1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * RTC subsystem, base class 4 * 5 * Copyright (C) 2005 Tower Technologies 6 * Author: Alessandro Zummo <a.zummo@towertech.it> 7 * 8 * class skeleton from drivers/hwmon/hwmon.c 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/module.h> 14 #include <linux/of.h> 15 #include <linux/rtc.h> 16 #include <linux/kdev_t.h> 17 #include <linux/idr.h> 18 #include <linux/slab.h> 19 #include <linux/workqueue.h> 20 21 #include "rtc-core.h" 22 23 static DEFINE_IDA(rtc_ida); 24 struct class *rtc_class; 25 26 static void rtc_device_release(struct device *dev) 27 { 28 struct rtc_device *rtc = to_rtc_device(dev); 29 30 ida_simple_remove(&rtc_ida, rtc->id); 31 kfree(rtc); 32 } 33 34 #ifdef CONFIG_RTC_HCTOSYS_DEVICE 35 /* Result of the last RTC to system clock attempt. */ 36 int rtc_hctosys_ret = -ENODEV; 37 38 /* IMPORTANT: the RTC only stores whole seconds. It is arbitrary 39 * whether it stores the most close value or the value with partial 40 * seconds truncated. However, it is important that we use it to store 41 * the truncated value. This is because otherwise it is necessary, 42 * in an rtc sync function, to read both xtime.tv_sec and 43 * xtime.tv_nsec. On some processors (i.e. ARM), an atomic read 44 * of >32bits is not possible. So storing the most close value would 45 * slow down the sync API. So here we have the truncated value and 46 * the best guess is to add 0.5s. 47 */ 48 49 static void rtc_hctosys(struct rtc_device *rtc) 50 { 51 int err; 52 struct rtc_time tm; 53 struct timespec64 tv64 = { 54 .tv_nsec = NSEC_PER_SEC >> 1, 55 }; 56 57 err = rtc_read_time(rtc, &tm); 58 if (err) { 59 dev_err(rtc->dev.parent, 60 "hctosys: unable to read the hardware clock\n"); 61 goto err_read; 62 } 63 64 tv64.tv_sec = rtc_tm_to_time64(&tm); 65 66 #if BITS_PER_LONG == 32 67 if (tv64.tv_sec > INT_MAX) { 68 err = -ERANGE; 69 goto err_read; 70 } 71 #endif 72 73 err = do_settimeofday64(&tv64); 74 75 dev_info(rtc->dev.parent, "setting system clock to %ptR UTC (%lld)\n", 76 &tm, (long long)tv64.tv_sec); 77 78 err_read: 79 rtc_hctosys_ret = err; 80 } 81 #endif 82 83 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 84 /* 85 * On suspend(), measure the delta between one RTC and the 86 * system's wall clock; restore it on resume(). 87 */ 88 89 static struct timespec64 old_rtc, old_system, old_delta; 90 91 static int rtc_suspend(struct device *dev) 92 { 93 struct rtc_device *rtc = to_rtc_device(dev); 94 struct rtc_time tm; 95 struct timespec64 delta, delta_delta; 96 int err; 97 98 if (timekeeping_rtc_skipsuspend()) 99 return 0; 100 101 if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0) 102 return 0; 103 104 /* snapshot the current RTC and system time at suspend*/ 105 err = rtc_read_time(rtc, &tm); 106 if (err < 0) { 107 pr_debug("%s: fail to read rtc time\n", dev_name(&rtc->dev)); 108 return 0; 109 } 110 111 ktime_get_real_ts64(&old_system); 112 old_rtc.tv_sec = rtc_tm_to_time64(&tm); 113 114 /* 115 * To avoid drift caused by repeated suspend/resumes, 116 * which each can add ~1 second drift error, 117 * try to compensate so the difference in system time 118 * and rtc time stays close to constant. 119 */ 120 delta = timespec64_sub(old_system, old_rtc); 121 delta_delta = timespec64_sub(delta, old_delta); 122 if (delta_delta.tv_sec < -2 || delta_delta.tv_sec >= 2) { 123 /* 124 * if delta_delta is too large, assume time correction 125 * has occurred and set old_delta to the current delta. 126 */ 127 old_delta = delta; 128 } else { 129 /* Otherwise try to adjust old_system to compensate */ 130 old_system = timespec64_sub(old_system, delta_delta); 131 } 132 133 return 0; 134 } 135 136 static int rtc_resume(struct device *dev) 137 { 138 struct rtc_device *rtc = to_rtc_device(dev); 139 struct rtc_time tm; 140 struct timespec64 new_system, new_rtc; 141 struct timespec64 sleep_time; 142 int err; 143 144 if (timekeeping_rtc_skipresume()) 145 return 0; 146 147 rtc_hctosys_ret = -ENODEV; 148 if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0) 149 return 0; 150 151 /* snapshot the current rtc and system time at resume */ 152 ktime_get_real_ts64(&new_system); 153 err = rtc_read_time(rtc, &tm); 154 if (err < 0) { 155 pr_debug("%s: fail to read rtc time\n", dev_name(&rtc->dev)); 156 return 0; 157 } 158 159 new_rtc.tv_sec = rtc_tm_to_time64(&tm); 160 new_rtc.tv_nsec = 0; 161 162 if (new_rtc.tv_sec < old_rtc.tv_sec) { 163 pr_debug("%s: time travel!\n", dev_name(&rtc->dev)); 164 return 0; 165 } 166 167 /* calculate the RTC time delta (sleep time)*/ 168 sleep_time = timespec64_sub(new_rtc, old_rtc); 169 170 /* 171 * Since these RTC suspend/resume handlers are not called 172 * at the very end of suspend or the start of resume, 173 * some run-time may pass on either sides of the sleep time 174 * so subtract kernel run-time between rtc_suspend to rtc_resume 175 * to keep things accurate. 176 */ 177 sleep_time = timespec64_sub(sleep_time, 178 timespec64_sub(new_system, old_system)); 179 180 if (sleep_time.tv_sec >= 0) 181 timekeeping_inject_sleeptime64(&sleep_time); 182 rtc_hctosys_ret = 0; 183 return 0; 184 } 185 186 static SIMPLE_DEV_PM_OPS(rtc_class_dev_pm_ops, rtc_suspend, rtc_resume); 187 #define RTC_CLASS_DEV_PM_OPS (&rtc_class_dev_pm_ops) 188 #else 189 #define RTC_CLASS_DEV_PM_OPS NULL 190 #endif 191 192 /* Ensure the caller will set the id before releasing the device */ 193 static struct rtc_device *rtc_allocate_device(void) 194 { 195 struct rtc_device *rtc; 196 197 rtc = kzalloc(sizeof(*rtc), GFP_KERNEL); 198 if (!rtc) 199 return NULL; 200 201 device_initialize(&rtc->dev); 202 203 /* 204 * Drivers can revise this default after allocating the device. 205 * The default is what most RTCs do: Increment seconds exactly one 206 * second after the write happened. This adds a default transport 207 * time of 5ms which is at least halfways close to reality. 208 */ 209 rtc->set_offset_nsec = NSEC_PER_SEC + 5 * NSEC_PER_MSEC; 210 211 rtc->irq_freq = 1; 212 rtc->max_user_freq = 64; 213 rtc->dev.class = rtc_class; 214 rtc->dev.groups = rtc_get_dev_attribute_groups(); 215 rtc->dev.release = rtc_device_release; 216 217 mutex_init(&rtc->ops_lock); 218 spin_lock_init(&rtc->irq_lock); 219 init_waitqueue_head(&rtc->irq_queue); 220 221 /* Init timerqueue */ 222 timerqueue_init_head(&rtc->timerqueue); 223 INIT_WORK(&rtc->irqwork, rtc_timer_do_work); 224 /* Init aie timer */ 225 rtc_timer_init(&rtc->aie_timer, rtc_aie_update_irq, rtc); 226 /* Init uie timer */ 227 rtc_timer_init(&rtc->uie_rtctimer, rtc_uie_update_irq, rtc); 228 /* Init pie timer */ 229 hrtimer_init(&rtc->pie_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 230 rtc->pie_timer.function = rtc_pie_update_irq; 231 rtc->pie_enabled = 0; 232 233 return rtc; 234 } 235 236 static int rtc_device_get_id(struct device *dev) 237 { 238 int of_id = -1, id = -1; 239 240 if (dev->of_node) 241 of_id = of_alias_get_id(dev->of_node, "rtc"); 242 else if (dev->parent && dev->parent->of_node) 243 of_id = of_alias_get_id(dev->parent->of_node, "rtc"); 244 245 if (of_id >= 0) { 246 id = ida_simple_get(&rtc_ida, of_id, of_id + 1, GFP_KERNEL); 247 if (id < 0) 248 dev_warn(dev, "/aliases ID %d not available\n", of_id); 249 } 250 251 if (id < 0) 252 id = ida_simple_get(&rtc_ida, 0, 0, GFP_KERNEL); 253 254 return id; 255 } 256 257 static void rtc_device_get_offset(struct rtc_device *rtc) 258 { 259 time64_t range_secs; 260 u32 start_year; 261 int ret; 262 263 /* 264 * If RTC driver did not implement the range of RTC hardware device, 265 * then we can not expand the RTC range by adding or subtracting one 266 * offset. 267 */ 268 if (rtc->range_min == rtc->range_max) 269 return; 270 271 ret = device_property_read_u32(rtc->dev.parent, "start-year", 272 &start_year); 273 if (!ret) { 274 rtc->start_secs = mktime64(start_year, 1, 1, 0, 0, 0); 275 rtc->set_start_time = true; 276 } 277 278 /* 279 * If user did not implement the start time for RTC driver, then no 280 * need to expand the RTC range. 281 */ 282 if (!rtc->set_start_time) 283 return; 284 285 range_secs = rtc->range_max - rtc->range_min + 1; 286 287 /* 288 * If the start_secs is larger than the maximum seconds (rtc->range_max) 289 * supported by RTC hardware or the maximum seconds of new expanded 290 * range (start_secs + rtc->range_max - rtc->range_min) is less than 291 * rtc->range_min, which means the minimum seconds (rtc->range_min) of 292 * RTC hardware will be mapped to start_secs by adding one offset, so 293 * the offset seconds calculation formula should be: 294 * rtc->offset_secs = rtc->start_secs - rtc->range_min; 295 * 296 * If the start_secs is larger than the minimum seconds (rtc->range_min) 297 * supported by RTC hardware, then there is one region is overlapped 298 * between the original RTC hardware range and the new expanded range, 299 * and this overlapped region do not need to be mapped into the new 300 * expanded range due to it is valid for RTC device. So the minimum 301 * seconds of RTC hardware (rtc->range_min) should be mapped to 302 * rtc->range_max + 1, then the offset seconds formula should be: 303 * rtc->offset_secs = rtc->range_max - rtc->range_min + 1; 304 * 305 * If the start_secs is less than the minimum seconds (rtc->range_min), 306 * which is similar to case 2. So the start_secs should be mapped to 307 * start_secs + rtc->range_max - rtc->range_min + 1, then the 308 * offset seconds formula should be: 309 * rtc->offset_secs = -(rtc->range_max - rtc->range_min + 1); 310 * 311 * Otherwise the offset seconds should be 0. 312 */ 313 if (rtc->start_secs > rtc->range_max || 314 rtc->start_secs + range_secs - 1 < rtc->range_min) 315 rtc->offset_secs = rtc->start_secs - rtc->range_min; 316 else if (rtc->start_secs > rtc->range_min) 317 rtc->offset_secs = range_secs; 318 else if (rtc->start_secs < rtc->range_min) 319 rtc->offset_secs = -range_secs; 320 else 321 rtc->offset_secs = 0; 322 } 323 324 /** 325 * rtc_device_unregister - removes the previously registered RTC class device 326 * 327 * @rtc: the RTC class device to destroy 328 */ 329 static void rtc_device_unregister(struct rtc_device *rtc) 330 { 331 mutex_lock(&rtc->ops_lock); 332 /* 333 * Remove innards of this RTC, then disable it, before 334 * letting any rtc_class_open() users access it again 335 */ 336 rtc_proc_del_device(rtc); 337 cdev_device_del(&rtc->char_dev, &rtc->dev); 338 rtc->ops = NULL; 339 mutex_unlock(&rtc->ops_lock); 340 put_device(&rtc->dev); 341 } 342 343 static void devm_rtc_release_device(struct device *dev, void *res) 344 { 345 struct rtc_device *rtc = *(struct rtc_device **)res; 346 347 rtc_nvmem_unregister(rtc); 348 349 if (rtc->registered) 350 rtc_device_unregister(rtc); 351 else 352 put_device(&rtc->dev); 353 } 354 355 struct rtc_device *devm_rtc_allocate_device(struct device *dev) 356 { 357 struct rtc_device **ptr, *rtc; 358 int id, err; 359 360 id = rtc_device_get_id(dev); 361 if (id < 0) 362 return ERR_PTR(id); 363 364 ptr = devres_alloc(devm_rtc_release_device, sizeof(*ptr), GFP_KERNEL); 365 if (!ptr) { 366 err = -ENOMEM; 367 goto exit_ida; 368 } 369 370 rtc = rtc_allocate_device(); 371 if (!rtc) { 372 err = -ENOMEM; 373 goto exit_devres; 374 } 375 376 *ptr = rtc; 377 devres_add(dev, ptr); 378 379 rtc->id = id; 380 rtc->dev.parent = dev; 381 dev_set_name(&rtc->dev, "rtc%d", id); 382 383 return rtc; 384 385 exit_devres: 386 devres_free(ptr); 387 exit_ida: 388 ida_simple_remove(&rtc_ida, id); 389 return ERR_PTR(err); 390 } 391 EXPORT_SYMBOL_GPL(devm_rtc_allocate_device); 392 393 int __rtc_register_device(struct module *owner, struct rtc_device *rtc) 394 { 395 struct rtc_wkalrm alrm; 396 int err; 397 398 if (!rtc->ops) { 399 dev_dbg(&rtc->dev, "no ops set\n"); 400 return -EINVAL; 401 } 402 403 rtc->owner = owner; 404 rtc_device_get_offset(rtc); 405 406 /* Check to see if there is an ALARM already set in hw */ 407 err = __rtc_read_alarm(rtc, &alrm); 408 if (!err && !rtc_valid_tm(&alrm.time)) 409 rtc_initialize_alarm(rtc, &alrm); 410 411 rtc_dev_prepare(rtc); 412 413 err = cdev_device_add(&rtc->char_dev, &rtc->dev); 414 if (err) 415 dev_warn(rtc->dev.parent, "failed to add char device %d:%d\n", 416 MAJOR(rtc->dev.devt), rtc->id); 417 else 418 dev_dbg(rtc->dev.parent, "char device (%d:%d)\n", 419 MAJOR(rtc->dev.devt), rtc->id); 420 421 rtc_proc_add_device(rtc); 422 423 rtc->registered = true; 424 dev_info(rtc->dev.parent, "registered as %s\n", 425 dev_name(&rtc->dev)); 426 427 #ifdef CONFIG_RTC_HCTOSYS_DEVICE 428 if (!strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE)) 429 rtc_hctosys(rtc); 430 #endif 431 432 return 0; 433 } 434 EXPORT_SYMBOL_GPL(__rtc_register_device); 435 436 /** 437 * devm_rtc_device_register - resource managed rtc_device_register() 438 * @dev: the device to register 439 * @name: the name of the device (unused) 440 * @ops: the rtc operations structure 441 * @owner: the module owner 442 * 443 * @return a struct rtc on success, or an ERR_PTR on error 444 * 445 * Managed rtc_device_register(). The rtc_device returned from this function 446 * are automatically freed on driver detach. 447 * This function is deprecated, use devm_rtc_allocate_device and 448 * rtc_register_device instead 449 */ 450 struct rtc_device *devm_rtc_device_register(struct device *dev, 451 const char *name, 452 const struct rtc_class_ops *ops, 453 struct module *owner) 454 { 455 struct rtc_device *rtc; 456 int err; 457 458 rtc = devm_rtc_allocate_device(dev); 459 if (IS_ERR(rtc)) 460 return rtc; 461 462 rtc->ops = ops; 463 464 err = __rtc_register_device(owner, rtc); 465 if (err) 466 return ERR_PTR(err); 467 468 return rtc; 469 } 470 EXPORT_SYMBOL_GPL(devm_rtc_device_register); 471 472 static int __init rtc_init(void) 473 { 474 rtc_class = class_create(THIS_MODULE, "rtc"); 475 if (IS_ERR(rtc_class)) { 476 pr_err("couldn't create class\n"); 477 return PTR_ERR(rtc_class); 478 } 479 rtc_class->pm = RTC_CLASS_DEV_PM_OPS; 480 rtc_dev_init(); 481 return 0; 482 } 483 subsys_initcall(rtc_init); 484