xref: /openbmc/linux/drivers/rtc/interface.c (revision 0da85d1e)
1 /*
2  * RTC subsystem, interface functions
3  *
4  * Copyright (C) 2005 Tower Technologies
5  * Author: Alessandro Zummo <a.zummo@towertech.it>
6  *
7  * based on arch/arm/common/rtctime.c
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12 */
13 
14 #include <linux/rtc.h>
15 #include <linux/sched.h>
16 #include <linux/module.h>
17 #include <linux/log2.h>
18 #include <linux/workqueue.h>
19 
20 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
21 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
22 
23 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
24 {
25 	int err;
26 	if (!rtc->ops)
27 		err = -ENODEV;
28 	else if (!rtc->ops->read_time)
29 		err = -EINVAL;
30 	else {
31 		memset(tm, 0, sizeof(struct rtc_time));
32 		err = rtc->ops->read_time(rtc->dev.parent, tm);
33 		if (err < 0) {
34 			dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
35 				err);
36 			return err;
37 		}
38 
39 		err = rtc_valid_tm(tm);
40 		if (err < 0)
41 			dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
42 	}
43 	return err;
44 }
45 
46 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
47 {
48 	int err;
49 
50 	err = mutex_lock_interruptible(&rtc->ops_lock);
51 	if (err)
52 		return err;
53 
54 	err = __rtc_read_time(rtc, tm);
55 	mutex_unlock(&rtc->ops_lock);
56 	return err;
57 }
58 EXPORT_SYMBOL_GPL(rtc_read_time);
59 
60 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
61 {
62 	int err;
63 
64 	err = rtc_valid_tm(tm);
65 	if (err != 0)
66 		return err;
67 
68 	err = mutex_lock_interruptible(&rtc->ops_lock);
69 	if (err)
70 		return err;
71 
72 	if (!rtc->ops)
73 		err = -ENODEV;
74 	else if (rtc->ops->set_time)
75 		err = rtc->ops->set_time(rtc->dev.parent, tm);
76 	else if (rtc->ops->set_mmss64) {
77 		time64_t secs64 = rtc_tm_to_time64(tm);
78 
79 		err = rtc->ops->set_mmss64(rtc->dev.parent, secs64);
80 	} else if (rtc->ops->set_mmss) {
81 		time64_t secs64 = rtc_tm_to_time64(tm);
82 		err = rtc->ops->set_mmss(rtc->dev.parent, secs64);
83 	} else
84 		err = -EINVAL;
85 
86 	pm_stay_awake(rtc->dev.parent);
87 	mutex_unlock(&rtc->ops_lock);
88 	/* A timer might have just expired */
89 	schedule_work(&rtc->irqwork);
90 	return err;
91 }
92 EXPORT_SYMBOL_GPL(rtc_set_time);
93 
94 int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
95 {
96 	int err;
97 
98 	err = mutex_lock_interruptible(&rtc->ops_lock);
99 	if (err)
100 		return err;
101 
102 	if (!rtc->ops)
103 		err = -ENODEV;
104 	else if (rtc->ops->set_mmss64)
105 		err = rtc->ops->set_mmss64(rtc->dev.parent, secs);
106 	else if (rtc->ops->set_mmss)
107 		err = rtc->ops->set_mmss(rtc->dev.parent, secs);
108 	else if (rtc->ops->read_time && rtc->ops->set_time) {
109 		struct rtc_time new, old;
110 
111 		err = rtc->ops->read_time(rtc->dev.parent, &old);
112 		if (err == 0) {
113 			rtc_time64_to_tm(secs, &new);
114 
115 			/*
116 			 * avoid writing when we're going to change the day of
117 			 * the month. We will retry in the next minute. This
118 			 * basically means that if the RTC must not drift
119 			 * by more than 1 minute in 11 minutes.
120 			 */
121 			if (!((old.tm_hour == 23 && old.tm_min == 59) ||
122 				(new.tm_hour == 23 && new.tm_min == 59)))
123 				err = rtc->ops->set_time(rtc->dev.parent,
124 						&new);
125 		}
126 	} else {
127 		err = -EINVAL;
128 	}
129 
130 	pm_stay_awake(rtc->dev.parent);
131 	mutex_unlock(&rtc->ops_lock);
132 	/* A timer might have just expired */
133 	schedule_work(&rtc->irqwork);
134 
135 	return err;
136 }
137 EXPORT_SYMBOL_GPL(rtc_set_mmss);
138 
139 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
140 {
141 	int err;
142 
143 	err = mutex_lock_interruptible(&rtc->ops_lock);
144 	if (err)
145 		return err;
146 
147 	if (rtc->ops == NULL)
148 		err = -ENODEV;
149 	else if (!rtc->ops->read_alarm)
150 		err = -EINVAL;
151 	else {
152 		memset(alarm, 0, sizeof(struct rtc_wkalrm));
153 		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
154 	}
155 
156 	mutex_unlock(&rtc->ops_lock);
157 	return err;
158 }
159 
160 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
161 {
162 	int err;
163 	struct rtc_time before, now;
164 	int first_time = 1;
165 	time64_t t_now, t_alm;
166 	enum { none, day, month, year } missing = none;
167 	unsigned days;
168 
169 	/* The lower level RTC driver may return -1 in some fields,
170 	 * creating invalid alarm->time values, for reasons like:
171 	 *
172 	 *   - The hardware may not be capable of filling them in;
173 	 *     many alarms match only on time-of-day fields, not
174 	 *     day/month/year calendar data.
175 	 *
176 	 *   - Some hardware uses illegal values as "wildcard" match
177 	 *     values, which non-Linux firmware (like a BIOS) may try
178 	 *     to set up as e.g. "alarm 15 minutes after each hour".
179 	 *     Linux uses only oneshot alarms.
180 	 *
181 	 * When we see that here, we deal with it by using values from
182 	 * a current RTC timestamp for any missing (-1) values.  The
183 	 * RTC driver prevents "periodic alarm" modes.
184 	 *
185 	 * But this can be racey, because some fields of the RTC timestamp
186 	 * may have wrapped in the interval since we read the RTC alarm,
187 	 * which would lead to us inserting inconsistent values in place
188 	 * of the -1 fields.
189 	 *
190 	 * Reading the alarm and timestamp in the reverse sequence
191 	 * would have the same race condition, and not solve the issue.
192 	 *
193 	 * So, we must first read the RTC timestamp,
194 	 * then read the RTC alarm value,
195 	 * and then read a second RTC timestamp.
196 	 *
197 	 * If any fields of the second timestamp have changed
198 	 * when compared with the first timestamp, then we know
199 	 * our timestamp may be inconsistent with that used by
200 	 * the low-level rtc_read_alarm_internal() function.
201 	 *
202 	 * So, when the two timestamps disagree, we just loop and do
203 	 * the process again to get a fully consistent set of values.
204 	 *
205 	 * This could all instead be done in the lower level driver,
206 	 * but since more than one lower level RTC implementation needs it,
207 	 * then it's probably best best to do it here instead of there..
208 	 */
209 
210 	/* Get the "before" timestamp */
211 	err = rtc_read_time(rtc, &before);
212 	if (err < 0)
213 		return err;
214 	do {
215 		if (!first_time)
216 			memcpy(&before, &now, sizeof(struct rtc_time));
217 		first_time = 0;
218 
219 		/* get the RTC alarm values, which may be incomplete */
220 		err = rtc_read_alarm_internal(rtc, alarm);
221 		if (err)
222 			return err;
223 
224 		/* full-function RTCs won't have such missing fields */
225 		if (rtc_valid_tm(&alarm->time) == 0)
226 			return 0;
227 
228 		/* get the "after" timestamp, to detect wrapped fields */
229 		err = rtc_read_time(rtc, &now);
230 		if (err < 0)
231 			return err;
232 
233 		/* note that tm_sec is a "don't care" value here: */
234 	} while (   before.tm_min   != now.tm_min
235 		 || before.tm_hour  != now.tm_hour
236 		 || before.tm_mon   != now.tm_mon
237 		 || before.tm_year  != now.tm_year);
238 
239 	/* Fill in the missing alarm fields using the timestamp; we
240 	 * know there's at least one since alarm->time is invalid.
241 	 */
242 	if (alarm->time.tm_sec == -1)
243 		alarm->time.tm_sec = now.tm_sec;
244 	if (alarm->time.tm_min == -1)
245 		alarm->time.tm_min = now.tm_min;
246 	if (alarm->time.tm_hour == -1)
247 		alarm->time.tm_hour = now.tm_hour;
248 
249 	/* For simplicity, only support date rollover for now */
250 	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
251 		alarm->time.tm_mday = now.tm_mday;
252 		missing = day;
253 	}
254 	if ((unsigned)alarm->time.tm_mon >= 12) {
255 		alarm->time.tm_mon = now.tm_mon;
256 		if (missing == none)
257 			missing = month;
258 	}
259 	if (alarm->time.tm_year == -1) {
260 		alarm->time.tm_year = now.tm_year;
261 		if (missing == none)
262 			missing = year;
263 	}
264 
265 	/* with luck, no rollover is needed */
266 	t_now = rtc_tm_to_time64(&now);
267 	t_alm = rtc_tm_to_time64(&alarm->time);
268 	if (t_now < t_alm)
269 		goto done;
270 
271 	switch (missing) {
272 
273 	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
274 	 * that will trigger at 5am will do so at 5am Tuesday, which
275 	 * could also be in the next month or year.  This is a common
276 	 * case, especially for PCs.
277 	 */
278 	case day:
279 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
280 		t_alm += 24 * 60 * 60;
281 		rtc_time64_to_tm(t_alm, &alarm->time);
282 		break;
283 
284 	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
285 	 * be next month.  An alarm matching on the 30th, 29th, or 28th
286 	 * may end up in the month after that!  Many newer PCs support
287 	 * this type of alarm.
288 	 */
289 	case month:
290 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
291 		do {
292 			if (alarm->time.tm_mon < 11)
293 				alarm->time.tm_mon++;
294 			else {
295 				alarm->time.tm_mon = 0;
296 				alarm->time.tm_year++;
297 			}
298 			days = rtc_month_days(alarm->time.tm_mon,
299 					alarm->time.tm_year);
300 		} while (days < alarm->time.tm_mday);
301 		break;
302 
303 	/* Year rollover ... easy except for leap years! */
304 	case year:
305 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
306 		do {
307 			alarm->time.tm_year++;
308 		} while (!is_leap_year(alarm->time.tm_year + 1900)
309 			&& rtc_valid_tm(&alarm->time) != 0);
310 		break;
311 
312 	default:
313 		dev_warn(&rtc->dev, "alarm rollover not handled\n");
314 	}
315 
316 done:
317 	err = rtc_valid_tm(&alarm->time);
318 
319 	if (err) {
320 		dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
321 			alarm->time.tm_year + 1900, alarm->time.tm_mon + 1,
322 			alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min,
323 			alarm->time.tm_sec);
324 	}
325 
326 	return err;
327 }
328 
329 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
330 {
331 	int err;
332 
333 	err = mutex_lock_interruptible(&rtc->ops_lock);
334 	if (err)
335 		return err;
336 	if (rtc->ops == NULL)
337 		err = -ENODEV;
338 	else if (!rtc->ops->read_alarm)
339 		err = -EINVAL;
340 	else {
341 		memset(alarm, 0, sizeof(struct rtc_wkalrm));
342 		alarm->enabled = rtc->aie_timer.enabled;
343 		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
344 	}
345 	mutex_unlock(&rtc->ops_lock);
346 
347 	return err;
348 }
349 EXPORT_SYMBOL_GPL(rtc_read_alarm);
350 
351 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
352 {
353 	struct rtc_time tm;
354 	time64_t now, scheduled;
355 	int err;
356 
357 	err = rtc_valid_tm(&alarm->time);
358 	if (err)
359 		return err;
360 	scheduled = rtc_tm_to_time64(&alarm->time);
361 
362 	/* Make sure we're not setting alarms in the past */
363 	err = __rtc_read_time(rtc, &tm);
364 	if (err)
365 		return err;
366 	now = rtc_tm_to_time64(&tm);
367 	if (scheduled <= now)
368 		return -ETIME;
369 	/*
370 	 * XXX - We just checked to make sure the alarm time is not
371 	 * in the past, but there is still a race window where if
372 	 * the is alarm set for the next second and the second ticks
373 	 * over right here, before we set the alarm.
374 	 */
375 
376 	if (!rtc->ops)
377 		err = -ENODEV;
378 	else if (!rtc->ops->set_alarm)
379 		err = -EINVAL;
380 	else
381 		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
382 
383 	return err;
384 }
385 
386 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
387 {
388 	int err;
389 
390 	err = rtc_valid_tm(&alarm->time);
391 	if (err != 0)
392 		return err;
393 
394 	err = mutex_lock_interruptible(&rtc->ops_lock);
395 	if (err)
396 		return err;
397 	if (rtc->aie_timer.enabled)
398 		rtc_timer_remove(rtc, &rtc->aie_timer);
399 
400 	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
401 	rtc->aie_timer.period = ktime_set(0, 0);
402 	if (alarm->enabled)
403 		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
404 
405 	mutex_unlock(&rtc->ops_lock);
406 	return err;
407 }
408 EXPORT_SYMBOL_GPL(rtc_set_alarm);
409 
410 /* Called once per device from rtc_device_register */
411 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
412 {
413 	int err;
414 	struct rtc_time now;
415 
416 	err = rtc_valid_tm(&alarm->time);
417 	if (err != 0)
418 		return err;
419 
420 	err = rtc_read_time(rtc, &now);
421 	if (err)
422 		return err;
423 
424 	err = mutex_lock_interruptible(&rtc->ops_lock);
425 	if (err)
426 		return err;
427 
428 	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
429 	rtc->aie_timer.period = ktime_set(0, 0);
430 
431 	/* Alarm has to be enabled & in the futrure for us to enqueue it */
432 	if (alarm->enabled && (rtc_tm_to_ktime(now).tv64 <
433 			 rtc->aie_timer.node.expires.tv64)) {
434 
435 		rtc->aie_timer.enabled = 1;
436 		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
437 	}
438 	mutex_unlock(&rtc->ops_lock);
439 	return err;
440 }
441 EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
442 
443 
444 
445 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
446 {
447 	int err = mutex_lock_interruptible(&rtc->ops_lock);
448 	if (err)
449 		return err;
450 
451 	if (rtc->aie_timer.enabled != enabled) {
452 		if (enabled)
453 			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
454 		else
455 			rtc_timer_remove(rtc, &rtc->aie_timer);
456 	}
457 
458 	if (err)
459 		/* nothing */;
460 	else if (!rtc->ops)
461 		err = -ENODEV;
462 	else if (!rtc->ops->alarm_irq_enable)
463 		err = -EINVAL;
464 	else
465 		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
466 
467 	mutex_unlock(&rtc->ops_lock);
468 	return err;
469 }
470 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
471 
472 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
473 {
474 	int err = mutex_lock_interruptible(&rtc->ops_lock);
475 	if (err)
476 		return err;
477 
478 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
479 	if (enabled == 0 && rtc->uie_irq_active) {
480 		mutex_unlock(&rtc->ops_lock);
481 		return rtc_dev_update_irq_enable_emul(rtc, 0);
482 	}
483 #endif
484 	/* make sure we're changing state */
485 	if (rtc->uie_rtctimer.enabled == enabled)
486 		goto out;
487 
488 	if (rtc->uie_unsupported) {
489 		err = -EINVAL;
490 		goto out;
491 	}
492 
493 	if (enabled) {
494 		struct rtc_time tm;
495 		ktime_t now, onesec;
496 
497 		__rtc_read_time(rtc, &tm);
498 		onesec = ktime_set(1, 0);
499 		now = rtc_tm_to_ktime(tm);
500 		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
501 		rtc->uie_rtctimer.period = ktime_set(1, 0);
502 		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
503 	} else
504 		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
505 
506 out:
507 	mutex_unlock(&rtc->ops_lock);
508 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
509 	/*
510 	 * Enable emulation if the driver did not provide
511 	 * the update_irq_enable function pointer or if returned
512 	 * -EINVAL to signal that it has been configured without
513 	 * interrupts or that are not available at the moment.
514 	 */
515 	if (err == -EINVAL)
516 		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
517 #endif
518 	return err;
519 
520 }
521 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
522 
523 
524 /**
525  * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
526  * @rtc: pointer to the rtc device
527  *
528  * This function is called when an AIE, UIE or PIE mode interrupt
529  * has occurred (or been emulated).
530  *
531  * Triggers the registered irq_task function callback.
532  */
533 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
534 {
535 	unsigned long flags;
536 
537 	/* mark one irq of the appropriate mode */
538 	spin_lock_irqsave(&rtc->irq_lock, flags);
539 	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
540 	spin_unlock_irqrestore(&rtc->irq_lock, flags);
541 
542 	/* call the task func */
543 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
544 	if (rtc->irq_task)
545 		rtc->irq_task->func(rtc->irq_task->private_data);
546 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
547 
548 	wake_up_interruptible(&rtc->irq_queue);
549 	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
550 }
551 
552 
553 /**
554  * rtc_aie_update_irq - AIE mode rtctimer hook
555  * @private: pointer to the rtc_device
556  *
557  * This functions is called when the aie_timer expires.
558  */
559 void rtc_aie_update_irq(void *private)
560 {
561 	struct rtc_device *rtc = (struct rtc_device *)private;
562 	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
563 }
564 
565 
566 /**
567  * rtc_uie_update_irq - UIE mode rtctimer hook
568  * @private: pointer to the rtc_device
569  *
570  * This functions is called when the uie_timer expires.
571  */
572 void rtc_uie_update_irq(void *private)
573 {
574 	struct rtc_device *rtc = (struct rtc_device *)private;
575 	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
576 }
577 
578 
579 /**
580  * rtc_pie_update_irq - PIE mode hrtimer hook
581  * @timer: pointer to the pie mode hrtimer
582  *
583  * This function is used to emulate PIE mode interrupts
584  * using an hrtimer. This function is called when the periodic
585  * hrtimer expires.
586  */
587 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
588 {
589 	struct rtc_device *rtc;
590 	ktime_t period;
591 	int count;
592 	rtc = container_of(timer, struct rtc_device, pie_timer);
593 
594 	period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
595 	count = hrtimer_forward_now(timer, period);
596 
597 	rtc_handle_legacy_irq(rtc, count, RTC_PF);
598 
599 	return HRTIMER_RESTART;
600 }
601 
602 /**
603  * rtc_update_irq - Triggered when a RTC interrupt occurs.
604  * @rtc: the rtc device
605  * @num: how many irqs are being reported (usually one)
606  * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
607  * Context: any
608  */
609 void rtc_update_irq(struct rtc_device *rtc,
610 		unsigned long num, unsigned long events)
611 {
612 	if (unlikely(IS_ERR_OR_NULL(rtc)))
613 		return;
614 
615 	pm_stay_awake(rtc->dev.parent);
616 	schedule_work(&rtc->irqwork);
617 }
618 EXPORT_SYMBOL_GPL(rtc_update_irq);
619 
620 static int __rtc_match(struct device *dev, const void *data)
621 {
622 	const char *name = data;
623 
624 	if (strcmp(dev_name(dev), name) == 0)
625 		return 1;
626 	return 0;
627 }
628 
629 struct rtc_device *rtc_class_open(const char *name)
630 {
631 	struct device *dev;
632 	struct rtc_device *rtc = NULL;
633 
634 	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
635 	if (dev)
636 		rtc = to_rtc_device(dev);
637 
638 	if (rtc) {
639 		if (!try_module_get(rtc->owner)) {
640 			put_device(dev);
641 			rtc = NULL;
642 		}
643 	}
644 
645 	return rtc;
646 }
647 EXPORT_SYMBOL_GPL(rtc_class_open);
648 
649 void rtc_class_close(struct rtc_device *rtc)
650 {
651 	module_put(rtc->owner);
652 	put_device(&rtc->dev);
653 }
654 EXPORT_SYMBOL_GPL(rtc_class_close);
655 
656 int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
657 {
658 	int retval = -EBUSY;
659 
660 	if (task == NULL || task->func == NULL)
661 		return -EINVAL;
662 
663 	/* Cannot register while the char dev is in use */
664 	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
665 		return -EBUSY;
666 
667 	spin_lock_irq(&rtc->irq_task_lock);
668 	if (rtc->irq_task == NULL) {
669 		rtc->irq_task = task;
670 		retval = 0;
671 	}
672 	spin_unlock_irq(&rtc->irq_task_lock);
673 
674 	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
675 
676 	return retval;
677 }
678 EXPORT_SYMBOL_GPL(rtc_irq_register);
679 
680 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
681 {
682 	spin_lock_irq(&rtc->irq_task_lock);
683 	if (rtc->irq_task == task)
684 		rtc->irq_task = NULL;
685 	spin_unlock_irq(&rtc->irq_task_lock);
686 }
687 EXPORT_SYMBOL_GPL(rtc_irq_unregister);
688 
689 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
690 {
691 	/*
692 	 * We always cancel the timer here first, because otherwise
693 	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
694 	 * when we manage to start the timer before the callback
695 	 * returns HRTIMER_RESTART.
696 	 *
697 	 * We cannot use hrtimer_cancel() here as a running callback
698 	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
699 	 * would spin forever.
700 	 */
701 	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
702 		return -1;
703 
704 	if (enabled) {
705 		ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
706 
707 		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
708 	}
709 	return 0;
710 }
711 
712 /**
713  * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
714  * @rtc: the rtc device
715  * @task: currently registered with rtc_irq_register()
716  * @enabled: true to enable periodic IRQs
717  * Context: any
718  *
719  * Note that rtc_irq_set_freq() should previously have been used to
720  * specify the desired frequency of periodic IRQ task->func() callbacks.
721  */
722 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
723 {
724 	int err = 0;
725 	unsigned long flags;
726 
727 retry:
728 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
729 	if (rtc->irq_task != NULL && task == NULL)
730 		err = -EBUSY;
731 	else if (rtc->irq_task != task)
732 		err = -EACCES;
733 	else {
734 		if (rtc_update_hrtimer(rtc, enabled) < 0) {
735 			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
736 			cpu_relax();
737 			goto retry;
738 		}
739 		rtc->pie_enabled = enabled;
740 	}
741 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
742 	return err;
743 }
744 EXPORT_SYMBOL_GPL(rtc_irq_set_state);
745 
746 /**
747  * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
748  * @rtc: the rtc device
749  * @task: currently registered with rtc_irq_register()
750  * @freq: positive frequency with which task->func() will be called
751  * Context: any
752  *
753  * Note that rtc_irq_set_state() is used to enable or disable the
754  * periodic IRQs.
755  */
756 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
757 {
758 	int err = 0;
759 	unsigned long flags;
760 
761 	if (freq <= 0 || freq > RTC_MAX_FREQ)
762 		return -EINVAL;
763 retry:
764 	spin_lock_irqsave(&rtc->irq_task_lock, flags);
765 	if (rtc->irq_task != NULL && task == NULL)
766 		err = -EBUSY;
767 	else if (rtc->irq_task != task)
768 		err = -EACCES;
769 	else {
770 		rtc->irq_freq = freq;
771 		if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
772 			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
773 			cpu_relax();
774 			goto retry;
775 		}
776 	}
777 	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
778 	return err;
779 }
780 EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
781 
782 /**
783  * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
784  * @rtc rtc device
785  * @timer timer being added.
786  *
787  * Enqueues a timer onto the rtc devices timerqueue and sets
788  * the next alarm event appropriately.
789  *
790  * Sets the enabled bit on the added timer.
791  *
792  * Must hold ops_lock for proper serialization of timerqueue
793  */
794 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
795 {
796 	timer->enabled = 1;
797 	timerqueue_add(&rtc->timerqueue, &timer->node);
798 	if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
799 		struct rtc_wkalrm alarm;
800 		int err;
801 		alarm.time = rtc_ktime_to_tm(timer->node.expires);
802 		alarm.enabled = 1;
803 		err = __rtc_set_alarm(rtc, &alarm);
804 		if (err == -ETIME) {
805 			pm_stay_awake(rtc->dev.parent);
806 			schedule_work(&rtc->irqwork);
807 		} else if (err) {
808 			timerqueue_del(&rtc->timerqueue, &timer->node);
809 			timer->enabled = 0;
810 			return err;
811 		}
812 	}
813 	return 0;
814 }
815 
816 static void rtc_alarm_disable(struct rtc_device *rtc)
817 {
818 	if (!rtc->ops || !rtc->ops->alarm_irq_enable)
819 		return;
820 
821 	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
822 }
823 
824 /**
825  * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
826  * @rtc rtc device
827  * @timer timer being removed.
828  *
829  * Removes a timer onto the rtc devices timerqueue and sets
830  * the next alarm event appropriately.
831  *
832  * Clears the enabled bit on the removed timer.
833  *
834  * Must hold ops_lock for proper serialization of timerqueue
835  */
836 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
837 {
838 	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
839 	timerqueue_del(&rtc->timerqueue, &timer->node);
840 	timer->enabled = 0;
841 	if (next == &timer->node) {
842 		struct rtc_wkalrm alarm;
843 		int err;
844 		next = timerqueue_getnext(&rtc->timerqueue);
845 		if (!next) {
846 			rtc_alarm_disable(rtc);
847 			return;
848 		}
849 		alarm.time = rtc_ktime_to_tm(next->expires);
850 		alarm.enabled = 1;
851 		err = __rtc_set_alarm(rtc, &alarm);
852 		if (err == -ETIME) {
853 			pm_stay_awake(rtc->dev.parent);
854 			schedule_work(&rtc->irqwork);
855 		}
856 	}
857 }
858 
859 /**
860  * rtc_timer_do_work - Expires rtc timers
861  * @rtc rtc device
862  * @timer timer being removed.
863  *
864  * Expires rtc timers. Reprograms next alarm event if needed.
865  * Called via worktask.
866  *
867  * Serializes access to timerqueue via ops_lock mutex
868  */
869 void rtc_timer_do_work(struct work_struct *work)
870 {
871 	struct rtc_timer *timer;
872 	struct timerqueue_node *next;
873 	ktime_t now;
874 	struct rtc_time tm;
875 
876 	struct rtc_device *rtc =
877 		container_of(work, struct rtc_device, irqwork);
878 
879 	mutex_lock(&rtc->ops_lock);
880 again:
881 	__rtc_read_time(rtc, &tm);
882 	now = rtc_tm_to_ktime(tm);
883 	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
884 		if (next->expires.tv64 > now.tv64)
885 			break;
886 
887 		/* expire timer */
888 		timer = container_of(next, struct rtc_timer, node);
889 		timerqueue_del(&rtc->timerqueue, &timer->node);
890 		timer->enabled = 0;
891 		if (timer->task.func)
892 			timer->task.func(timer->task.private_data);
893 
894 		/* Re-add/fwd periodic timers */
895 		if (ktime_to_ns(timer->period)) {
896 			timer->node.expires = ktime_add(timer->node.expires,
897 							timer->period);
898 			timer->enabled = 1;
899 			timerqueue_add(&rtc->timerqueue, &timer->node);
900 		}
901 	}
902 
903 	/* Set next alarm */
904 	if (next) {
905 		struct rtc_wkalrm alarm;
906 		int err;
907 		int retry = 3;
908 
909 		alarm.time = rtc_ktime_to_tm(next->expires);
910 		alarm.enabled = 1;
911 reprogram:
912 		err = __rtc_set_alarm(rtc, &alarm);
913 		if (err == -ETIME)
914 			goto again;
915 		else if (err) {
916 			if (retry-- > 0)
917 				goto reprogram;
918 
919 			timer = container_of(next, struct rtc_timer, node);
920 			timerqueue_del(&rtc->timerqueue, &timer->node);
921 			timer->enabled = 0;
922 			dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
923 			goto again;
924 		}
925 	} else
926 		rtc_alarm_disable(rtc);
927 
928 	pm_relax(rtc->dev.parent);
929 	mutex_unlock(&rtc->ops_lock);
930 }
931 
932 
933 /* rtc_timer_init - Initializes an rtc_timer
934  * @timer: timer to be intiialized
935  * @f: function pointer to be called when timer fires
936  * @data: private data passed to function pointer
937  *
938  * Kernel interface to initializing an rtc_timer.
939  */
940 void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
941 {
942 	timerqueue_init(&timer->node);
943 	timer->enabled = 0;
944 	timer->task.func = f;
945 	timer->task.private_data = data;
946 }
947 
948 /* rtc_timer_start - Sets an rtc_timer to fire in the future
949  * @ rtc: rtc device to be used
950  * @ timer: timer being set
951  * @ expires: time at which to expire the timer
952  * @ period: period that the timer will recur
953  *
954  * Kernel interface to set an rtc_timer
955  */
956 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
957 			ktime_t expires, ktime_t period)
958 {
959 	int ret = 0;
960 	mutex_lock(&rtc->ops_lock);
961 	if (timer->enabled)
962 		rtc_timer_remove(rtc, timer);
963 
964 	timer->node.expires = expires;
965 	timer->period = period;
966 
967 	ret = rtc_timer_enqueue(rtc, timer);
968 
969 	mutex_unlock(&rtc->ops_lock);
970 	return ret;
971 }
972 
973 /* rtc_timer_cancel - Stops an rtc_timer
974  * @ rtc: rtc device to be used
975  * @ timer: timer being set
976  *
977  * Kernel interface to cancel an rtc_timer
978  */
979 int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
980 {
981 	int ret = 0;
982 	mutex_lock(&rtc->ops_lock);
983 	if (timer->enabled)
984 		rtc_timer_remove(rtc, timer);
985 	mutex_unlock(&rtc->ops_lock);
986 	return ret;
987 }
988 
989 
990