1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * RTC subsystem, base class 4 * 5 * Copyright (C) 2005 Tower Technologies 6 * Author: Alessandro Zummo <a.zummo@towertech.it> 7 * 8 * class skeleton from drivers/hwmon/hwmon.c 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/module.h> 14 #include <linux/of.h> 15 #include <linux/rtc.h> 16 #include <linux/kdev_t.h> 17 #include <linux/idr.h> 18 #include <linux/slab.h> 19 #include <linux/workqueue.h> 20 21 #include "rtc-core.h" 22 23 static DEFINE_IDA(rtc_ida); 24 struct class *rtc_class; 25 26 static void rtc_device_release(struct device *dev) 27 { 28 struct rtc_device *rtc = to_rtc_device(dev); 29 30 ida_simple_remove(&rtc_ida, rtc->id); 31 kfree(rtc); 32 } 33 34 #ifdef CONFIG_RTC_HCTOSYS_DEVICE 35 /* Result of the last RTC to system clock attempt. */ 36 int rtc_hctosys_ret = -ENODEV; 37 #endif 38 39 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 40 /* 41 * On suspend(), measure the delta between one RTC and the 42 * system's wall clock; restore it on resume(). 43 */ 44 45 static struct timespec64 old_rtc, old_system, old_delta; 46 47 static int rtc_suspend(struct device *dev) 48 { 49 struct rtc_device *rtc = to_rtc_device(dev); 50 struct rtc_time tm; 51 struct timespec64 delta, delta_delta; 52 int err; 53 54 if (timekeeping_rtc_skipsuspend()) 55 return 0; 56 57 if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0) 58 return 0; 59 60 /* snapshot the current RTC and system time at suspend*/ 61 err = rtc_read_time(rtc, &tm); 62 if (err < 0) { 63 pr_debug("%s: fail to read rtc time\n", dev_name(&rtc->dev)); 64 return 0; 65 } 66 67 ktime_get_real_ts64(&old_system); 68 old_rtc.tv_sec = rtc_tm_to_time64(&tm); 69 70 /* 71 * To avoid drift caused by repeated suspend/resumes, 72 * which each can add ~1 second drift error, 73 * try to compensate so the difference in system time 74 * and rtc time stays close to constant. 75 */ 76 delta = timespec64_sub(old_system, old_rtc); 77 delta_delta = timespec64_sub(delta, old_delta); 78 if (delta_delta.tv_sec < -2 || delta_delta.tv_sec >= 2) { 79 /* 80 * if delta_delta is too large, assume time correction 81 * has occurred and set old_delta to the current delta. 82 */ 83 old_delta = delta; 84 } else { 85 /* Otherwise try to adjust old_system to compensate */ 86 old_system = timespec64_sub(old_system, delta_delta); 87 } 88 89 return 0; 90 } 91 92 static int rtc_resume(struct device *dev) 93 { 94 struct rtc_device *rtc = to_rtc_device(dev); 95 struct rtc_time tm; 96 struct timespec64 new_system, new_rtc; 97 struct timespec64 sleep_time; 98 int err; 99 100 if (timekeeping_rtc_skipresume()) 101 return 0; 102 103 rtc_hctosys_ret = -ENODEV; 104 if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0) 105 return 0; 106 107 /* snapshot the current rtc and system time at resume */ 108 ktime_get_real_ts64(&new_system); 109 err = rtc_read_time(rtc, &tm); 110 if (err < 0) { 111 pr_debug("%s: fail to read rtc time\n", dev_name(&rtc->dev)); 112 return 0; 113 } 114 115 new_rtc.tv_sec = rtc_tm_to_time64(&tm); 116 new_rtc.tv_nsec = 0; 117 118 if (new_rtc.tv_sec < old_rtc.tv_sec) { 119 pr_debug("%s: time travel!\n", dev_name(&rtc->dev)); 120 return 0; 121 } 122 123 /* calculate the RTC time delta (sleep time)*/ 124 sleep_time = timespec64_sub(new_rtc, old_rtc); 125 126 /* 127 * Since these RTC suspend/resume handlers are not called 128 * at the very end of suspend or the start of resume, 129 * some run-time may pass on either sides of the sleep time 130 * so subtract kernel run-time between rtc_suspend to rtc_resume 131 * to keep things accurate. 132 */ 133 sleep_time = timespec64_sub(sleep_time, 134 timespec64_sub(new_system, old_system)); 135 136 if (sleep_time.tv_sec >= 0) 137 timekeeping_inject_sleeptime64(&sleep_time); 138 rtc_hctosys_ret = 0; 139 return 0; 140 } 141 142 static SIMPLE_DEV_PM_OPS(rtc_class_dev_pm_ops, rtc_suspend, rtc_resume); 143 #define RTC_CLASS_DEV_PM_OPS (&rtc_class_dev_pm_ops) 144 #else 145 #define RTC_CLASS_DEV_PM_OPS NULL 146 #endif 147 148 /* Ensure the caller will set the id before releasing the device */ 149 static struct rtc_device *rtc_allocate_device(void) 150 { 151 struct rtc_device *rtc; 152 153 rtc = kzalloc(sizeof(*rtc), GFP_KERNEL); 154 if (!rtc) 155 return NULL; 156 157 device_initialize(&rtc->dev); 158 159 /* Drivers can revise this default after allocating the device. */ 160 rtc->set_offset_nsec = NSEC_PER_SEC / 2; 161 162 rtc->irq_freq = 1; 163 rtc->max_user_freq = 64; 164 rtc->dev.class = rtc_class; 165 rtc->dev.groups = rtc_get_dev_attribute_groups(); 166 rtc->dev.release = rtc_device_release; 167 168 mutex_init(&rtc->ops_lock); 169 spin_lock_init(&rtc->irq_lock); 170 init_waitqueue_head(&rtc->irq_queue); 171 172 /* Init timerqueue */ 173 timerqueue_init_head(&rtc->timerqueue); 174 INIT_WORK(&rtc->irqwork, rtc_timer_do_work); 175 /* Init aie timer */ 176 rtc_timer_init(&rtc->aie_timer, rtc_aie_update_irq, rtc); 177 /* Init uie timer */ 178 rtc_timer_init(&rtc->uie_rtctimer, rtc_uie_update_irq, rtc); 179 /* Init pie timer */ 180 hrtimer_init(&rtc->pie_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 181 rtc->pie_timer.function = rtc_pie_update_irq; 182 rtc->pie_enabled = 0; 183 184 return rtc; 185 } 186 187 static int rtc_device_get_id(struct device *dev) 188 { 189 int of_id = -1, id = -1; 190 191 if (dev->of_node) 192 of_id = of_alias_get_id(dev->of_node, "rtc"); 193 else if (dev->parent && dev->parent->of_node) 194 of_id = of_alias_get_id(dev->parent->of_node, "rtc"); 195 196 if (of_id >= 0) { 197 id = ida_simple_get(&rtc_ida, of_id, of_id + 1, GFP_KERNEL); 198 if (id < 0) 199 dev_warn(dev, "/aliases ID %d not available\n", of_id); 200 } 201 202 if (id < 0) 203 id = ida_simple_get(&rtc_ida, 0, 0, GFP_KERNEL); 204 205 return id; 206 } 207 208 static void rtc_device_get_offset(struct rtc_device *rtc) 209 { 210 time64_t range_secs; 211 u32 start_year; 212 int ret; 213 214 /* 215 * If RTC driver did not implement the range of RTC hardware device, 216 * then we can not expand the RTC range by adding or subtracting one 217 * offset. 218 */ 219 if (rtc->range_min == rtc->range_max) 220 return; 221 222 ret = device_property_read_u32(rtc->dev.parent, "start-year", 223 &start_year); 224 if (!ret) { 225 rtc->start_secs = mktime64(start_year, 1, 1, 0, 0, 0); 226 rtc->set_start_time = true; 227 } 228 229 /* 230 * If user did not implement the start time for RTC driver, then no 231 * need to expand the RTC range. 232 */ 233 if (!rtc->set_start_time) 234 return; 235 236 range_secs = rtc->range_max - rtc->range_min + 1; 237 238 /* 239 * If the start_secs is larger than the maximum seconds (rtc->range_max) 240 * supported by RTC hardware or the maximum seconds of new expanded 241 * range (start_secs + rtc->range_max - rtc->range_min) is less than 242 * rtc->range_min, which means the minimum seconds (rtc->range_min) of 243 * RTC hardware will be mapped to start_secs by adding one offset, so 244 * the offset seconds calculation formula should be: 245 * rtc->offset_secs = rtc->start_secs - rtc->range_min; 246 * 247 * If the start_secs is larger than the minimum seconds (rtc->range_min) 248 * supported by RTC hardware, then there is one region is overlapped 249 * between the original RTC hardware range and the new expanded range, 250 * and this overlapped region do not need to be mapped into the new 251 * expanded range due to it is valid for RTC device. So the minimum 252 * seconds of RTC hardware (rtc->range_min) should be mapped to 253 * rtc->range_max + 1, then the offset seconds formula should be: 254 * rtc->offset_secs = rtc->range_max - rtc->range_min + 1; 255 * 256 * If the start_secs is less than the minimum seconds (rtc->range_min), 257 * which is similar to case 2. So the start_secs should be mapped to 258 * start_secs + rtc->range_max - rtc->range_min + 1, then the 259 * offset seconds formula should be: 260 * rtc->offset_secs = -(rtc->range_max - rtc->range_min + 1); 261 * 262 * Otherwise the offset seconds should be 0. 263 */ 264 if (rtc->start_secs > rtc->range_max || 265 rtc->start_secs + range_secs - 1 < rtc->range_min) 266 rtc->offset_secs = rtc->start_secs - rtc->range_min; 267 else if (rtc->start_secs > rtc->range_min) 268 rtc->offset_secs = range_secs; 269 else if (rtc->start_secs < rtc->range_min) 270 rtc->offset_secs = -range_secs; 271 else 272 rtc->offset_secs = 0; 273 } 274 275 /** 276 * rtc_device_unregister - removes the previously registered RTC class device 277 * 278 * @rtc: the RTC class device to destroy 279 */ 280 static void rtc_device_unregister(struct rtc_device *rtc) 281 { 282 mutex_lock(&rtc->ops_lock); 283 /* 284 * Remove innards of this RTC, then disable it, before 285 * letting any rtc_class_open() users access it again 286 */ 287 rtc_proc_del_device(rtc); 288 cdev_device_del(&rtc->char_dev, &rtc->dev); 289 rtc->ops = NULL; 290 mutex_unlock(&rtc->ops_lock); 291 put_device(&rtc->dev); 292 } 293 294 static void devm_rtc_release_device(struct device *dev, void *res) 295 { 296 struct rtc_device *rtc = *(struct rtc_device **)res; 297 298 rtc_nvmem_unregister(rtc); 299 300 if (rtc->registered) 301 rtc_device_unregister(rtc); 302 else 303 put_device(&rtc->dev); 304 } 305 306 struct rtc_device *devm_rtc_allocate_device(struct device *dev) 307 { 308 struct rtc_device **ptr, *rtc; 309 int id, err; 310 311 id = rtc_device_get_id(dev); 312 if (id < 0) 313 return ERR_PTR(id); 314 315 ptr = devres_alloc(devm_rtc_release_device, sizeof(*ptr), GFP_KERNEL); 316 if (!ptr) { 317 err = -ENOMEM; 318 goto exit_ida; 319 } 320 321 rtc = rtc_allocate_device(); 322 if (!rtc) { 323 err = -ENOMEM; 324 goto exit_devres; 325 } 326 327 *ptr = rtc; 328 devres_add(dev, ptr); 329 330 rtc->id = id; 331 rtc->dev.parent = dev; 332 dev_set_name(&rtc->dev, "rtc%d", id); 333 334 return rtc; 335 336 exit_devres: 337 devres_free(ptr); 338 exit_ida: 339 ida_simple_remove(&rtc_ida, id); 340 return ERR_PTR(err); 341 } 342 EXPORT_SYMBOL_GPL(devm_rtc_allocate_device); 343 344 int __rtc_register_device(struct module *owner, struct rtc_device *rtc) 345 { 346 struct rtc_wkalrm alrm; 347 int err; 348 349 if (!rtc->ops) 350 return -EINVAL; 351 352 rtc->owner = owner; 353 rtc_device_get_offset(rtc); 354 355 /* Check to see if there is an ALARM already set in hw */ 356 err = __rtc_read_alarm(rtc, &alrm); 357 if (!err && !rtc_valid_tm(&alrm.time)) 358 rtc_initialize_alarm(rtc, &alrm); 359 360 rtc_dev_prepare(rtc); 361 362 err = cdev_device_add(&rtc->char_dev, &rtc->dev); 363 if (err) 364 dev_warn(rtc->dev.parent, "failed to add char device %d:%d\n", 365 MAJOR(rtc->dev.devt), rtc->id); 366 else 367 dev_dbg(rtc->dev.parent, "char device (%d:%d)\n", 368 MAJOR(rtc->dev.devt), rtc->id); 369 370 rtc_proc_add_device(rtc); 371 372 rtc->registered = true; 373 dev_info(rtc->dev.parent, "registered as %s\n", 374 dev_name(&rtc->dev)); 375 376 return 0; 377 } 378 EXPORT_SYMBOL_GPL(__rtc_register_device); 379 380 /** 381 * devm_rtc_device_register - resource managed rtc_device_register() 382 * @dev: the device to register 383 * @name: the name of the device (unused) 384 * @ops: the rtc operations structure 385 * @owner: the module owner 386 * 387 * @return a struct rtc on success, or an ERR_PTR on error 388 * 389 * Managed rtc_device_register(). The rtc_device returned from this function 390 * are automatically freed on driver detach. 391 * This function is deprecated, use devm_rtc_allocate_device and 392 * rtc_register_device instead 393 */ 394 struct rtc_device *devm_rtc_device_register(struct device *dev, 395 const char *name, 396 const struct rtc_class_ops *ops, 397 struct module *owner) 398 { 399 struct rtc_device *rtc; 400 int err; 401 402 rtc = devm_rtc_allocate_device(dev); 403 if (IS_ERR(rtc)) 404 return rtc; 405 406 rtc->ops = ops; 407 408 err = __rtc_register_device(owner, rtc); 409 if (err) 410 return ERR_PTR(err); 411 412 return rtc; 413 } 414 EXPORT_SYMBOL_GPL(devm_rtc_device_register); 415 416 static int __init rtc_init(void) 417 { 418 rtc_class = class_create(THIS_MODULE, "rtc"); 419 if (IS_ERR(rtc_class)) { 420 pr_err("couldn't create class\n"); 421 return PTR_ERR(rtc_class); 422 } 423 rtc_class->pm = RTC_CLASS_DEV_PM_OPS; 424 rtc_dev_init(); 425 return 0; 426 } 427 subsys_initcall(rtc_init); 428