1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * RTC subsystem, base class 4 * 5 * Copyright (C) 2005 Tower Technologies 6 * Author: Alessandro Zummo <a.zummo@towertech.it> 7 * 8 * class skeleton from drivers/hwmon/hwmon.c 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/module.h> 14 #include <linux/of.h> 15 #include <linux/rtc.h> 16 #include <linux/kdev_t.h> 17 #include <linux/idr.h> 18 #include <linux/slab.h> 19 #include <linux/workqueue.h> 20 21 #include "rtc-core.h" 22 23 static DEFINE_IDA(rtc_ida); 24 struct class *rtc_class; 25 26 static void rtc_device_release(struct device *dev) 27 { 28 struct rtc_device *rtc = to_rtc_device(dev); 29 30 ida_simple_remove(&rtc_ida, rtc->id); 31 mutex_destroy(&rtc->ops_lock); 32 kfree(rtc); 33 } 34 35 #ifdef CONFIG_RTC_HCTOSYS_DEVICE 36 /* Result of the last RTC to system clock attempt. */ 37 int rtc_hctosys_ret = -ENODEV; 38 39 /* IMPORTANT: the RTC only stores whole seconds. It is arbitrary 40 * whether it stores the most close value or the value with partial 41 * seconds truncated. However, it is important that we use it to store 42 * the truncated value. This is because otherwise it is necessary, 43 * in an rtc sync function, to read both xtime.tv_sec and 44 * xtime.tv_nsec. On some processors (i.e. ARM), an atomic read 45 * of >32bits is not possible. So storing the most close value would 46 * slow down the sync API. So here we have the truncated value and 47 * the best guess is to add 0.5s. 48 */ 49 50 static void rtc_hctosys(struct rtc_device *rtc) 51 { 52 int err; 53 struct rtc_time tm; 54 struct timespec64 tv64 = { 55 .tv_nsec = NSEC_PER_SEC >> 1, 56 }; 57 58 err = rtc_read_time(rtc, &tm); 59 if (err) { 60 dev_err(rtc->dev.parent, 61 "hctosys: unable to read the hardware clock\n"); 62 goto err_read; 63 } 64 65 tv64.tv_sec = rtc_tm_to_time64(&tm); 66 67 #if BITS_PER_LONG == 32 68 if (tv64.tv_sec > INT_MAX) { 69 err = -ERANGE; 70 goto err_read; 71 } 72 #endif 73 74 err = do_settimeofday64(&tv64); 75 76 dev_info(rtc->dev.parent, "setting system clock to %ptR UTC (%lld)\n", 77 &tm, (long long)tv64.tv_sec); 78 79 err_read: 80 rtc_hctosys_ret = err; 81 } 82 #endif 83 84 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 85 /* 86 * On suspend(), measure the delta between one RTC and the 87 * system's wall clock; restore it on resume(). 88 */ 89 90 static struct timespec64 old_rtc, old_system, old_delta; 91 92 static int rtc_suspend(struct device *dev) 93 { 94 struct rtc_device *rtc = to_rtc_device(dev); 95 struct rtc_time tm; 96 struct timespec64 delta, delta_delta; 97 int err; 98 99 if (timekeeping_rtc_skipsuspend()) 100 return 0; 101 102 if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0) 103 return 0; 104 105 /* snapshot the current RTC and system time at suspend*/ 106 err = rtc_read_time(rtc, &tm); 107 if (err < 0) { 108 pr_debug("%s: fail to read rtc time\n", dev_name(&rtc->dev)); 109 return 0; 110 } 111 112 ktime_get_real_ts64(&old_system); 113 old_rtc.tv_sec = rtc_tm_to_time64(&tm); 114 115 /* 116 * To avoid drift caused by repeated suspend/resumes, 117 * which each can add ~1 second drift error, 118 * try to compensate so the difference in system time 119 * and rtc time stays close to constant. 120 */ 121 delta = timespec64_sub(old_system, old_rtc); 122 delta_delta = timespec64_sub(delta, old_delta); 123 if (delta_delta.tv_sec < -2 || delta_delta.tv_sec >= 2) { 124 /* 125 * if delta_delta is too large, assume time correction 126 * has occurred and set old_delta to the current delta. 127 */ 128 old_delta = delta; 129 } else { 130 /* Otherwise try to adjust old_system to compensate */ 131 old_system = timespec64_sub(old_system, delta_delta); 132 } 133 134 return 0; 135 } 136 137 static int rtc_resume(struct device *dev) 138 { 139 struct rtc_device *rtc = to_rtc_device(dev); 140 struct rtc_time tm; 141 struct timespec64 new_system, new_rtc; 142 struct timespec64 sleep_time; 143 int err; 144 145 if (timekeeping_rtc_skipresume()) 146 return 0; 147 148 rtc_hctosys_ret = -ENODEV; 149 if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0) 150 return 0; 151 152 /* snapshot the current rtc and system time at resume */ 153 ktime_get_real_ts64(&new_system); 154 err = rtc_read_time(rtc, &tm); 155 if (err < 0) { 156 pr_debug("%s: fail to read rtc time\n", dev_name(&rtc->dev)); 157 return 0; 158 } 159 160 new_rtc.tv_sec = rtc_tm_to_time64(&tm); 161 new_rtc.tv_nsec = 0; 162 163 if (new_rtc.tv_sec < old_rtc.tv_sec) { 164 pr_debug("%s: time travel!\n", dev_name(&rtc->dev)); 165 return 0; 166 } 167 168 /* calculate the RTC time delta (sleep time)*/ 169 sleep_time = timespec64_sub(new_rtc, old_rtc); 170 171 /* 172 * Since these RTC suspend/resume handlers are not called 173 * at the very end of suspend or the start of resume, 174 * some run-time may pass on either sides of the sleep time 175 * so subtract kernel run-time between rtc_suspend to rtc_resume 176 * to keep things accurate. 177 */ 178 sleep_time = timespec64_sub(sleep_time, 179 timespec64_sub(new_system, old_system)); 180 181 if (sleep_time.tv_sec >= 0) 182 timekeeping_inject_sleeptime64(&sleep_time); 183 rtc_hctosys_ret = 0; 184 return 0; 185 } 186 187 static SIMPLE_DEV_PM_OPS(rtc_class_dev_pm_ops, rtc_suspend, rtc_resume); 188 #define RTC_CLASS_DEV_PM_OPS (&rtc_class_dev_pm_ops) 189 #else 190 #define RTC_CLASS_DEV_PM_OPS NULL 191 #endif 192 193 /* Ensure the caller will set the id before releasing the device */ 194 static struct rtc_device *rtc_allocate_device(void) 195 { 196 struct rtc_device *rtc; 197 198 rtc = kzalloc(sizeof(*rtc), GFP_KERNEL); 199 if (!rtc) 200 return NULL; 201 202 device_initialize(&rtc->dev); 203 204 /* 205 * Drivers can revise this default after allocating the device. 206 * The default is what most RTCs do: Increment seconds exactly one 207 * second after the write happened. This adds a default transport 208 * time of 5ms which is at least halfways close to reality. 209 */ 210 rtc->set_offset_nsec = NSEC_PER_SEC + 5 * NSEC_PER_MSEC; 211 212 rtc->irq_freq = 1; 213 rtc->max_user_freq = 64; 214 rtc->dev.class = rtc_class; 215 rtc->dev.groups = rtc_get_dev_attribute_groups(); 216 rtc->dev.release = rtc_device_release; 217 218 mutex_init(&rtc->ops_lock); 219 spin_lock_init(&rtc->irq_lock); 220 init_waitqueue_head(&rtc->irq_queue); 221 222 /* Init timerqueue */ 223 timerqueue_init_head(&rtc->timerqueue); 224 INIT_WORK(&rtc->irqwork, rtc_timer_do_work); 225 /* Init aie timer */ 226 rtc_timer_init(&rtc->aie_timer, rtc_aie_update_irq, rtc); 227 /* Init uie timer */ 228 rtc_timer_init(&rtc->uie_rtctimer, rtc_uie_update_irq, rtc); 229 /* Init pie timer */ 230 hrtimer_init(&rtc->pie_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 231 rtc->pie_timer.function = rtc_pie_update_irq; 232 rtc->pie_enabled = 0; 233 234 set_bit(RTC_FEATURE_ALARM, rtc->features); 235 set_bit(RTC_FEATURE_UPDATE_INTERRUPT, rtc->features); 236 237 return rtc; 238 } 239 240 static int rtc_device_get_id(struct device *dev) 241 { 242 int of_id = -1, id = -1; 243 244 if (dev->of_node) 245 of_id = of_alias_get_id(dev->of_node, "rtc"); 246 else if (dev->parent && dev->parent->of_node) 247 of_id = of_alias_get_id(dev->parent->of_node, "rtc"); 248 249 if (of_id >= 0) { 250 id = ida_simple_get(&rtc_ida, of_id, of_id + 1, GFP_KERNEL); 251 if (id < 0) 252 dev_warn(dev, "/aliases ID %d not available\n", of_id); 253 } 254 255 if (id < 0) 256 id = ida_simple_get(&rtc_ida, 0, 0, GFP_KERNEL); 257 258 return id; 259 } 260 261 static void rtc_device_get_offset(struct rtc_device *rtc) 262 { 263 time64_t range_secs; 264 u32 start_year; 265 int ret; 266 267 /* 268 * If RTC driver did not implement the range of RTC hardware device, 269 * then we can not expand the RTC range by adding or subtracting one 270 * offset. 271 */ 272 if (rtc->range_min == rtc->range_max) 273 return; 274 275 ret = device_property_read_u32(rtc->dev.parent, "start-year", 276 &start_year); 277 if (!ret) { 278 rtc->start_secs = mktime64(start_year, 1, 1, 0, 0, 0); 279 rtc->set_start_time = true; 280 } 281 282 /* 283 * If user did not implement the start time for RTC driver, then no 284 * need to expand the RTC range. 285 */ 286 if (!rtc->set_start_time) 287 return; 288 289 range_secs = rtc->range_max - rtc->range_min + 1; 290 291 /* 292 * If the start_secs is larger than the maximum seconds (rtc->range_max) 293 * supported by RTC hardware or the maximum seconds of new expanded 294 * range (start_secs + rtc->range_max - rtc->range_min) is less than 295 * rtc->range_min, which means the minimum seconds (rtc->range_min) of 296 * RTC hardware will be mapped to start_secs by adding one offset, so 297 * the offset seconds calculation formula should be: 298 * rtc->offset_secs = rtc->start_secs - rtc->range_min; 299 * 300 * If the start_secs is larger than the minimum seconds (rtc->range_min) 301 * supported by RTC hardware, then there is one region is overlapped 302 * between the original RTC hardware range and the new expanded range, 303 * and this overlapped region do not need to be mapped into the new 304 * expanded range due to it is valid for RTC device. So the minimum 305 * seconds of RTC hardware (rtc->range_min) should be mapped to 306 * rtc->range_max + 1, then the offset seconds formula should be: 307 * rtc->offset_secs = rtc->range_max - rtc->range_min + 1; 308 * 309 * If the start_secs is less than the minimum seconds (rtc->range_min), 310 * which is similar to case 2. So the start_secs should be mapped to 311 * start_secs + rtc->range_max - rtc->range_min + 1, then the 312 * offset seconds formula should be: 313 * rtc->offset_secs = -(rtc->range_max - rtc->range_min + 1); 314 * 315 * Otherwise the offset seconds should be 0. 316 */ 317 if (rtc->start_secs > rtc->range_max || 318 rtc->start_secs + range_secs - 1 < rtc->range_min) 319 rtc->offset_secs = rtc->start_secs - rtc->range_min; 320 else if (rtc->start_secs > rtc->range_min) 321 rtc->offset_secs = range_secs; 322 else if (rtc->start_secs < rtc->range_min) 323 rtc->offset_secs = -range_secs; 324 else 325 rtc->offset_secs = 0; 326 } 327 328 static void devm_rtc_unregister_device(void *data) 329 { 330 struct rtc_device *rtc = data; 331 332 mutex_lock(&rtc->ops_lock); 333 /* 334 * Remove innards of this RTC, then disable it, before 335 * letting any rtc_class_open() users access it again 336 */ 337 rtc_proc_del_device(rtc); 338 if (!test_bit(RTC_NO_CDEV, &rtc->flags)) 339 cdev_device_del(&rtc->char_dev, &rtc->dev); 340 rtc->ops = NULL; 341 mutex_unlock(&rtc->ops_lock); 342 } 343 344 static void devm_rtc_release_device(void *res) 345 { 346 struct rtc_device *rtc = res; 347 348 put_device(&rtc->dev); 349 } 350 351 struct rtc_device *devm_rtc_allocate_device(struct device *dev) 352 { 353 struct rtc_device *rtc; 354 int id, err; 355 356 id = rtc_device_get_id(dev); 357 if (id < 0) 358 return ERR_PTR(id); 359 360 rtc = rtc_allocate_device(); 361 if (!rtc) { 362 ida_simple_remove(&rtc_ida, id); 363 return ERR_PTR(-ENOMEM); 364 } 365 366 rtc->id = id; 367 rtc->dev.parent = dev; 368 err = dev_set_name(&rtc->dev, "rtc%d", id); 369 if (err) 370 return ERR_PTR(err); 371 372 err = devm_add_action_or_reset(dev, devm_rtc_release_device, rtc); 373 if (err) 374 return ERR_PTR(err); 375 376 return rtc; 377 } 378 EXPORT_SYMBOL_GPL(devm_rtc_allocate_device); 379 380 int __devm_rtc_register_device(struct module *owner, struct rtc_device *rtc) 381 { 382 struct rtc_wkalrm alrm; 383 int err; 384 385 if (!rtc->ops) { 386 dev_dbg(&rtc->dev, "no ops set\n"); 387 return -EINVAL; 388 } 389 390 if (!rtc->ops->set_alarm) 391 clear_bit(RTC_FEATURE_ALARM, rtc->features); 392 393 if (rtc->uie_unsupported) 394 clear_bit(RTC_FEATURE_UPDATE_INTERRUPT, rtc->features); 395 396 if (rtc->ops->set_offset) 397 set_bit(RTC_FEATURE_CORRECTION, rtc->features); 398 399 rtc->owner = owner; 400 rtc_device_get_offset(rtc); 401 402 /* Check to see if there is an ALARM already set in hw */ 403 err = __rtc_read_alarm(rtc, &alrm); 404 if (!err && !rtc_valid_tm(&alrm.time)) 405 rtc_initialize_alarm(rtc, &alrm); 406 407 rtc_dev_prepare(rtc); 408 409 err = cdev_device_add(&rtc->char_dev, &rtc->dev); 410 if (err) { 411 set_bit(RTC_NO_CDEV, &rtc->flags); 412 dev_warn(rtc->dev.parent, "failed to add char device %d:%d\n", 413 MAJOR(rtc->dev.devt), rtc->id); 414 } else { 415 dev_dbg(rtc->dev.parent, "char device (%d:%d)\n", 416 MAJOR(rtc->dev.devt), rtc->id); 417 } 418 419 rtc_proc_add_device(rtc); 420 421 dev_info(rtc->dev.parent, "registered as %s\n", 422 dev_name(&rtc->dev)); 423 424 #ifdef CONFIG_RTC_HCTOSYS_DEVICE 425 if (!strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE)) 426 rtc_hctosys(rtc); 427 #endif 428 429 return devm_add_action_or_reset(rtc->dev.parent, 430 devm_rtc_unregister_device, rtc); 431 } 432 EXPORT_SYMBOL_GPL(__devm_rtc_register_device); 433 434 /** 435 * devm_rtc_device_register - resource managed rtc_device_register() 436 * @dev: the device to register 437 * @name: the name of the device (unused) 438 * @ops: the rtc operations structure 439 * @owner: the module owner 440 * 441 * @return a struct rtc on success, or an ERR_PTR on error 442 * 443 * Managed rtc_device_register(). The rtc_device returned from this function 444 * are automatically freed on driver detach. 445 * This function is deprecated, use devm_rtc_allocate_device and 446 * rtc_register_device instead 447 */ 448 struct rtc_device *devm_rtc_device_register(struct device *dev, 449 const char *name, 450 const struct rtc_class_ops *ops, 451 struct module *owner) 452 { 453 struct rtc_device *rtc; 454 int err; 455 456 rtc = devm_rtc_allocate_device(dev); 457 if (IS_ERR(rtc)) 458 return rtc; 459 460 rtc->ops = ops; 461 462 err = __devm_rtc_register_device(owner, rtc); 463 if (err) 464 return ERR_PTR(err); 465 466 return rtc; 467 } 468 EXPORT_SYMBOL_GPL(devm_rtc_device_register); 469 470 static int __init rtc_init(void) 471 { 472 rtc_class = class_create(THIS_MODULE, "rtc"); 473 if (IS_ERR(rtc_class)) { 474 pr_err("couldn't create class\n"); 475 return PTR_ERR(rtc_class); 476 } 477 rtc_class->pm = RTC_CLASS_DEV_PM_OPS; 478 rtc_dev_init(); 479 return 0; 480 } 481 subsys_initcall(rtc_init); 482