1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * RTC subsystem, base class 4 * 5 * Copyright (C) 2005 Tower Technologies 6 * Author: Alessandro Zummo <a.zummo@towertech.it> 7 * 8 * class skeleton from drivers/hwmon/hwmon.c 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/module.h> 14 #include <linux/of.h> 15 #include <linux/rtc.h> 16 #include <linux/kdev_t.h> 17 #include <linux/idr.h> 18 #include <linux/slab.h> 19 #include <linux/workqueue.h> 20 21 #include "rtc-core.h" 22 23 24 static DEFINE_IDA(rtc_ida); 25 struct class *rtc_class; 26 27 static void rtc_device_release(struct device *dev) 28 { 29 struct rtc_device *rtc = to_rtc_device(dev); 30 ida_simple_remove(&rtc_ida, rtc->id); 31 kfree(rtc); 32 } 33 34 #ifdef CONFIG_RTC_HCTOSYS_DEVICE 35 /* Result of the last RTC to system clock attempt. */ 36 int rtc_hctosys_ret = -ENODEV; 37 #endif 38 39 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 40 /* 41 * On suspend(), measure the delta between one RTC and the 42 * system's wall clock; restore it on resume(). 43 */ 44 45 static struct timespec64 old_rtc, old_system, old_delta; 46 47 48 static int rtc_suspend(struct device *dev) 49 { 50 struct rtc_device *rtc = to_rtc_device(dev); 51 struct rtc_time tm; 52 struct timespec64 delta, delta_delta; 53 int err; 54 55 if (timekeeping_rtc_skipsuspend()) 56 return 0; 57 58 if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0) 59 return 0; 60 61 /* snapshot the current RTC and system time at suspend*/ 62 err = rtc_read_time(rtc, &tm); 63 if (err < 0) { 64 pr_debug("%s: fail to read rtc time\n", dev_name(&rtc->dev)); 65 return 0; 66 } 67 68 ktime_get_real_ts64(&old_system); 69 old_rtc.tv_sec = rtc_tm_to_time64(&tm); 70 71 72 /* 73 * To avoid drift caused by repeated suspend/resumes, 74 * which each can add ~1 second drift error, 75 * try to compensate so the difference in system time 76 * and rtc time stays close to constant. 77 */ 78 delta = timespec64_sub(old_system, old_rtc); 79 delta_delta = timespec64_sub(delta, old_delta); 80 if (delta_delta.tv_sec < -2 || delta_delta.tv_sec >= 2) { 81 /* 82 * if delta_delta is too large, assume time correction 83 * has occured and set old_delta to the current delta. 84 */ 85 old_delta = delta; 86 } else { 87 /* Otherwise try to adjust old_system to compensate */ 88 old_system = timespec64_sub(old_system, delta_delta); 89 } 90 91 return 0; 92 } 93 94 static int rtc_resume(struct device *dev) 95 { 96 struct rtc_device *rtc = to_rtc_device(dev); 97 struct rtc_time tm; 98 struct timespec64 new_system, new_rtc; 99 struct timespec64 sleep_time; 100 int err; 101 102 if (timekeeping_rtc_skipresume()) 103 return 0; 104 105 rtc_hctosys_ret = -ENODEV; 106 if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0) 107 return 0; 108 109 /* snapshot the current rtc and system time at resume */ 110 ktime_get_real_ts64(&new_system); 111 err = rtc_read_time(rtc, &tm); 112 if (err < 0) { 113 pr_debug("%s: fail to read rtc time\n", dev_name(&rtc->dev)); 114 return 0; 115 } 116 117 new_rtc.tv_sec = rtc_tm_to_time64(&tm); 118 new_rtc.tv_nsec = 0; 119 120 if (new_rtc.tv_sec < old_rtc.tv_sec) { 121 pr_debug("%s: time travel!\n", dev_name(&rtc->dev)); 122 return 0; 123 } 124 125 /* calculate the RTC time delta (sleep time)*/ 126 sleep_time = timespec64_sub(new_rtc, old_rtc); 127 128 /* 129 * Since these RTC suspend/resume handlers are not called 130 * at the very end of suspend or the start of resume, 131 * some run-time may pass on either sides of the sleep time 132 * so subtract kernel run-time between rtc_suspend to rtc_resume 133 * to keep things accurate. 134 */ 135 sleep_time = timespec64_sub(sleep_time, 136 timespec64_sub(new_system, old_system)); 137 138 if (sleep_time.tv_sec >= 0) 139 timekeeping_inject_sleeptime64(&sleep_time); 140 rtc_hctosys_ret = 0; 141 return 0; 142 } 143 144 static SIMPLE_DEV_PM_OPS(rtc_class_dev_pm_ops, rtc_suspend, rtc_resume); 145 #define RTC_CLASS_DEV_PM_OPS (&rtc_class_dev_pm_ops) 146 #else 147 #define RTC_CLASS_DEV_PM_OPS NULL 148 #endif 149 150 /* Ensure the caller will set the id before releasing the device */ 151 static struct rtc_device *rtc_allocate_device(void) 152 { 153 struct rtc_device *rtc; 154 155 rtc = kzalloc(sizeof(*rtc), GFP_KERNEL); 156 if (!rtc) 157 return NULL; 158 159 device_initialize(&rtc->dev); 160 161 /* Drivers can revise this default after allocating the device. */ 162 rtc->set_offset_nsec = NSEC_PER_SEC / 2; 163 164 rtc->irq_freq = 1; 165 rtc->max_user_freq = 64; 166 rtc->dev.class = rtc_class; 167 rtc->dev.groups = rtc_get_dev_attribute_groups(); 168 rtc->dev.release = rtc_device_release; 169 170 mutex_init(&rtc->ops_lock); 171 spin_lock_init(&rtc->irq_lock); 172 init_waitqueue_head(&rtc->irq_queue); 173 174 /* Init timerqueue */ 175 timerqueue_init_head(&rtc->timerqueue); 176 INIT_WORK(&rtc->irqwork, rtc_timer_do_work); 177 /* Init aie timer */ 178 rtc_timer_init(&rtc->aie_timer, rtc_aie_update_irq, rtc); 179 /* Init uie timer */ 180 rtc_timer_init(&rtc->uie_rtctimer, rtc_uie_update_irq, rtc); 181 /* Init pie timer */ 182 hrtimer_init(&rtc->pie_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 183 rtc->pie_timer.function = rtc_pie_update_irq; 184 rtc->pie_enabled = 0; 185 186 return rtc; 187 } 188 189 static int rtc_device_get_id(struct device *dev) 190 { 191 int of_id = -1, id = -1; 192 193 if (dev->of_node) 194 of_id = of_alias_get_id(dev->of_node, "rtc"); 195 else if (dev->parent && dev->parent->of_node) 196 of_id = of_alias_get_id(dev->parent->of_node, "rtc"); 197 198 if (of_id >= 0) { 199 id = ida_simple_get(&rtc_ida, of_id, of_id + 1, GFP_KERNEL); 200 if (id < 0) 201 dev_warn(dev, "/aliases ID %d not available\n", of_id); 202 } 203 204 if (id < 0) 205 id = ida_simple_get(&rtc_ida, 0, 0, GFP_KERNEL); 206 207 return id; 208 } 209 210 static void rtc_device_get_offset(struct rtc_device *rtc) 211 { 212 time64_t range_secs; 213 u32 start_year; 214 int ret; 215 216 /* 217 * If RTC driver did not implement the range of RTC hardware device, 218 * then we can not expand the RTC range by adding or subtracting one 219 * offset. 220 */ 221 if (rtc->range_min == rtc->range_max) 222 return; 223 224 ret = device_property_read_u32(rtc->dev.parent, "start-year", 225 &start_year); 226 if (!ret) { 227 rtc->start_secs = mktime64(start_year, 1, 1, 0, 0, 0); 228 rtc->set_start_time = true; 229 } 230 231 /* 232 * If user did not implement the start time for RTC driver, then no 233 * need to expand the RTC range. 234 */ 235 if (!rtc->set_start_time) 236 return; 237 238 range_secs = rtc->range_max - rtc->range_min + 1; 239 240 /* 241 * If the start_secs is larger than the maximum seconds (rtc->range_max) 242 * supported by RTC hardware or the maximum seconds of new expanded 243 * range (start_secs + rtc->range_max - rtc->range_min) is less than 244 * rtc->range_min, which means the minimum seconds (rtc->range_min) of 245 * RTC hardware will be mapped to start_secs by adding one offset, so 246 * the offset seconds calculation formula should be: 247 * rtc->offset_secs = rtc->start_secs - rtc->range_min; 248 * 249 * If the start_secs is larger than the minimum seconds (rtc->range_min) 250 * supported by RTC hardware, then there is one region is overlapped 251 * between the original RTC hardware range and the new expanded range, 252 * and this overlapped region do not need to be mapped into the new 253 * expanded range due to it is valid for RTC device. So the minimum 254 * seconds of RTC hardware (rtc->range_min) should be mapped to 255 * rtc->range_max + 1, then the offset seconds formula should be: 256 * rtc->offset_secs = rtc->range_max - rtc->range_min + 1; 257 * 258 * If the start_secs is less than the minimum seconds (rtc->range_min), 259 * which is similar to case 2. So the start_secs should be mapped to 260 * start_secs + rtc->range_max - rtc->range_min + 1, then the 261 * offset seconds formula should be: 262 * rtc->offset_secs = -(rtc->range_max - rtc->range_min + 1); 263 * 264 * Otherwise the offset seconds should be 0. 265 */ 266 if (rtc->start_secs > rtc->range_max || 267 rtc->start_secs + range_secs - 1 < rtc->range_min) 268 rtc->offset_secs = rtc->start_secs - rtc->range_min; 269 else if (rtc->start_secs > rtc->range_min) 270 rtc->offset_secs = range_secs; 271 else if (rtc->start_secs < rtc->range_min) 272 rtc->offset_secs = -range_secs; 273 else 274 rtc->offset_secs = 0; 275 } 276 277 /** 278 * rtc_device_unregister - removes the previously registered RTC class device 279 * 280 * @rtc: the RTC class device to destroy 281 */ 282 static void rtc_device_unregister(struct rtc_device *rtc) 283 { 284 mutex_lock(&rtc->ops_lock); 285 /* 286 * Remove innards of this RTC, then disable it, before 287 * letting any rtc_class_open() users access it again 288 */ 289 rtc_proc_del_device(rtc); 290 cdev_device_del(&rtc->char_dev, &rtc->dev); 291 rtc->ops = NULL; 292 mutex_unlock(&rtc->ops_lock); 293 put_device(&rtc->dev); 294 } 295 296 static void devm_rtc_release_device(struct device *dev, void *res) 297 { 298 struct rtc_device *rtc = *(struct rtc_device **)res; 299 300 rtc_nvmem_unregister(rtc); 301 302 if (rtc->registered) 303 rtc_device_unregister(rtc); 304 else 305 put_device(&rtc->dev); 306 } 307 308 struct rtc_device *devm_rtc_allocate_device(struct device *dev) 309 { 310 struct rtc_device **ptr, *rtc; 311 int id, err; 312 313 id = rtc_device_get_id(dev); 314 if (id < 0) 315 return ERR_PTR(id); 316 317 ptr = devres_alloc(devm_rtc_release_device, sizeof(*ptr), GFP_KERNEL); 318 if (!ptr) { 319 err = -ENOMEM; 320 goto exit_ida; 321 } 322 323 rtc = rtc_allocate_device(); 324 if (!rtc) { 325 err = -ENOMEM; 326 goto exit_devres; 327 } 328 329 *ptr = rtc; 330 devres_add(dev, ptr); 331 332 rtc->id = id; 333 rtc->dev.parent = dev; 334 dev_set_name(&rtc->dev, "rtc%d", id); 335 336 return rtc; 337 338 exit_devres: 339 devres_free(ptr); 340 exit_ida: 341 ida_simple_remove(&rtc_ida, id); 342 return ERR_PTR(err); 343 } 344 EXPORT_SYMBOL_GPL(devm_rtc_allocate_device); 345 346 int __rtc_register_device(struct module *owner, struct rtc_device *rtc) 347 { 348 struct rtc_wkalrm alrm; 349 int err; 350 351 if (!rtc->ops) 352 return -EINVAL; 353 354 rtc->owner = owner; 355 rtc_device_get_offset(rtc); 356 357 /* Check to see if there is an ALARM already set in hw */ 358 err = __rtc_read_alarm(rtc, &alrm); 359 if (!err && !rtc_valid_tm(&alrm.time)) 360 rtc_initialize_alarm(rtc, &alrm); 361 362 rtc_dev_prepare(rtc); 363 364 err = cdev_device_add(&rtc->char_dev, &rtc->dev); 365 if (err) 366 dev_warn(rtc->dev.parent, "failed to add char device %d:%d\n", 367 MAJOR(rtc->dev.devt), rtc->id); 368 else 369 dev_dbg(rtc->dev.parent, "char device (%d:%d)\n", 370 MAJOR(rtc->dev.devt), rtc->id); 371 372 rtc_proc_add_device(rtc); 373 374 rtc->registered = true; 375 dev_info(rtc->dev.parent, "registered as %s\n", 376 dev_name(&rtc->dev)); 377 378 return 0; 379 } 380 EXPORT_SYMBOL_GPL(__rtc_register_device); 381 382 /** 383 * devm_rtc_device_register - resource managed rtc_device_register() 384 * @dev: the device to register 385 * @name: the name of the device (unused) 386 * @ops: the rtc operations structure 387 * @owner: the module owner 388 * 389 * @return a struct rtc on success, or an ERR_PTR on error 390 * 391 * Managed rtc_device_register(). The rtc_device returned from this function 392 * are automatically freed on driver detach. 393 * This function is deprecated, use devm_rtc_allocate_device and 394 * rtc_register_device instead 395 */ 396 struct rtc_device *devm_rtc_device_register(struct device *dev, 397 const char *name, 398 const struct rtc_class_ops *ops, 399 struct module *owner) 400 { 401 struct rtc_device *rtc; 402 int err; 403 404 rtc = devm_rtc_allocate_device(dev); 405 if (IS_ERR(rtc)) 406 return rtc; 407 408 rtc->ops = ops; 409 410 err = __rtc_register_device(owner, rtc); 411 if (err) 412 return ERR_PTR(err); 413 414 return rtc; 415 } 416 EXPORT_SYMBOL_GPL(devm_rtc_device_register); 417 418 static int __init rtc_init(void) 419 { 420 rtc_class = class_create(THIS_MODULE, "rtc"); 421 if (IS_ERR(rtc_class)) { 422 pr_err("couldn't create class\n"); 423 return PTR_ERR(rtc_class); 424 } 425 rtc_class->pm = RTC_CLASS_DEV_PM_OPS; 426 rtc_dev_init(); 427 return 0; 428 } 429 subsys_initcall(rtc_init); 430