc_set_alarm); 469 470 /* Called once per device from rtc_device_register */ 471 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 472 { 473 int err; 474 struct rtc_time now; 475 476 err = rtc_valid_tm(&alarm->time); 477 if (err != 0) 478 return err; 479 480 err = rtc_read_time(rtc, &now); 481 if (err) 482 return err; 483 484 err = mutex_lock_interruptible(&rtc->ops_lock); 485 if (err) 486 return err; 487 488 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time); 489 rtc->aie_timer.period = 0; 490 491 /* Alarm has to be enabled & in the future for us to enqueue it */ 492 if (alarm->enabled && (rtc_tm_to_ktime(now) < 493 rtc->aie_timer.node.expires)) { 494 495 rtc->aie_timer.enabled = 1; 496 timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node); 497 trace_rtc_timer_enqueue(&rtc->aie_timer); 498 } 499 mutex_unlock(&rtc->ops_lock); 500 return err; 501 } 502 EXPORT_SYMBOL_GPL(rtc_initialize_alarm); 503 504 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled) 505 { 506 int err = mutex_lock_interruptible(&rtc->ops_lock); 507 if (err) 508 return err; 509 510 if (rtc->aie_timer.enabled != enabled) { 511 if (enabled) 512 err = rtc_timer_enqueue(rtc, &rtc->aie_timer); 513 else 514 rtc_timer_remove(rtc, &rtc->aie_timer); 515 } 516 517 if (err) 518 /* nothing */; 519 else if (!rtc->ops) 520 err = -ENODEV; 521 else if (!rtc->ops->alarm_irq_enable) 522 err = -EINVAL; 523 else 524 err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled); 525 526 mutex_unlock(&rtc->ops_lock); 527 528 trace_rtc_alarm_irq_enable(enabled, err); 529 return err; 530 } 531 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable); 532 533 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled) 534 { 535 int err = mutex_lock_interruptible(&rtc->ops_lock); 536 if (err) 537 return err; 538 539 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL 540 if (enabled == 0 && rtc->uie_irq_active) { 541 mutex_unlock(&rtc->ops_lock); 542 return rtc_dev_update_irq_enable_emul(rtc, 0); 543 } 544 #endif 545 /* make sure we're changing state */ 546 if (rtc->uie_rtctimer.enabled == enabled) 547 goto out; 548 549 if (rtc->uie_unsupported) { 550 err = -EINVAL; 551 goto out; 552 } 553 554 if (enabled) { 555 struct rtc_time tm; 556 ktime_t now, onesec; 557 558 __rtc_read_time(rtc, &tm); 559 onesec = ktime_set(1, 0); 560 now = rtc_tm_to_ktime(tm); 561 rtc->uie_rtctimer.node.expires = ktime_add(now, onesec); 562 rtc->uie_rtctimer.period = ktime_set(1, 0); 563 err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer); 564 } else 565 rtc_timer_remove(rtc, &rtc->uie_rtctimer); 566 567 out: 568 mutex_unlock(&rtc->ops_lock); 569 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL 570 /* 571 * Enable emulation if the driver did not provide 572 * the update_irq_enable function pointer or if returned 573 * -EINVAL to signal that it has been configured without 574 * interrupts or that are not available at the moment. 575 */ 576 if (err == -EINVAL) 577 err = rtc_dev_update_irq_enable_emul(rtc, enabled); 578 #endif 579 return err; 580 581 } 582 EXPORT_SYMBOL_GPL(rtc_update_irq_enable); 583 584 585 /** 586 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook 587 * @rtc: pointer to the rtc device 588 * 589 * This function is called when an AIE, UIE or PIE mode interrupt 590 * has occurred (or been emulated). 591 * 592 * Triggers the registered irq_task function callback. 593 */ 594 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode) 595 { 596 unsigned long flags; 597 598 /* mark one irq of the appropriate mode */ 599 spin_lock_irqsave(&rtc->irq_lock, flags); 600 rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode); 601 spin_unlock_irqrestore(&rtc->irq_lock, flags); 602 603 /* call the task func */ 604 spin_lock_irqsave(&rtc->irq_task_lock, flags); 605 if (rtc->irq_task) 606 rtc->irq_task->func(rtc->irq_task->private_data); 607 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 608 609 wake_up_interruptible(&rtc->irq_queue); 610 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN); 611 } 612 613 614 /** 615 * rtc_aie_update_irq - AIE mode rtctimer hook 616 * @private: pointer to the rtc_device 617 * 618 * This functions is called when the aie_timer expires. 619 */ 620 void rtc_aie_update_irq(void *private) 621 { 622 struct rtc_device *rtc = (struct rtc_device *)private; 623 rtc_handle_legacy_irq(rtc, 1, RTC_AF); 624 } 625 626 627 /** 628 * rtc_uie_update_irq - UIE mode rtctimer hook 629 * @private: pointer to the rtc_device 630 * 631 * This functions is called when the uie_timer expires. 632 */ 633 void rtc_uie_update_irq(void *private) 634 { 635 struct rtc_device *rtc = (struct rtc_device *)private; 636 rtc_handle_legacy_irq(rtc, 1, RTC_UF); 637 } 638 639 640 /** 641 * rtc_pie_update_irq - PIE mode hrtimer hook 642 * @timer: pointer to the pie mode hrtimer 643 * 644 * This function is used to emulate PIE mode interrupts 645 * using an hrtimer. This function is called when the periodic 646 * hrtimer expires. 647 */ 648 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer) 649 { 650 struct rtc_device *rtc; 651 ktime_t period; 652 int count; 653 rtc = container_of(timer, struct rtc_device, pie_timer); 654 655 period = NSEC_PER_SEC / rtc->irq_freq; 656 count = hrtimer_forward_now(timer, period); 657 658 rtc_handle_legacy_irq(rtc, count, RTC_PF); 659 660 return HRTIMER_RESTART; 661 } 662 663 /** 664 * rtc_update_irq - Triggered when a RTC interrupt occurs. 665 * @rtc: the rtc device 666 * @num: how many irqs are being reported (usually one) 667 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF 668 * Context: any 669 */ 670 void rtc_update_irq(struct rtc_device *rtc, 671 unsigned long num, unsigned long events) 672 { 673 if (IS_ERR_OR_NULL(rtc)) 674 return; 675 676 pm_stay_awake(rtc->dev.parent); 677 schedule_work(&rtc->irqwork); 678 } 679 EXPORT_SYMBOL_GPL(rtc_update_irq); 680 681 static int __rtc_match(struct device *dev, const void *data) 682 { 683 const char *name = data; 684 685 if (strcmp(dev_name(dev), name) == 0) 686 return 1; 687 return 0; 688 } 689 690 struct rtc_device *rtc_class_open(const char *name) 691 { 692 struct device *dev; 693 struct rtc_device *rtc = NULL; 694 695 dev = class_find_device(rtc_class, NULL, name, __rtc_match); 696 if (dev) 697 rtc = to_rtc_device(dev); 698 699 if (rtc) { 700 if (!try_module_get(rtc->owner)) { 701 put_device(dev); 702 rtc = NULL; 703 } 704 } 705 706 return rtc; 707 } 708 EXPORT_SYMBOL_GPL(rtc_class_open); 709 710 void rtc_class_close(struct rtc_device *rtc) 711 { 712 module_put(rtc->owner); 713 put_device(&rtc->dev); 714 } 715 EXPORT_SYMBOL_GPL(rtc_class_close); 716 717 int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task) 718 { 719 int retval = -EBUSY; 720 721 if (task == NULL || task->func == NULL) 722 return -EINVAL; 723 724 /* Cannot register while the char dev is in use */ 725 if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags)) 726 return -EBUSY; 727 728 spin_lock_irq(&rtc->irq_task_lock); 729 if (rtc->irq_task == NULL) { 730 rtc->irq_task = task; 731 retval = 0; 732 } 733 spin_unlock_irq(&rtc->irq_task_lock); 734 735 clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags); 736 737 return retval; 738 } 739 EXPORT_SYMBOL_GPL(rtc_irq_register); 740 741 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task) 742 { 743 spin_lock_irq(&rtc->irq_task_lock); 744 if (rtc->irq_task == task) 745 rtc->irq_task = NULL; 746 spin_unlock_irq(&rtc->irq_task_lock); 747 } 748 EXPORT_SYMBOL_GPL(rtc_irq_unregister); 749 750 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled) 751 { 752 /* 753 * We always cancel the timer here first, because otherwise 754 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK); 755 * when we manage to start the timer before the callback 756 * returns HRTIMER_RESTART. 757 * 758 * We cannot use hrtimer_cancel() here as a running callback 759 * could be blocked on rtc->irq_task_lock and hrtimer_cancel() 760 * would spin forever. 761 */ 762 if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0) 763 return -1; 764 765 if (enabled) { 766 ktime_t period = NSEC_PER_SEC / rtc->irq_freq; 767 768 hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL); 769 } 770 return 0; 771 } 772 773 /** 774 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs 775 * @rtc: the rtc device 776 * @task: currently registered with rtc_irq_register() 777 * @enabled: true to enable periodic IRQs 778 * Context: any 779 * 780 * Note that rtc_irq_set_freq() should previously have been used to 781 * specify the desired frequency of periodic IRQ task->func() callbacks. 782 */ 783 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled) 784 { 785 int err = 0; 786 unsigned long flags; 787 788 retry: 789 spin_lock_irqsave(&rtc->irq_task_lock, flags); 790 if (rtc->irq_task != NULL && task == NULL) 791 err = -EBUSY; 792 else if (rtc->irq_task != task) 793 err = -EACCES; 794 else { 795 if (rtc_update_hrtimer(rtc, enabled) < 0) { 796 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 797 cpu_relax(); 798 goto retry; 799 } 800 rtc->pie_enabled = enabled; 801 } 802 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 803 804 trace_rtc_irq_set_state(enabled, err); 805 return err; 806 } 807 EXPORT_SYMBOL_GPL(rtc_irq_set_state); 808 809 /** 810 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ 811 * @rtc: the rtc device 812 * @task: currently registered with rtc_irq_register() 813 * @freq: positive frequency with which task->func() will be called 814 * Context: any 815 * 816 * Note that rtc_irq_set_state() is used to enable or disable the 817 * periodic IRQs. 818 */ 819 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq) 820 { 821 int err = 0; 822 unsigned long flags; 823 824 if (freq <= 0 || freq > RTC_MAX_FREQ) 825 return -EINVAL; 826 retry: 827 spin_lock_irqsave(&rtc->irq_task_lock, flags); 828 if (rtc->irq_task != NULL && task == NULL) 829 err = -EBUSY; 830 else if (rtc->irq_task != task) 831 err = -EACCES; 832 else { 833 rtc->irq_freq = freq; 834 if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) { 835 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 836 cpu_relax(); 837 goto retry; 838 } 839 } 840 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 841 842 trace_rtc_irq_set_freq(freq, err); 843 return err; 844 } 845 EXPORT_SYMBOL_GPL(rtc_irq_set_freq); 846 847 /** 848 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue 849 * @rtc rtc device 850 * @timer timer being added. 851 * 852 * Enqueues a timer onto the rtc devices timerqueue and sets 853 * the next alarm event appropriately. 854 * 855 * Sets the enabled bit on the added timer. 856 * 857 * Must hold ops_lock for proper serialization of timerqueue 858 */ 859 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer) 860 { 861 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue); 862 struct rtc_time tm; 863 ktime_t now; 864 865 timer->enabled = 1; 866 __rtc_read_time(rtc, &tm); 867 now = rtc_tm_to_ktime(tm); 868 869 /* Skip over expired timers */ 870 while (next) { 871 if (next->expires >= now) 872 break; 873 next = timerqueue_iterate_next(next); 874 } 875 876 timerqueue_add(&rtc->timerqueue, &timer->node); 877 trace_rtc_timer_enqueue(timer); 878 if (!next || ktime_before(timer->node.expires, next->expires)) { 879 struct rtc_wkalrm alarm; 880 int err; 881 alarm.time = rtc_ktime_to_tm(timer->node.expires); 882 alarm.enabled = 1; 883 err = __rtc_set_alarm(rtc, &alarm); 884 if (err == -ETIME) { 885 pm_stay_awake(rtc->dev.parent); 886 schedule_work(&rtc->irqwork); 887 } else if (err) { 888 timerqueue_del(&rtc->timerqueue, &timer->node); 889 trace_rtc_timer_dequeue(timer); 890 timer->enabled = 0; 891 return err; 892 } 893 } 894 return 0; 895 } 896 897 static void rtc_alarm_disable(struct rtc_device *rtc) 898 { 899 if (!rtc->ops || !rtc->ops->alarm_irq_enable) 900 return; 901 902 rtc->ops->alarm_irq_enable(rtc->dev.parent, false); 903 trace_rtc_alarm_irq_enable(0, 0); 904 } 905 906 /** 907 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue 908 * @rtc rtc device 909 * @timer timer being removed. 910 * 911 * Removes a timer onto the rtc devices timerqueue and sets 912 * the next alarm event appropriately. 913 * 914 * Clears the enabled bit on the removed timer. 915 * 916 * Must hold ops_lock for proper serialization of timerqueue 917 */ 918 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer) 919 { 920 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue); 921 timerqueue_del(&rtc->timerqueue, &timer->node); 922 trace_rtc_timer_dequeue(timer); 923 timer->enabled = 0; 924 if (next == &timer->node) { 925 struct rtc_wkalrm alarm; 926 int err; 927 next = timerqueue_getnext(&rtc->timerqueue); 928 if (!next) { 929 rtc_alarm_disable(rtc); 930 return; 931 } 932 alarm.time = rtc_ktime_to_tm(next->expires); 933 alarm.enabled = 1; 934 err = __rtc_set_alarm(rtc, &alarm); 935 if (err == -ETIME) { 936 pm_stay_awake(rtc->dev.parent); 937 schedule_work(&rtc->irqwork); 938 } 939 } 940 } 941 942 /** 943 * rtc_timer_do_work - Expires rtc timers 944 * @rtc rtc device 945 * @timer timer being removed. 946 * 947 * Expires rtc timers. Reprograms next alarm event if needed. 948 * Called via worktask. 949 * 950 * Serializes access to timerqueue via ops_lock mutex 951 */ 952 void rtc_timer_do_work(struct work_struct *work) 953 { 954 struct rtc_timer *timer; 955 struct timerqueue_node *next; 956 ktime_t now; 957 struct rtc_time tm; 958 959 struct rtc_device *rtc = 960 container_of(work, struct rtc_device, irqwork); 961 962 mutex_lock(&rtc->ops_lock); 963 again: 964 __rtc_read_time(rtc, &tm); 965 now = rtc_tm_to_ktime(tm); 966 while ((next = timerqueue_getnext(&rtc->timerqueue))) { 967 if (next->expires > now) 968 break; 969 970 /* expire timer */ 971 timer = container_of(next, struct rtc_timer, node); 972 timerqueue_del(&rtc->timerqueue, &timer->node); 973 trace_rtc_timer_dequeue(timer); 974 timer->enabled = 0; 975 if (timer->task.func) 976 timer->task.func(timer->task.private_data); 977 978 trace_rtc_timer_fired(timer); 979 /* Re-add/fwd periodic timers */ 980 if (ktime_to_ns(timer->period)) { 981 timer->node.expires = ktime_add(timer->node.expires, 982 timer->period); 983 timer->enabled = 1; 984 timerqueue_add(&rtc->timerqueue, &timer->node); 985 trace_rtc_timer_enqueue(timer); 986 } 987 } 988 989 /* Set next alarm */ 990 if (next) { 991 struct rtc_wkalrm alarm; 992 int err; 993 int retry = 3; 994 995 alarm.time = rtc_ktime_to_tm(next->expires); 996 alarm.enabled = 1; 997 reprogram: 998 err = __rtc_set_alarm(rtc, &alarm); 999 if (err == -ETIME) 1000 goto again; 1001 else if (err) { 1002 if (retry-- > 0) 1003 goto reprogram; 1004 1005 timer = container_of(next, struct rtc_timer, node); 1006 timerqueue_del(&rtc->timerqueue, &timer->node); 1007 trace_rtc_timer_dequeue(timer); 1008 timer->enabled = 0; 1009 dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err); 1010 goto again; 1011 } 1012 } else 1013 rtc_alarm_disable(rtc); 1014 1015 pm_relax(rtc->dev.parent); 1016 mutex_unlock(&rtc->ops_lock); 1017 } 1018 1019 1020 /* rtc_timer_init - Initializes an rtc_timer 1021 * @timer: timer to be intiialized 1022 * @f: function pointer to be called when timer fires 1023 * @data: private data passed to function pointer 1024 * 1025 * Kernel interface to initializing an rtc_timer. 1026 */ 1027 void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data) 1028 { 1029 timerqueue_init(&timer->node); 1030 timer->enabled = 0; 1031 timer->task.func = f; 1032 timer->task.private_data = data; 1033 } 1034 1035 /* rtc_timer_start - Sets an rtc_timer to fire in the future 1036 * @ rtc: rtc device to be used 1037 * @ timer: timer being set 1038 * @ expires: time at which to expire the timer 1039 * @ period: period that the timer will recur 1040 * 1041 * Kernel interface to set an rtc_timer 1042 */ 1043 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer, 1044 ktime_t expires, ktime_t period) 1045 { 1046 int ret = 0; 1047 mutex_lock(&rtc->ops_lock); 1048 if (timer->enabled) 1049 rtc_timer_remove(rtc, timer); 1050 1051 timer->node.expires = expires; 1052 timer->period = period; 1053 1054 ret = rtc_timer_enqueue(rtc, timer); 1055 1056 mutex_unlock(&rtc->ops_lock); 1057 return ret; 1058 } 1059 1060 /* rtc_timer_cancel - Stops an rtc_timer 1061 * @ rtc: rtc device to be used 1062 * @ timer: timer being set 1063 * 1064 * Kernel interface to cancel an rtc_timer 1065 */ 1066 void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer) 1067 { 1068 mutex_lock(&rtc->ops_lock); 1069 if (timer->enabled) 1070 rtc_timer_remove(rtc, timer); 1071 mutex_unlock(&rtc->ops_lock); 1072 } 1073 1074 /** 1075 * rtc_read_offset - Read the amount of rtc offset in parts per billion 1076 * @ rtc: rtc device to be used 1077 * @ offset: the offset in parts per billion 1078 * 1079 * see below for details. 1080 * 1081 * Kernel interface to read rtc clock offset 1082 * Returns 0 on success, or a negative number on error. 1083 * If read_offset() is not implemented for the rtc, return -EINVAL 1084 */ 1085 int rtc_read_offset(struct rtc_device *rtc, long *offset) 1086 { 1087 int ret; 1088 1089 if (!rtc->ops) 1090 return -ENODEV; 1091 1092 if (!rtc->ops->read_offset) 1093 return -EINVAL; 1094 1095 mutex_lock(&rtc->ops_lock); 1096 ret = rtc->ops->read_offset(rtc->dev.parent, offset); 1097 mutex_unlock(&rtc->ops_lock); 1098 1099 trace_rtc_read_offset(*offset, ret); 1100 return ret; 1101 } 1102 1103 /** 1104 * rtc_set_offset - Adjusts the duration of the average second 1105 * @ rtc: rtc device to be used 1106 * @ offset: the offset in parts per billion 1107 * 1108 * Some rtc's allow an adjustment to the average duration of a second 1109 * to compensate for differences in the actual clock rate due to temperature, 1110 * the crystal, capacitor, etc. 1111 * 1112 * The adjustment applied is as follows: 1113 * t = t0 * (1 + offset * 1e-9) 1114 * where t0 is the measured length of 1 RTC second with offset = 0 1115 * 1116 * Kernel interface to adjust an rtc clock offset. 1117 * Return 0 on success, or a negative number on error. 1118 * If the rtc offset is not setable (or not implemented), return -EINVAL 1119 */ 1120 int rtc_set_offset(struct rtc_device *rtc, long offset) 1121 { 1122 int ret; 1123 1124 if (!rtc->ops) 1125 return -ENODEV; 1126 1127 if (!rtc->ops->set_offset) 1128 return -EINVAL; 1129 1130 mutex_lock(&rtc->ops_lock); 1131 ret = rtc->ops->set_offset(rtc->dev.parent, offset); 1132 mutex_unlock(&rtc->ops_lock); 1133 1134 trace_rtc_set_offset(offset, ret); 1135 return ret; 1136 } 1137