xref: /openbmc/linux/drivers/rtc/class.c (revision e620a1e0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * RTC subsystem, base class
4  *
5  * Copyright (C) 2005 Tower Technologies
6  * Author: Alessandro Zummo <a.zummo@towertech.it>
7  *
8  * class skeleton from drivers/hwmon/hwmon.c
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/rtc.h>
16 #include <linux/kdev_t.h>
17 #include <linux/idr.h>
18 #include <linux/slab.h>
19 #include <linux/workqueue.h>
20 
21 #include "rtc-core.h"
22 
23 static DEFINE_IDA(rtc_ida);
24 struct class *rtc_class;
25 
26 static void rtc_device_release(struct device *dev)
27 {
28 	struct rtc_device *rtc = to_rtc_device(dev);
29 
30 	ida_simple_remove(&rtc_ida, rtc->id);
31 	kfree(rtc);
32 }
33 
34 #ifdef CONFIG_RTC_HCTOSYS_DEVICE
35 /* Result of the last RTC to system clock attempt. */
36 int rtc_hctosys_ret = -ENODEV;
37 #endif
38 
39 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
40 /*
41  * On suspend(), measure the delta between one RTC and the
42  * system's wall clock; restore it on resume().
43  */
44 
45 static struct timespec64 old_rtc, old_system, old_delta;
46 
47 static int rtc_suspend(struct device *dev)
48 {
49 	struct rtc_device	*rtc = to_rtc_device(dev);
50 	struct rtc_time		tm;
51 	struct timespec64	delta, delta_delta;
52 	int err;
53 
54 	if (timekeeping_rtc_skipsuspend())
55 		return 0;
56 
57 	if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
58 		return 0;
59 
60 	/* snapshot the current RTC and system time at suspend*/
61 	err = rtc_read_time(rtc, &tm);
62 	if (err < 0) {
63 		pr_debug("%s:  fail to read rtc time\n", dev_name(&rtc->dev));
64 		return 0;
65 	}
66 
67 	ktime_get_real_ts64(&old_system);
68 	old_rtc.tv_sec = rtc_tm_to_time64(&tm);
69 
70 	/*
71 	 * To avoid drift caused by repeated suspend/resumes,
72 	 * which each can add ~1 second drift error,
73 	 * try to compensate so the difference in system time
74 	 * and rtc time stays close to constant.
75 	 */
76 	delta = timespec64_sub(old_system, old_rtc);
77 	delta_delta = timespec64_sub(delta, old_delta);
78 	if (delta_delta.tv_sec < -2 || delta_delta.tv_sec >= 2) {
79 		/*
80 		 * if delta_delta is too large, assume time correction
81 		 * has occurred and set old_delta to the current delta.
82 		 */
83 		old_delta = delta;
84 	} else {
85 		/* Otherwise try to adjust old_system to compensate */
86 		old_system = timespec64_sub(old_system, delta_delta);
87 	}
88 
89 	return 0;
90 }
91 
92 static int rtc_resume(struct device *dev)
93 {
94 	struct rtc_device	*rtc = to_rtc_device(dev);
95 	struct rtc_time		tm;
96 	struct timespec64	new_system, new_rtc;
97 	struct timespec64	sleep_time;
98 	int err;
99 
100 	if (timekeeping_rtc_skipresume())
101 		return 0;
102 
103 	rtc_hctosys_ret = -ENODEV;
104 	if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
105 		return 0;
106 
107 	/* snapshot the current rtc and system time at resume */
108 	ktime_get_real_ts64(&new_system);
109 	err = rtc_read_time(rtc, &tm);
110 	if (err < 0) {
111 		pr_debug("%s:  fail to read rtc time\n", dev_name(&rtc->dev));
112 		return 0;
113 	}
114 
115 	new_rtc.tv_sec = rtc_tm_to_time64(&tm);
116 	new_rtc.tv_nsec = 0;
117 
118 	if (new_rtc.tv_sec < old_rtc.tv_sec) {
119 		pr_debug("%s:  time travel!\n", dev_name(&rtc->dev));
120 		return 0;
121 	}
122 
123 	/* calculate the RTC time delta (sleep time)*/
124 	sleep_time = timespec64_sub(new_rtc, old_rtc);
125 
126 	/*
127 	 * Since these RTC suspend/resume handlers are not called
128 	 * at the very end of suspend or the start of resume,
129 	 * some run-time may pass on either sides of the sleep time
130 	 * so subtract kernel run-time between rtc_suspend to rtc_resume
131 	 * to keep things accurate.
132 	 */
133 	sleep_time = timespec64_sub(sleep_time,
134 				    timespec64_sub(new_system, old_system));
135 
136 	if (sleep_time.tv_sec >= 0)
137 		timekeeping_inject_sleeptime64(&sleep_time);
138 	rtc_hctosys_ret = 0;
139 	return 0;
140 }
141 
142 static SIMPLE_DEV_PM_OPS(rtc_class_dev_pm_ops, rtc_suspend, rtc_resume);
143 #define RTC_CLASS_DEV_PM_OPS	(&rtc_class_dev_pm_ops)
144 #else
145 #define RTC_CLASS_DEV_PM_OPS	NULL
146 #endif
147 
148 /* Ensure the caller will set the id before releasing the device */
149 static struct rtc_device *rtc_allocate_device(void)
150 {
151 	struct rtc_device *rtc;
152 
153 	rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
154 	if (!rtc)
155 		return NULL;
156 
157 	device_initialize(&rtc->dev);
158 
159 	/* Drivers can revise this default after allocating the device. */
160 	rtc->set_offset_nsec =  NSEC_PER_SEC / 2;
161 
162 	rtc->irq_freq = 1;
163 	rtc->max_user_freq = 64;
164 	rtc->dev.class = rtc_class;
165 	rtc->dev.groups = rtc_get_dev_attribute_groups();
166 	rtc->dev.release = rtc_device_release;
167 
168 	mutex_init(&rtc->ops_lock);
169 	spin_lock_init(&rtc->irq_lock);
170 	init_waitqueue_head(&rtc->irq_queue);
171 
172 	/* Init timerqueue */
173 	timerqueue_init_head(&rtc->timerqueue);
174 	INIT_WORK(&rtc->irqwork, rtc_timer_do_work);
175 	/* Init aie timer */
176 	rtc_timer_init(&rtc->aie_timer, rtc_aie_update_irq, rtc);
177 	/* Init uie timer */
178 	rtc_timer_init(&rtc->uie_rtctimer, rtc_uie_update_irq, rtc);
179 	/* Init pie timer */
180 	hrtimer_init(&rtc->pie_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
181 	rtc->pie_timer.function = rtc_pie_update_irq;
182 	rtc->pie_enabled = 0;
183 
184 	return rtc;
185 }
186 
187 static int rtc_device_get_id(struct device *dev)
188 {
189 	int of_id = -1, id = -1;
190 
191 	if (dev->of_node)
192 		of_id = of_alias_get_id(dev->of_node, "rtc");
193 	else if (dev->parent && dev->parent->of_node)
194 		of_id = of_alias_get_id(dev->parent->of_node, "rtc");
195 
196 	if (of_id >= 0) {
197 		id = ida_simple_get(&rtc_ida, of_id, of_id + 1, GFP_KERNEL);
198 		if (id < 0)
199 			dev_warn(dev, "/aliases ID %d not available\n", of_id);
200 	}
201 
202 	if (id < 0)
203 		id = ida_simple_get(&rtc_ida, 0, 0, GFP_KERNEL);
204 
205 	return id;
206 }
207 
208 static void rtc_device_get_offset(struct rtc_device *rtc)
209 {
210 	time64_t range_secs;
211 	u32 start_year;
212 	int ret;
213 
214 	/*
215 	 * If RTC driver did not implement the range of RTC hardware device,
216 	 * then we can not expand the RTC range by adding or subtracting one
217 	 * offset.
218 	 */
219 	if (rtc->range_min == rtc->range_max)
220 		return;
221 
222 	ret = device_property_read_u32(rtc->dev.parent, "start-year",
223 				       &start_year);
224 	if (!ret) {
225 		rtc->start_secs = mktime64(start_year, 1, 1, 0, 0, 0);
226 		rtc->set_start_time = true;
227 	}
228 
229 	/*
230 	 * If user did not implement the start time for RTC driver, then no
231 	 * need to expand the RTC range.
232 	 */
233 	if (!rtc->set_start_time)
234 		return;
235 
236 	range_secs = rtc->range_max - rtc->range_min + 1;
237 
238 	/*
239 	 * If the start_secs is larger than the maximum seconds (rtc->range_max)
240 	 * supported by RTC hardware or the maximum seconds of new expanded
241 	 * range (start_secs + rtc->range_max - rtc->range_min) is less than
242 	 * rtc->range_min, which means the minimum seconds (rtc->range_min) of
243 	 * RTC hardware will be mapped to start_secs by adding one offset, so
244 	 * the offset seconds calculation formula should be:
245 	 * rtc->offset_secs = rtc->start_secs - rtc->range_min;
246 	 *
247 	 * If the start_secs is larger than the minimum seconds (rtc->range_min)
248 	 * supported by RTC hardware, then there is one region is overlapped
249 	 * between the original RTC hardware range and the new expanded range,
250 	 * and this overlapped region do not need to be mapped into the new
251 	 * expanded range due to it is valid for RTC device. So the minimum
252 	 * seconds of RTC hardware (rtc->range_min) should be mapped to
253 	 * rtc->range_max + 1, then the offset seconds formula should be:
254 	 * rtc->offset_secs = rtc->range_max - rtc->range_min + 1;
255 	 *
256 	 * If the start_secs is less than the minimum seconds (rtc->range_min),
257 	 * which is similar to case 2. So the start_secs should be mapped to
258 	 * start_secs + rtc->range_max - rtc->range_min + 1, then the
259 	 * offset seconds formula should be:
260 	 * rtc->offset_secs = -(rtc->range_max - rtc->range_min + 1);
261 	 *
262 	 * Otherwise the offset seconds should be 0.
263 	 */
264 	if (rtc->start_secs > rtc->range_max ||
265 	    rtc->start_secs + range_secs - 1 < rtc->range_min)
266 		rtc->offset_secs = rtc->start_secs - rtc->range_min;
267 	else if (rtc->start_secs > rtc->range_min)
268 		rtc->offset_secs = range_secs;
269 	else if (rtc->start_secs < rtc->range_min)
270 		rtc->offset_secs = -range_secs;
271 	else
272 		rtc->offset_secs = 0;
273 }
274 
275 /**
276  * rtc_device_unregister - removes the previously registered RTC class device
277  *
278  * @rtc: the RTC class device to destroy
279  */
280 static void rtc_device_unregister(struct rtc_device *rtc)
281 {
282 	mutex_lock(&rtc->ops_lock);
283 	/*
284 	 * Remove innards of this RTC, then disable it, before
285 	 * letting any rtc_class_open() users access it again
286 	 */
287 	rtc_proc_del_device(rtc);
288 	cdev_device_del(&rtc->char_dev, &rtc->dev);
289 	rtc->ops = NULL;
290 	mutex_unlock(&rtc->ops_lock);
291 	put_device(&rtc->dev);
292 }
293 
294 static void devm_rtc_release_device(struct device *dev, void *res)
295 {
296 	struct rtc_device *rtc = *(struct rtc_device **)res;
297 
298 	rtc_nvmem_unregister(rtc);
299 
300 	if (rtc->registered)
301 		rtc_device_unregister(rtc);
302 	else
303 		put_device(&rtc->dev);
304 }
305 
306 struct rtc_device *devm_rtc_allocate_device(struct device *dev)
307 {
308 	struct rtc_device **ptr, *rtc;
309 	int id, err;
310 
311 	id = rtc_device_get_id(dev);
312 	if (id < 0)
313 		return ERR_PTR(id);
314 
315 	ptr = devres_alloc(devm_rtc_release_device, sizeof(*ptr), GFP_KERNEL);
316 	if (!ptr) {
317 		err = -ENOMEM;
318 		goto exit_ida;
319 	}
320 
321 	rtc = rtc_allocate_device();
322 	if (!rtc) {
323 		err = -ENOMEM;
324 		goto exit_devres;
325 	}
326 
327 	*ptr = rtc;
328 	devres_add(dev, ptr);
329 
330 	rtc->id = id;
331 	rtc->dev.parent = dev;
332 	dev_set_name(&rtc->dev, "rtc%d", id);
333 
334 	return rtc;
335 
336 exit_devres:
337 	devres_free(ptr);
338 exit_ida:
339 	ida_simple_remove(&rtc_ida, id);
340 	return ERR_PTR(err);
341 }
342 EXPORT_SYMBOL_GPL(devm_rtc_allocate_device);
343 
344 int __rtc_register_device(struct module *owner, struct rtc_device *rtc)
345 {
346 	struct rtc_wkalrm alrm;
347 	int err;
348 
349 	if (!rtc->ops) {
350 		dev_dbg(&rtc->dev, "no ops set\n");
351 		return -EINVAL;
352 	}
353 
354 	rtc->owner = owner;
355 	rtc_device_get_offset(rtc);
356 
357 	/* Check to see if there is an ALARM already set in hw */
358 	err = __rtc_read_alarm(rtc, &alrm);
359 	if (!err && !rtc_valid_tm(&alrm.time))
360 		rtc_initialize_alarm(rtc, &alrm);
361 
362 	rtc_dev_prepare(rtc);
363 
364 	err = cdev_device_add(&rtc->char_dev, &rtc->dev);
365 	if (err)
366 		dev_warn(rtc->dev.parent, "failed to add char device %d:%d\n",
367 			 MAJOR(rtc->dev.devt), rtc->id);
368 	else
369 		dev_dbg(rtc->dev.parent, "char device (%d:%d)\n",
370 			MAJOR(rtc->dev.devt), rtc->id);
371 
372 	rtc_proc_add_device(rtc);
373 
374 	rtc->registered = true;
375 	dev_info(rtc->dev.parent, "registered as %s\n",
376 		 dev_name(&rtc->dev));
377 
378 	return 0;
379 }
380 EXPORT_SYMBOL_GPL(__rtc_register_device);
381 
382 /**
383  * devm_rtc_device_register - resource managed rtc_device_register()
384  * @dev: the device to register
385  * @name: the name of the device (unused)
386  * @ops: the rtc operations structure
387  * @owner: the module owner
388  *
389  * @return a struct rtc on success, or an ERR_PTR on error
390  *
391  * Managed rtc_device_register(). The rtc_device returned from this function
392  * are automatically freed on driver detach.
393  * This function is deprecated, use devm_rtc_allocate_device and
394  * rtc_register_device instead
395  */
396 struct rtc_device *devm_rtc_device_register(struct device *dev,
397 					    const char *name,
398 					    const struct rtc_class_ops *ops,
399 					    struct module *owner)
400 {
401 	struct rtc_device *rtc;
402 	int err;
403 
404 	rtc = devm_rtc_allocate_device(dev);
405 	if (IS_ERR(rtc))
406 		return rtc;
407 
408 	rtc->ops = ops;
409 
410 	err = __rtc_register_device(owner, rtc);
411 	if (err)
412 		return ERR_PTR(err);
413 
414 	return rtc;
415 }
416 EXPORT_SYMBOL_GPL(devm_rtc_device_register);
417 
418 static int __init rtc_init(void)
419 {
420 	rtc_class = class_create(THIS_MODULE, "rtc");
421 	if (IS_ERR(rtc_class)) {
422 		pr_err("couldn't create class\n");
423 		return PTR_ERR(rtc_class);
424 	}
425 	rtc_class->pm = RTC_CLASS_DEV_PM_OPS;
426 	rtc_dev_init();
427 	return 0;
428 }
429 subsys_initcall(rtc_init);
430