1 /* 2 * RTC subsystem, interface functions 3 * 4 * Copyright (C) 2005 Tower Technologies 5 * Author: Alessandro Zummo <a.zummo@towertech.it> 6 * 7 * based on arch/arm/common/rtctime.c 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 14 #include <linux/rtc.h> 15 #include <linux/sched.h> 16 #include <linux/module.h> 17 #include <linux/log2.h> 18 #include <linux/workqueue.h> 19 20 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer); 21 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer); 22 23 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm) 24 { 25 int err; 26 if (!rtc->ops) 27 err = -ENODEV; 28 else if (!rtc->ops->read_time) 29 err = -EINVAL; 30 else { 31 memset(tm, 0, sizeof(struct rtc_time)); 32 err = rtc->ops->read_time(rtc->dev.parent, tm); 33 if (err < 0) { 34 dev_dbg(&rtc->dev, "read_time: fail to read: %d\n", 35 err); 36 return err; 37 } 38 39 err = rtc_valid_tm(tm); 40 if (err < 0) 41 dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n"); 42 } 43 return err; 44 } 45 46 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm) 47 { 48 int err; 49 50 err = mutex_lock_interruptible(&rtc->ops_lock); 51 if (err) 52 return err; 53 54 err = __rtc_read_time(rtc, tm); 55 mutex_unlock(&rtc->ops_lock); 56 return err; 57 } 58 EXPORT_SYMBOL_GPL(rtc_read_time); 59 60 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm) 61 { 62 int err; 63 64 err = rtc_valid_tm(tm); 65 if (err != 0) 66 return err; 67 68 err = mutex_lock_interruptible(&rtc->ops_lock); 69 if (err) 70 return err; 71 72 if (!rtc->ops) 73 err = -ENODEV; 74 else if (rtc->ops->set_time) 75 err = rtc->ops->set_time(rtc->dev.parent, tm); 76 else if (rtc->ops->set_mmss64) { 77 time64_t secs64 = rtc_tm_to_time64(tm); 78 79 err = rtc->ops->set_mmss64(rtc->dev.parent, secs64); 80 } else if (rtc->ops->set_mmss) { 81 time64_t secs64 = rtc_tm_to_time64(tm); 82 err = rtc->ops->set_mmss(rtc->dev.parent, secs64); 83 } else 84 err = -EINVAL; 85 86 pm_stay_awake(rtc->dev.parent); 87 mutex_unlock(&rtc->ops_lock); 88 /* A timer might have just expired */ 89 schedule_work(&rtc->irqwork); 90 return err; 91 } 92 EXPORT_SYMBOL_GPL(rtc_set_time); 93 94 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 95 { 96 int err; 97 98 err = mutex_lock_interruptible(&rtc->ops_lock); 99 if (err) 100 return err; 101 102 if (rtc->ops == NULL) 103 err = -ENODEV; 104 else if (!rtc->ops->read_alarm) 105 err = -EINVAL; 106 else { 107 alarm->enabled = 0; 108 alarm->pending = 0; 109 alarm->time.tm_sec = -1; 110 alarm->time.tm_min = -1; 111 alarm->time.tm_hour = -1; 112 alarm->time.tm_mday = -1; 113 alarm->time.tm_mon = -1; 114 alarm->time.tm_year = -1; 115 alarm->time.tm_wday = -1; 116 alarm->time.tm_yday = -1; 117 alarm->time.tm_isdst = -1; 118 err = rtc->ops->read_alarm(rtc->dev.parent, alarm); 119 } 120 121 mutex_unlock(&rtc->ops_lock); 122 return err; 123 } 124 125 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 126 { 127 int err; 128 struct rtc_time before, now; 129 int first_time = 1; 130 time64_t t_now, t_alm; 131 enum { none, day, month, year } missing = none; 132 unsigned days; 133 134 /* The lower level RTC driver may return -1 in some fields, 135 * creating invalid alarm->time values, for reasons like: 136 * 137 * - The hardware may not be capable of filling them in; 138 * many alarms match only on time-of-day fields, not 139 * day/month/year calendar data. 140 * 141 * - Some hardware uses illegal values as "wildcard" match 142 * values, which non-Linux firmware (like a BIOS) may try 143 * to set up as e.g. "alarm 15 minutes after each hour". 144 * Linux uses only oneshot alarms. 145 * 146 * When we see that here, we deal with it by using values from 147 * a current RTC timestamp for any missing (-1) values. The 148 * RTC driver prevents "periodic alarm" modes. 149 * 150 * But this can be racey, because some fields of the RTC timestamp 151 * may have wrapped in the interval since we read the RTC alarm, 152 * which would lead to us inserting inconsistent values in place 153 * of the -1 fields. 154 * 155 * Reading the alarm and timestamp in the reverse sequence 156 * would have the same race condition, and not solve the issue. 157 * 158 * So, we must first read the RTC timestamp, 159 * then read the RTC alarm value, 160 * and then read a second RTC timestamp. 161 * 162 * If any fields of the second timestamp have changed 163 * when compared with the first timestamp, then we know 164 * our timestamp may be inconsistent with that used by 165 * the low-level rtc_read_alarm_internal() function. 166 * 167 * So, when the two timestamps disagree, we just loop and do 168 * the process again to get a fully consistent set of values. 169 * 170 * This could all instead be done in the lower level driver, 171 * but since more than one lower level RTC implementation needs it, 172 * then it's probably best best to do it here instead of there.. 173 */ 174 175 /* Get the "before" timestamp */ 176 err = rtc_read_time(rtc, &before); 177 if (err < 0) 178 return err; 179 do { 180 if (!first_time) 181 memcpy(&before, &now, sizeof(struct rtc_time)); 182 first_time = 0; 183 184 /* get the RTC alarm values, which may be incomplete */ 185 err = rtc_read_alarm_internal(rtc, alarm); 186 if (err) 187 return err; 188 189 /* full-function RTCs won't have such missing fields */ 190 if (rtc_valid_tm(&alarm->time) == 0) 191 return 0; 192 193 /* get the "after" timestamp, to detect wrapped fields */ 194 err = rtc_read_time(rtc, &now); 195 if (err < 0) 196 return err; 197 198 /* note that tm_sec is a "don't care" value here: */ 199 } while ( before.tm_min != now.tm_min 200 || before.tm_hour != now.tm_hour 201 || before.tm_mon != now.tm_mon 202 || before.tm_year != now.tm_year); 203 204 /* Fill in the missing alarm fields using the timestamp; we 205 * know there's at least one since alarm->time is invalid. 206 */ 207 if (alarm->time.tm_sec == -1) 208 alarm->time.tm_sec = now.tm_sec; 209 if (alarm->time.tm_min == -1) 210 alarm->time.tm_min = now.tm_min; 211 if (alarm->time.tm_hour == -1) 212 alarm->time.tm_hour = now.tm_hour; 213 214 /* For simplicity, only support date rollover for now */ 215 if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) { 216 alarm->time.tm_mday = now.tm_mday; 217 missing = day; 218 } 219 if ((unsigned)alarm->time.tm_mon >= 12) { 220 alarm->time.tm_mon = now.tm_mon; 221 if (missing == none) 222 missing = month; 223 } 224 if (alarm->time.tm_year == -1) { 225 alarm->time.tm_year = now.tm_year; 226 if (missing == none) 227 missing = year; 228 } 229 230 /* with luck, no rollover is needed */ 231 t_now = rtc_tm_to_time64(&now); 232 t_alm = rtc_tm_to_time64(&alarm->time); 233 if (t_now < t_alm) 234 goto done; 235 236 switch (missing) { 237 238 /* 24 hour rollover ... if it's now 10am Monday, an alarm that 239 * that will trigger at 5am will do so at 5am Tuesday, which 240 * could also be in the next month or year. This is a common 241 * case, especially for PCs. 242 */ 243 case day: 244 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day"); 245 t_alm += 24 * 60 * 60; 246 rtc_time64_to_tm(t_alm, &alarm->time); 247 break; 248 249 /* Month rollover ... if it's the 31th, an alarm on the 3rd will 250 * be next month. An alarm matching on the 30th, 29th, or 28th 251 * may end up in the month after that! Many newer PCs support 252 * this type of alarm. 253 */ 254 case month: 255 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month"); 256 do { 257 if (alarm->time.tm_mon < 11) 258 alarm->time.tm_mon++; 259 else { 260 alarm->time.tm_mon = 0; 261 alarm->time.tm_year++; 262 } 263 days = rtc_month_days(alarm->time.tm_mon, 264 alarm->time.tm_year); 265 } while (days < alarm->time.tm_mday); 266 break; 267 268 /* Year rollover ... easy except for leap years! */ 269 case year: 270 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year"); 271 do { 272 alarm->time.tm_year++; 273 } while (!is_leap_year(alarm->time.tm_year + 1900) 274 && rtc_valid_tm(&alarm->time) != 0); 275 break; 276 277 default: 278 dev_warn(&rtc->dev, "alarm rollover not handled\n"); 279 } 280 281 done: 282 err = rtc_valid_tm(&alarm->time); 283 284 if (err) { 285 dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n", 286 alarm->time.tm_year + 1900, alarm->time.tm_mon + 1, 287 alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min, 288 alarm->time.tm_sec); 289 } 290 291 return err; 292 } 293 294 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 295 { 296 int err; 297 298 err = mutex_lock_interruptible(&rtc->ops_lock); 299 if (err) 300 return err; 301 if (rtc->ops == NULL) 302 err = -ENODEV; 303 else if (!rtc->ops->read_alarm) 304 err = -EINVAL; 305 else { 306 memset(alarm, 0, sizeof(struct rtc_wkalrm)); 307 alarm->enabled = rtc->aie_timer.enabled; 308 alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires); 309 } 310 mutex_unlock(&rtc->ops_lock); 311 312 return err; 313 } 314 EXPORT_SYMBOL_GPL(rtc_read_alarm); 315 316 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 317 { 318 struct rtc_time tm; 319 time64_t now, scheduled; 320 int err; 321 322 err = rtc_valid_tm(&alarm->time); 323 if (err) 324 return err; 325 scheduled = rtc_tm_to_time64(&alarm->time); 326 327 /* Make sure we're not setting alarms in the past */ 328 err = __rtc_read_time(rtc, &tm); 329 if (err) 330 return err; 331 now = rtc_tm_to_time64(&tm); 332 if (scheduled <= now) 333 return -ETIME; 334 /* 335 * XXX - We just checked to make sure the alarm time is not 336 * in the past, but there is still a race window where if 337 * the is alarm set for the next second and the second ticks 338 * over right here, before we set the alarm. 339 */ 340 341 if (!rtc->ops) 342 err = -ENODEV; 343 else if (!rtc->ops->set_alarm) 344 err = -EINVAL; 345 else 346 err = rtc->ops->set_alarm(rtc->dev.parent, alarm); 347 348 return err; 349 } 350 351 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 352 { 353 int err; 354 355 err = rtc_valid_tm(&alarm->time); 356 if (err != 0) 357 return err; 358 359 err = mutex_lock_interruptible(&rtc->ops_lock); 360 if (err) 361 return err; 362 if (rtc->aie_timer.enabled) 363 rtc_timer_remove(rtc, &rtc->aie_timer); 364 365 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time); 366 rtc->aie_timer.period = 0; 367 if (alarm->enabled) 368 err = rtc_timer_enqueue(rtc, &rtc->aie_timer); 369 370 mutex_unlock(&rtc->ops_lock); 371 return err; 372 } 373 EXPORT_SYMBOL_GPL(rtc_set_alarm); 374 375 /* Called once per device from rtc_device_register */ 376 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 377 { 378 int err; 379 struct rtc_time now; 380 381 err = rtc_valid_tm(&alarm->time); 382 if (err != 0) 383 return err; 384 385 err = rtc_read_time(rtc, &now); 386 if (err) 387 return err; 388 389 err = mutex_lock_interruptible(&rtc->ops_lock); 390 if (err) 391 return err; 392 393 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time); 394 rtc->aie_timer.period = 0; 395 396 /* Alarm has to be enabled & in the future for us to enqueue it */ 397 if (alarm->enabled && (rtc_tm_to_ktime(now) < 398 rtc->aie_timer.node.expires)) { 399 400 rtc->aie_timer.enabled = 1; 401 timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node); 402 } 403 mutex_unlock(&rtc->ops_lock); 404 return err; 405 } 406 EXPORT_SYMBOL_GPL(rtc_initialize_alarm); 407 408 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled) 409 { 410 int err = mutex_lock_interruptible(&rtc->ops_lock); 411 if (err) 412 return err; 413 414 if (rtc->aie_timer.enabled != enabled) { 415 if (enabled) 416 err = rtc_timer_enqueue(rtc, &rtc->aie_timer); 417 else 418 rtc_timer_remove(rtc, &rtc->aie_timer); 419 } 420 421 if (err) 422 /* nothing */; 423 else if (!rtc->ops) 424 err = -ENODEV; 425 else if (!rtc->ops->alarm_irq_enable) 426 err = -EINVAL; 427 else 428 err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled); 429 430 mutex_unlock(&rtc->ops_lock); 431 return err; 432 } 433 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable); 434 435 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled) 436 { 437 int err = mutex_lock_interruptible(&rtc->ops_lock); 438 if (err) 439 return err; 440 441 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL 442 if (enabled == 0 && rtc->uie_irq_active) { 443 mutex_unlock(&rtc->ops_lock); 444 return rtc_dev_update_irq_enable_emul(rtc, 0); 445 } 446 #endif 447 /* make sure we're changing state */ 448 if (rtc->uie_rtctimer.enabled == enabled) 449 goto out; 450 451 if (rtc->uie_unsupported) { 452 err = -EINVAL; 453 goto out; 454 } 455 456 if (enabled) { 457 struct rtc_time tm; 458 ktime_t now, onesec; 459 460 __rtc_read_time(rtc, &tm); 461 onesec = ktime_set(1, 0); 462 now = rtc_tm_to_ktime(tm); 463 rtc->uie_rtctimer.node.expires = ktime_add(now, onesec); 464 rtc->uie_rtctimer.period = ktime_set(1, 0); 465 err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer); 466 } else 467 rtc_timer_remove(rtc, &rtc->uie_rtctimer); 468 469 out: 470 mutex_unlock(&rtc->ops_lock); 471 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL 472 /* 473 * Enable emulation if the driver did not provide 474 * the update_irq_enable function pointer or if returned 475 * -EINVAL to signal that it has been configured without 476 * interrupts or that are not available at the moment. 477 */ 478 if (err == -EINVAL) 479 err = rtc_dev_update_irq_enable_emul(rtc, enabled); 480 #endif 481 return err; 482 483 } 484 EXPORT_SYMBOL_GPL(rtc_update_irq_enable); 485 486 487 /** 488 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook 489 * @rtc: pointer to the rtc device 490 * 491 * This function is called when an AIE, UIE or PIE mode interrupt 492 * has occurred (or been emulated). 493 * 494 * Triggers the registered irq_task function callback. 495 */ 496 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode) 497 { 498 unsigned long flags; 499 500 /* mark one irq of the appropriate mode */ 501 spin_lock_irqsave(&rtc->irq_lock, flags); 502 rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode); 503 spin_unlock_irqrestore(&rtc->irq_lock, flags); 504 505 /* call the task func */ 506 spin_lock_irqsave(&rtc->irq_task_lock, flags); 507 if (rtc->irq_task) 508 rtc->irq_task->func(rtc->irq_task->private_data); 509 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 510 511 wake_up_interruptible(&rtc->irq_queue); 512 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN); 513 } 514 515 516 /** 517 * rtc_aie_update_irq - AIE mode rtctimer hook 518 * @private: pointer to the rtc_device 519 * 520 * This functions is called when the aie_timer expires. 521 */ 522 void rtc_aie_update_irq(void *private) 523 { 524 struct rtc_device *rtc = (struct rtc_device *)private; 525 rtc_handle_legacy_irq(rtc, 1, RTC_AF); 526 } 527 528 529 /** 530 * rtc_uie_update_irq - UIE mode rtctimer hook 531 * @private: pointer to the rtc_device 532 * 533 * This functions is called when the uie_timer expires. 534 */ 535 void rtc_uie_update_irq(void *private) 536 { 537 struct rtc_device *rtc = (struct rtc_device *)private; 538 rtc_handle_legacy_irq(rtc, 1, RTC_UF); 539 } 540 541 542 /** 543 * rtc_pie_update_irq - PIE mode hrtimer hook 544 * @timer: pointer to the pie mode hrtimer 545 * 546 * This function is used to emulate PIE mode interrupts 547 * using an hrtimer. This function is called when the periodic 548 * hrtimer expires. 549 */ 550 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer) 551 { 552 struct rtc_device *rtc; 553 ktime_t period; 554 int count; 555 rtc = container_of(timer, struct rtc_device, pie_timer); 556 557 period = NSEC_PER_SEC / rtc->irq_freq; 558 count = hrtimer_forward_now(timer, period); 559 560 rtc_handle_legacy_irq(rtc, count, RTC_PF); 561 562 return HRTIMER_RESTART; 563 } 564 565 /** 566 * rtc_update_irq - Triggered when a RTC interrupt occurs. 567 * @rtc: the rtc device 568 * @num: how many irqs are being reported (usually one) 569 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF 570 * Context: any 571 */ 572 void rtc_update_irq(struct rtc_device *rtc, 573 unsigned long num, unsigned long events) 574 { 575 if (IS_ERR_OR_NULL(rtc)) 576 return; 577 578 pm_stay_awake(rtc->dev.parent); 579 schedule_work(&rtc->irqwork); 580 } 581 EXPORT_SYMBOL_GPL(rtc_update_irq); 582 583 static int __rtc_match(struct device *dev, const void *data) 584 { 585 const char *name = data; 586 587 if (strcmp(dev_name(dev), name) == 0) 588 return 1; 589 return 0; 590 } 591 592 struct rtc_device *rtc_class_open(const char *name) 593 { 594 struct device *dev; 595 struct rtc_device *rtc = NULL; 596 597 dev = class_find_device(rtc_class, NULL, name, __rtc_match); 598 if (dev) 599 rtc = to_rtc_device(dev); 600 601 if (rtc) { 602 if (!try_module_get(rtc->owner)) { 603 put_device(dev); 604 rtc = NULL; 605 } 606 } 607 608 return rtc; 609 } 610 EXPORT_SYMBOL_GPL(rtc_class_open); 611 612 void rtc_class_close(struct rtc_device *rtc) 613 { 614 module_put(rtc->owner); 615 put_device(&rtc->dev); 616 } 617 EXPORT_SYMBOL_GPL(rtc_class_close); 618 619 int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task) 620 { 621 int retval = -EBUSY; 622 623 if (task == NULL || task->func == NULL) 624 return -EINVAL; 625 626 /* Cannot register while the char dev is in use */ 627 if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags)) 628 return -EBUSY; 629 630 spin_lock_irq(&rtc->irq_task_lock); 631 if (rtc->irq_task == NULL) { 632 rtc->irq_task = task; 633 retval = 0; 634 } 635 spin_unlock_irq(&rtc->irq_task_lock); 636 637 clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags); 638 639 return retval; 640 } 641 EXPORT_SYMBOL_GPL(rtc_irq_register); 642 643 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task) 644 { 645 spin_lock_irq(&rtc->irq_task_lock); 646 if (rtc->irq_task == task) 647 rtc->irq_task = NULL; 648 spin_unlock_irq(&rtc->irq_task_lock); 649 } 650 EXPORT_SYMBOL_GPL(rtc_irq_unregister); 651 652 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled) 653 { 654 /* 655 * We always cancel the timer here first, because otherwise 656 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK); 657 * when we manage to start the timer before the callback 658 * returns HRTIMER_RESTART. 659 * 660 * We cannot use hrtimer_cancel() here as a running callback 661 * could be blocked on rtc->irq_task_lock and hrtimer_cancel() 662 * would spin forever. 663 */ 664 if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0) 665 return -1; 666 667 if (enabled) { 668 ktime_t period = NSEC_PER_SEC / rtc->irq_freq; 669 670 hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL); 671 } 672 return 0; 673 } 674 675 /** 676 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs 677 * @rtc: the rtc device 678 * @task: currently registered with rtc_irq_register() 679 * @enabled: true to enable periodic IRQs 680 * Context: any 681 * 682 * Note that rtc_irq_set_freq() should previously have been used to 683 * specify the desired frequency of periodic IRQ task->func() callbacks. 684 */ 685 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled) 686 { 687 int err = 0; 688 unsigned long flags; 689 690 retry: 691 spin_lock_irqsave(&rtc->irq_task_lock, flags); 692 if (rtc->irq_task != NULL && task == NULL) 693 err = -EBUSY; 694 else if (rtc->irq_task != task) 695 err = -EACCES; 696 else { 697 if (rtc_update_hrtimer(rtc, enabled) < 0) { 698 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 699 cpu_relax(); 700 goto retry; 701 } 702 rtc->pie_enabled = enabled; 703 } 704 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 705 return err; 706 } 707 EXPORT_SYMBOL_GPL(rtc_irq_set_state); 708 709 /** 710 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ 711 * @rtc: the rtc device 712 * @task: currently registered with rtc_irq_register() 713 * @freq: positive frequency with which task->func() will be called 714 * Context: any 715 * 716 * Note that rtc_irq_set_state() is used to enable or disable the 717 * periodic IRQs. 718 */ 719 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq) 720 { 721 int err = 0; 722 unsigned long flags; 723 724 if (freq <= 0 || freq > RTC_MAX_FREQ) 725 return -EINVAL; 726 retry: 727 spin_lock_irqsave(&rtc->irq_task_lock, flags); 728 if (rtc->irq_task != NULL && task == NULL) 729 err = -EBUSY; 730 else if (rtc->irq_task != task) 731 err = -EACCES; 732 else { 733 rtc->irq_freq = freq; 734 if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) { 735 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 736 cpu_relax(); 737 goto retry; 738 } 739 } 740 spin_unlock_irqrestore(&rtc->irq_task_lock, flags); 741 return err; 742 } 743 EXPORT_SYMBOL_GPL(rtc_irq_set_freq); 744 745 /** 746 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue 747 * @rtc rtc device 748 * @timer timer being added. 749 * 750 * Enqueues a timer onto the rtc devices timerqueue and sets 751 * the next alarm event appropriately. 752 * 753 * Sets the enabled bit on the added timer. 754 * 755 * Must hold ops_lock for proper serialization of timerqueue 756 */ 757 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer) 758 { 759 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue); 760 struct rtc_time tm; 761 ktime_t now; 762 763 timer->enabled = 1; 764 __rtc_read_time(rtc, &tm); 765 now = rtc_tm_to_ktime(tm); 766 767 /* Skip over expired timers */ 768 while (next) { 769 if (next->expires >= now) 770 break; 771 next = timerqueue_iterate_next(next); 772 } 773 774 timerqueue_add(&rtc->timerqueue, &timer->node); 775 if (!next) { 776 struct rtc_wkalrm alarm; 777 int err; 778 alarm.time = rtc_ktime_to_tm(timer->node.expires); 779 alarm.enabled = 1; 780 err = __rtc_set_alarm(rtc, &alarm); 781 if (err == -ETIME) { 782 pm_stay_awake(rtc->dev.parent); 783 schedule_work(&rtc->irqwork); 784 } else if (err) { 785 timerqueue_del(&rtc->timerqueue, &timer->node); 786 timer->enabled = 0; 787 return err; 788 } 789 } 790 return 0; 791 } 792 793 static void rtc_alarm_disable(struct rtc_device *rtc) 794 { 795 if (!rtc->ops || !rtc->ops->alarm_irq_enable) 796 return; 797 798 rtc->ops->alarm_irq_enable(rtc->dev.parent, false); 799 } 800 801 /** 802 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue 803 * @rtc rtc device 804 * @timer timer being removed. 805 * 806 * Removes a timer onto the rtc devices timerqueue and sets 807 * the next alarm event appropriately. 808 * 809 * Clears the enabled bit on the removed timer. 810 * 811 * Must hold ops_lock for proper serialization of timerqueue 812 */ 813 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer) 814 { 815 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue); 816 timerqueue_del(&rtc->timerqueue, &timer->node); 817 timer->enabled = 0; 818 if (next == &timer->node) { 819 struct rtc_wkalrm alarm; 820 int err; 821 next = timerqueue_getnext(&rtc->timerqueue); 822 if (!next) { 823 rtc_alarm_disable(rtc); 824 return; 825 } 826 alarm.time = rtc_ktime_to_tm(next->expires); 827 alarm.enabled = 1; 828 err = __rtc_set_alarm(rtc, &alarm); 829 if (err == -ETIME) { 830 pm_stay_awake(rtc->dev.parent); 831 schedule_work(&rtc->irqwork); 832 } 833 } 834 } 835 836 /** 837 * rtc_timer_do_work - Expires rtc timers 838 * @rtc rtc device 839 * @timer timer being removed. 840 * 841 * Expires rtc timers. Reprograms next alarm event if needed. 842 * Called via worktask. 843 * 844 * Serializes access to timerqueue via ops_lock mutex 845 */ 846 void rtc_timer_do_work(struct work_struct *work) 847 { 848 struct rtc_timer *timer; 849 struct timerqueue_node *next; 850 ktime_t now; 851 struct rtc_time tm; 852 853 struct rtc_device *rtc = 854 container_of(work, struct rtc_device, irqwork); 855 856 mutex_lock(&rtc->ops_lock); 857 again: 858 __rtc_read_time(rtc, &tm); 859 now = rtc_tm_to_ktime(tm); 860 while ((next = timerqueue_getnext(&rtc->timerqueue))) { 861 if (next->expires > now) 862 break; 863 864 /* expire timer */ 865 timer = container_of(next, struct rtc_timer, node); 866 timerqueue_del(&rtc->timerqueue, &timer->node); 867 timer->enabled = 0; 868 if (timer->task.func) 869 timer->task.func(timer->task.private_data); 870 871 /* Re-add/fwd periodic timers */ 872 if (ktime_to_ns(timer->period)) { 873 timer->node.expires = ktime_add(timer->node.expires, 874 timer->period); 875 timer->enabled = 1; 876 timerqueue_add(&rtc->timerqueue, &timer->node); 877 } 878 } 879 880 /* Set next alarm */ 881 if (next) { 882 struct rtc_wkalrm alarm; 883 int err; 884 int retry = 3; 885 886 alarm.time = rtc_ktime_to_tm(next->expires); 887 alarm.enabled = 1; 888 reprogram: 889 err = __rtc_set_alarm(rtc, &alarm); 890 if (err == -ETIME) 891 goto again; 892 else if (err) { 893 if (retry-- > 0) 894 goto reprogram; 895 896 timer = container_of(next, struct rtc_timer, node); 897 timerqueue_del(&rtc->timerqueue, &timer->node); 898 timer->enabled = 0; 899 dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err); 900 goto again; 901 } 902 } else 903 rtc_alarm_disable(rtc); 904 905 pm_relax(rtc->dev.parent); 906 mutex_unlock(&rtc->ops_lock); 907 } 908 909 910 /* rtc_timer_init - Initializes an rtc_timer 911 * @timer: timer to be intiialized 912 * @f: function pointer to be called when timer fires 913 * @data: private data passed to function pointer 914 * 915 * Kernel interface to initializing an rtc_timer. 916 */ 917 void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data) 918 { 919 timerqueue_init(&timer->node); 920 timer->enabled = 0; 921 timer->task.func = f; 922 timer->task.private_data = data; 923 } 924 925 /* rtc_timer_start - Sets an rtc_timer to fire in the future 926 * @ rtc: rtc device to be used 927 * @ timer: timer being set 928 * @ expires: time at which to expire the timer 929 * @ period: period that the timer will recur 930 * 931 * Kernel interface to set an rtc_timer 932 */ 933 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer, 934 ktime_t expires, ktime_t period) 935 { 936 int ret = 0; 937 mutex_lock(&rtc->ops_lock); 938 if (timer->enabled) 939 rtc_timer_remove(rtc, timer); 940 941 timer->node.expires = expires; 942 timer->period = period; 943 944 ret = rtc_timer_enqueue(rtc, timer); 945 946 mutex_unlock(&rtc->ops_lock); 947 return ret; 948 } 949 950 /* rtc_timer_cancel - Stops an rtc_timer 951 * @ rtc: rtc device to be used 952 * @ timer: timer being set 953 * 954 * Kernel interface to cancel an rtc_timer 955 */ 956 void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer) 957 { 958 mutex_lock(&rtc->ops_lock); 959 if (timer->enabled) 960 rtc_timer_remove(rtc, timer); 961 mutex_unlock(&rtc->ops_lock); 962 } 963 964 /** 965 * rtc_read_offset - Read the amount of rtc offset in parts per billion 966 * @ rtc: rtc device to be used 967 * @ offset: the offset in parts per billion 968 * 969 * see below for details. 970 * 971 * Kernel interface to read rtc clock offset 972 * Returns 0 on success, or a negative number on error. 973 * If read_offset() is not implemented for the rtc, return -EINVAL 974 */ 975 int rtc_read_offset(struct rtc_device *rtc, long *offset) 976 { 977 int ret; 978 979 if (!rtc->ops) 980 return -ENODEV; 981 982 if (!rtc->ops->read_offset) 983 return -EINVAL; 984 985 mutex_lock(&rtc->ops_lock); 986 ret = rtc->ops->read_offset(rtc->dev.parent, offset); 987 mutex_unlock(&rtc->ops_lock); 988 return ret; 989 } 990 991 /** 992 * rtc_set_offset - Adjusts the duration of the average second 993 * @ rtc: rtc device to be used 994 * @ offset: the offset in parts per billion 995 * 996 * Some rtc's allow an adjustment to the average duration of a second 997 * to compensate for differences in the actual clock rate due to temperature, 998 * the crystal, capacitor, etc. 999 * 1000 * Kernel interface to adjust an rtc clock offset. 1001 * Return 0 on success, or a negative number on error. 1002 * If the rtc offset is not setable (or not implemented), return -EINVAL 1003 */ 1004 int rtc_set_offset(struct rtc_device *rtc, long offset) 1005 { 1006 int ret; 1007 1008 if (!rtc->ops) 1009 return -ENODEV; 1010 1011 if (!rtc->ops->set_offset) 1012 return -EINVAL; 1013 1014 mutex_lock(&rtc->ops_lock); 1015 ret = rtc->ops->set_offset(rtc->dev.parent, offset); 1016 mutex_unlock(&rtc->ops_lock); 1017 return ret; 1018 } 1019